
Identifying Vulnerable C Code using Machine

Learning Techniques

Sid Phatak

June 2024

Abstract

This report presents the development and evaluation of a machine
learning model for identifying vulnerable C code. Using an AI-generated
dataset of both vulnerable and non-vulnerable C code snippets, we explore
various methodologies including Bag of Words (BOW), Logistic Regres-
sion, word embeddings, and Recurrent Neural Networks (RNNs) to build
an effective classification model.

1 Introduction

1.1 Background

Identifying vulnerabilities in C code is very necessary for several reasons:
Security Risks: Vulnerabilities can be exploited to gain unauthorized access,
disrupt system operations, or even execute arbitrary code which can lead to
data breaches, system crashes, or other negative results.
Software Quality: Vulnerabilities often show deeper issues with code quality.
Addressing these can lead to more reliable and secure software.
Cost Efficiency: Detecting and fixing vulnerabilities in the early development
stages is usually much cheaper and less time-consuming to deal with than if
there was a massive security incident much later on when there is alot more
things to deal with.
Artificial intelligence and machine learning are showing very positive results
in automating vulnerability detection. Traditional methods, such as manually
reviewing code line by line or static analysis tools can be extremely time consum-
ing and may not catch every vulnerability. AI and ML models can be trained
to learn from previous vulnerabilities and could identify complex patterns and
vulnerabilities that most traditional methods might miss. They can also analyze
large codebases quickly, displaying its scalability in vulnerability detection.

1.2 Objective

The main objective of this project is to develop as well as evaluate ML (ma-
chine learning) models that are able to distinguish between nonvulnerable and

1



vulnerable C code. This involves training the models using the FormAI Dataset
of C code snippets labeled as vulnerable or nonvulnerable. The way the models
perform are evaluated on its ability to correctly classify the code snippets. The
goal is to create a tool that assists in software development by automatically
identifying potential vulnerabilities.

1.3 Organization

1. Dataset Generation
This section describes how the dataset is created, such as the collection and

preprocessing of data.
2. Methodology

This section outlines the different approaches, models, and reasoning used
in the project, such as the BOW Model, Logistic regression, word embeddings,
and RNNs.
3. Model Training and Evaluation

This section covers the training process and the evaluation metrics of the
models.
4. Discussion

This section analyzes the results and discusses the challenges faced as well
as potential work in the future.
5. Conclusion

Summarizes the key findings of the project, as well as the importance of ML
for C code. Reflects on the project and its potential implications for software
security.
6. References

References used for the project.

2 Dataset Generation

2.1 Data Collection

The FormAI dataset consists of 3 main files -
The main 112,000 C sample files, a CSV detailing vulnerabilities and corre-
sponding C code across 246,550 rows, and a streamlined human-readable CSV
version excluding the C code. Each C file is programmatically generated and
classified with information including file names, vulnerability types, and specific
lines of code where these vulnerabilities occur.
The labeling of code snippets as either vulnerable or nonvulnerable come from
the ”Vulnerability Type” column within the dataset file. It is processed in two
different ways -
If the preprocessed vectorized data is already present, the system loads this
data along with the original set, with the ”Vulnerability Type” column being
extracted. If preprocessed data does not exist, then the original dataset is
loaded, and a filtered version is created with only the columns ”Vulnerability

2



Type” and ”Source Code” columns present. These columns are transformed
into a matrix of word embeddings. It is then utilized in model training and the
evaluation phase, where it is then binarized, with ”vulnerable” being set to true
and everything else set to false.

2.2 Data Preprocessing

The dataset is first loaded through a CSV file, resulting in a dataframe in
which each row corresponds to a code snippet, and each column corresponding
to a feature of the snippet. the dataframe then gets filtered to only include
the ”Vulnerability Type” (labeled y) and ”Source Code” columns (labeled x).
The inputted data (x) is converted to a matrix of word embeddings, which is
done by tokenizing each code snippet and converting each token to a vector
representation, resulting in a list of lists, where each inner list corresponds to a
code snippet and contains the vector representations of the tokens in the code
snippet.

3 Methodology

3.1 Bag of Words (BOW) Model

The Bag of Words Model is used in natural language processing and for text
classification. It represents a set of words, like a document or sentence, as a
bag, keeping track of the frequency of each word. In the case of our project,
each C code snippet was treated as a document. The BOW model was used
to convert each of the code snippets into vectors that could be used as input
for the models. The BOW model is incredibly simple to implement and is very
effective at the task, allowing models to see the frequency of individual words
used within the document,

3.2 Logistic Regression

Logistic Regression was used to help classify the accuracy of the model in de-
termining a snippet to be vulnerable or nonvulnerable. With logistic regression,
it is relatively simple in application and it is fast to train.

3.3 Word Embeddings

Word embeddings are word representations that lets words with similar mean-
ings to have a similar representation. In this project, the word embeddings
are generated from the spaCy and are used to represent the code snippets in
a continuous vector space, where the position of each word is learned based on
its context. The en core web md pre-trained model from spaCy is used in this
project, to help convert each token in each snippet into vectors which are then
used as input to the ML models.

3



3.4 Recurrent Neural Networks (RNNs)

Recurrent neural networks are a type of neural network that are made to identify
patterns in sequences of data, making them extremely suitable for analyzing
code, as it can be represented as a sequence of tokens. The neural network used
was a sequential model implemented through Keras. It was configured with a
variable number of layers, and a variable number of neurons, with the first layer
having a different number of neurons, and needing the input dimension to be
specified. Each layer uses the ReLU activation function, except for the final
layer which uses the Sigmoid activation function. Several models are created,
trained, and evaluated. The configurations differ in the number of layers, the
number of neurons in the first layer, and the number of neurons in the other
layers.

4 Model Training and Evaluation

4.1 Training Process

The training process for each model is carried out through one function with the
purpose being to test the neural network with the optimization being handled by
the Adam optimizer. The function iterates over many different configurations
of hyperparameters, such as the number of layers, the number of neurons in the
layers. For each configuration, a new model is made that is built using another
function, where it is then trained using the fit method (X Train and Y Train).
the predictions are evaluated using a custom accuracy function, where which
the prediction accuracy is then displayed.

4.2 Evaluation Metrics

A neural network model was used, and the performance was evaluated using
accuracy as the metric. The models would be built based upon three factors,
those being the number of layers (1, 3, 5, or 10 layers), the number of hidden
neurons (8, 32, 124, or 512 hidden), and the number of neurons in the first layer
(512 or 1024). Every possible configuration was tested from these numbers, with
the accuracy being documented.

4.3 Results

The results from the model are sorted from the highest accuracy to the lowest
accuracy.

4



Layers First Neurons Hidden Neurons Accuracy
1 1024 124 0.9419590346785642
3 512 512 0.9414723179882377
1 1024 512 0.9405394443317785
3 1024 32 0.9406408436422632
1 1024 32 0.9408030825390388
3 512 32 0.9403974852971
3 1024 512 0.940417765159197
1 512 124 0.9404583248833908
3 1024 124 0.9400527276414521
1 512 32 0.9398904887446765
5 512 512 0.9398904887446765
10 512 32 0.9395457310890286
3 512 124 0.9396268505374163
1 512 512 0.9393023727438653
5 512 124 0.93940377205435
10 1024 124 0.938775096329345
5 1024 512 0.9388764956398297
5 512 32 0.9382275400527277
5 1024 32 0.938105860880146
5 512 8 0.9380044615696613
10 1024 8 0.9373352261204624
10 512 8 0.9370918677752992
1 1024 8 0.9379030622591766
10 1024 32 0.9374771851551409
1 512 8 0.933887649563983
5 1024 8 0.9339687690123707
10 512 124 0.9353477996349625
3 1024 8 0.9354289190833502
5 1024 124 0.9366254309470695
10 1024 512 0.9368687892922328
3 512 8 0.9320827418373555

5 Discussion

5.1 Analysis of Results

Many approaches were used during this project, such as logistic regression, but
ultimately, neural networks were used as the main approach. While neural
networks can handle and model complex datasets with high inputs, it requires
a lot of data to train effectively. It is also computationally expensive, which
caused many problems down the line while gathering data. Important findings
to note include that configurations using 1024 first neurons generally perform

5



much better than the other configurations, that 124 or 512 hidden neurons
correlate with higher accuracy, that 1 and 3 layers perform better than 5 and
10 layers, and finally, that configurations with fewer hidden neurons tended to
have lower accuracy.

5.2 Challenges

Many challenges were encountered throughout this project, with the most preva-
lent being computer processing power and too little memory. In some instances,
when testing different approaches or other methods, the computer would take
an unreasonable amount of time or not work entirely as the memory required
was extremely high.

5.3 Future Work

Potential improvements and future research directions include:

• Exploring other Machine Learning Techniques

– While neural networks are powerful, there are still many other algo-
rithms I could potentially use to get a better result for my data. For
instance, decision trees, random forests, support vector machines,
and gradient-boosting algorithms could be used. They each have
their own sets of strengths and weaknesses and might perform bet-
ter.

• Expanding the Dataset

– The quality and quantity of data used to train the model has signif-
icant impact on the performance. By using a larger dataset or arti-
ficially increasing the dataset size through data augmentation tech-
niques, it could be used to further train the model which would result
in outputting even more accurate data.

6 Conclusion

The use of neural networks with varying layers and neurons demonstrated a
range of accuracies, with the highest reaching about 94.2%. This indicates
that machine learning models can effectively learn patterns associated with vul-
nerabilities in C code and predict them accurately. As software become more
complex, manually identifying vulnerabilities could take an incredibly long time.
Machine learning offers an entirely new, automated and scalable solution that is
able to keep up with this more complex software. By identifying vulnerabilities
in C code, we can address potential security threats before they are exploited,
strengthening the overall security of software systems. The implications of this
project extend past just software security. It shows how machine learning can
be used to automate complex tasks in many other areas of software security,
demonstrating the incredible potential to increase efficiency.

6



7 References

[1] N. Tihanyi et al., “The formai dataset: Generative AI in software security
through the lens of formal verification,” arXiv.org, https://arxiv.org/abs/2307.02192
(accessed Jun. 12, 2024).

7


