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Abstract

In this paper, we provide a detailed and rigorous proof that the series formed
by the reciprocals of Sophie Germain primes and the series formed by the recipro-
cals of safe primes are both convergent. Utilizing analytic techniques and careful
estimations of the counting functions for these primes, we establish upper bounds
that demonstrate the convergence of these series.
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1 Introduction
A Sophie Germain prime is a prime number p such that q = 2p + 1 is also prime.
The number q is then called a safe prime. These primes are named after the French
mathematician Marie-Sophie Germain, who made significant contributions to number
theory, particularly in the study of Fermat’s Last Theorem.

The behavior of series formed by the reciprocals of special subsets of prime numbers is
a subject of deep interest in analytic number theory. While the sum of the reciprocals of
all prime numbers diverges (since

∑
p≤x

1
p
∼ ln ln x), certain subsets, such as twin primes,

Sophie Germain primes, and safe primes, are sufficiently sparse that the sum of their
reciprocals converges.

In this paper, we aim to provide a comprehensive and rigorous proof of the convergence
of the sums of the reciprocals of both Sophie Germain primes and safe primes. We
will employ detailed estimations of their counting functions and utilize techniques from
analytic number theory to establish the necessary bounds.

2 Preliminaries
2.1 Definitions

• Prime Counting Function: π(x) denotes the number of prime numbers less than
or equal to x.

• Sophie Germain Prime Counting Function: πSG(x) denotes the number of
Sophie Germain primes p such that p ≤ x.

• Safe Prime Counting Function: πSP(x) denotes the number of safe primes q
such that q ≤ x.

• Sifting Function: S(A,P , z) denotes the number of elements n ∈ A that are not
divisible by any prime p ∈ P with p ≤ z.

• Brun’s Sieve: A combinatorial sieve method used to estimate the size of sifted
sets of integers with prescribed prime factors.

• Big O Notation: We write f(x) = O(g(x)) as x → ∞ if there exist constants
C > 0 and x0 ≥ 0 such that |f(x)| ≤ C|g(x)| for all x ≥ x0.

• Residue Classes: For a given prime p, a residue class modulo p is an equivalence
class of integers under the equivalence relation of congruence modulo p.

• Excluded Residue Classes: Rp denotes the set of residue classes modulo p that
are excluded in the sieve process.

• Number of Excluded Residue Classes: νp denotes the number of residue classes
excluded modulo p.
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2.2 Notations
• p, q: Prime numbers.

• n: A positive integer variable.

• A: A set of integers under consideration, typically A = {n ≤ N} for some N > 0.

• P : A set of primes used in the sieve, usually P = {p ∈ P | p ≤ z} for some z > 0.

• z: A positive real number representing the sifting limit in sieve methods.

• ln x: Natural logarithm of x.

• P: The set of all prime numbers.

• ∼: The notation f(x) ∼ g(x) as x → ∞ means that limx→∞
f(x)

g(x)
= 1.

• O: The Big O notation used to describe the limiting behavior of a function.

• S: The set of Sophie Germain primes up to x, i.e., S = {p ≤ x | p and 2p +
1 are prime}.

• Q: The set of safe primes up to x, i.e., Q = {q ≤ x | q and q−1
2

are prime}.

• Rp: The set of residue classes modulo p that are excluded in the sieve, specifically
Rp = {0, rp} where rp is a residue class related to the primality conditions.

• νp: The number of residue classes excluded modulo p, typically νp = 2 for the cases
considered in Lemmas 1 and 3.

• C1, C3: Constants appearing in the upper bounds of the prime counting functions
for Sophie Germain and safe primes, respectively.

• M : The Meissel-Mertens constant appearing in the asymptotic expansion of the
sum of reciprocals of primes.

• C0: A constant representing the sum of reciprocals of squares of primes.

• C2, C4: Constants derived from exponentiating bounds in Brun’s sieve, used in the
proofs of Lemmas 1 and 3.

2.3 Known Results
• Prime Number Theorem (PNT): π(x) ∼ x

ln x
as x → ∞.

• Siegel-Walfisz Theorem: Provides bounds on primes in arithmetic progressions,
but with limitations on uniformity in the modulus.

• Bombieri-Vinogradov Theorem: Gives uniform estimates for the distribution
of primes in arithmetic progressions on average.
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3 Main Theorems
Theorem 1: The sum of the reciprocals of all Sophie Germain primes converges; that
is,

SSG =
∑
p∈P

2p+1∈P

1

p
< ∞.

Theorem 2: The sum of the reciprocals of all safe primes converges; that is,

SSP =
∑
q∈P

q=2p+1, p∈P

1

q
< ∞.

4 Proof of Theorem 1
To prove that SSG converges, we will establish an upper bound for πSG(x) that is suffi-
ciently small to ensure convergence of the reciprocal sum. We will show that πSG(x) =

O

(
x

(ln x)2

)
, and then demonstrate that

∑
p≤x

1

p
over Sophie Germain primes converges.

4.1 Estimating the Counting Function πSG(x)

While the exact asymptotic behavior of πSG(x) is unknown, we can derive an upper bound
based on sieve methods.

Lemma 1: There exists a constant C1 > 0 such that for all x ≥ 2,

πSG(x) ≤ C1
x

(ln x)2
.

Proof of Lemma 1:
Let πSG(x) denote the number of Sophie Germain primes less than or equal to x,

where a Sophie Germain prime p is a prime such that q = 2p+ 1 is also prime.
Our goal is to establish the upper bound

πSG(x) ≤ C1
x

(ln x)2
,

for some constant C1 > 0.
We will employ the Brun sieve to estimate πSG(x). Consider the set

A =

{
n ≤ x

∣∣∣∣n is an integer, p ∤ n and p ∤ 2n+ 1 for all p ∈ P
}
,

and let N = x.
Let P be the set of all primes up to a parameter z (to be chosen later), excluding

p = 2, i.e.,
P = {p prime | 3 ≤ p ≤ z}.

For each prime p ∈ P , define the set of residue classes Rp ⊂ Z/pZ to be excluded:

Rp = {0, rp},
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where rp satisfies 2n+ 1 ≡ 0 mod p when n ≡ rp mod p.
Explanation of Residue Classes:
- If p | n, then n ≡ 0 mod p.
- If p | 2n + 1, then 2n + 1 ≡ 0 mod p. Since p ≥ 3 is an odd prime, we have

gcd(2, p) = 1, so 2 is invertible modulo p. Therefore, we can solve for n:

2n ≡ −1 mod p =⇒ n ≡ (−1) · 2−1 mod p =⇒ n ≡ p− 1

2
mod p.

Here, 2−1 denotes the multiplicative inverse of 2 modulo p, and −1 · 2−1 ≡ p−1
2

mod p
because −1 ≡ p− 1 mod p.

Thus, for each p ∈ P , we exclude the residue classes 0 and rp = p−1
2

mod p. The
number of residue classes to exclude modulo p is νp = 2.

Application of Brun’s Sieve:
The upper-bound form of Brun’s sieve states that the number S(A,P , z) of integers

n ≤ N such that n avoids all residue classes Rp for p ≤ z satisfies

S(A,P , z) ≤ N
∏

p≤z, p ̸=2

(
1− νp

p

)
.

Substituting νp = 2, we have

S(A,P , z) ≤ N
∏
p≤z
p≥3

(
1− 2

p

)
.

Estimating the Product:
Taking logarithms, we have

ln
∏
p≤z
p≥3

(
1− 2

p

)
=

∑
p≤z
p≥3

ln

(
1− 2

p

)
.

For p ≥ 3, we have 0 < 2
p
< 1, so we can use the inequality ln(1 − x) ≤ −x for

0 < x < 1. Therefore,
ln

(
1− 2

p

)
≤ −2

p
.

Thus,
ln
∏
p≤z
p≥3

(
1− 2

p

)
≤ −2

∑
p≤z
p≥3

1

p
.

We know from Mertens’ theorem that∑
p≤z

1

p
= ln ln z +M + ε(z),

where M is the Meissel-Mertens constant and ε(z) → 0 as z → ∞.
Therefore, ∑

p≤z
p≥3

1

p
=

∑
p≤z

1

p
− 1

2
= ln ln z +M − 1

2
+ ε(z).
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Substituting back, we have

ln
∏
p≤z
p≥3

(
1− 2

p

)
≤ −2

(
ln ln z +M − 1

2
+ ε(z)

)
.

Let C = −2(M − 1
2
). Then,

ln
∏
p≤z
p≥3

(
1− 2

p

)
≤ −2 ln ln z + C + 2ε(z).

For sufficiently large z, the term 2ε(z) is negligible and can be absorbed into the
constant C. Exponentiating both sides, we obtain∏

p≤z
p≥3

(
1− 2

p

)
≤ eC

1

(ln z)2
.

Let C2 = eC , so ∏
p≤z
p≥3

(
1− 2

p

)
≤ C2

(ln z)2
.

Choosing the Parameter z:
Let us choose z = x1/2. Then ln z = 1

2
ln x.

Substituting back into the inequality for S(A,P , z), we get

S(A,P , z) ≤ N · C2

(ln z)2
= C2

x(
1
2
ln x

)2 = 4C2
x

(ln x)2
.

Accounting for Primes Greater Than z:
In Brun’s sieve, we have an error term associated with larger primes p > z. Since

p > z = x1/2, any integer n ≤ x can be divisible by at most one such prime p, because if
n were divisible by two such primes, their product would exceed x.

The total number of integers n ≤ x divisible by some prime p > z is at most∑
p>z

x

p
≤ x

∑
p>z

1

p
.

Using the estimate for the sum over primes:∑
p>z

1

p
≤

∫ ∞

z

dt

t ln t
= lim

T→∞
(ln ln T − ln ln z) = ∞.

This indicates that the sum diverges, but it does so very slowly. However, since each
n ≤ x divisible by some p > z is counted at most once, the total number of such n is

≤ x (ln ln x− ln ln z) .

For z = x1/2, this becomes

x
(
ln ln x− ln

(
1
2
ln x

))
= x (ln ln x− ln ln x+ ln 2) = x ln 2.
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Thus, the total contribution from primes p > z is O(x), which is negligible compared to
the main term x

(lnx)2
when x is large.

Conclusion:
Therefore, after accounting for all primes, we have

πSG(x) ≤ S(A,P , z) +O(x) ≤ (4C2 + ε)
x

(ln x)2
,

where ε → 0 as x → ∞.
Thus, we have established the desired upper bound:

πSG(x) ≤ C1
x

(ln x)2
,

where C1 = 4C2 + ε.
Completing the Proof of Theorem 1:
To prove that the sum

SSG =
∑
p≤x

2p+1 prime

1

p

converges as x → ∞, we consider

SSG =
∑
p≤x

χ(p)

p
,

where χ(p) = 1 if 2p+ 1 is prime, and χ(p) = 0 otherwise.
Using the established upper bound on πSG(x), we have

SSG ≤
∫ ∞

2

dπSG(t)

t
=

[
πSG(t)

t

]∞
2

+

∫ ∞

2

πSG(t)

t2
dt.

As t → ∞, πSG(t) ≤ C1
t

(ln t)2
, so

πSG(t)

t
≤ C1

(ln t)2
→ 0.

Thus,
SSG ≤ πSG(2)

2
+

∫ ∞

2

C1

t(ln t)2
dt.

The integral ∫ ∞

2

1

t(ln t)2
dt

converges, since ∫ ∞

A

1

t(ln t)2
dt =

[
− 1

ln t

]∞
A

=
1

lnA
.

Therefore, SSG converges.
Q.E.D.
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4.2 Estimating the Partial Sums
We aim to estimate the partial sum

SSG =
∑
p∈P

2p+1∈P

1

p
.

We partition the interval [2,∞) into dyadic intervals [2k, 2k+1) for k ≥ k0, where k0
is chosen such that 2k0 ≥ 2.

Lemma 2: The contribution to SSG from Sophie Germain primes in [2k, 2k+1) is at
most C

k2
, where C > 0 is a constant.

Proof of Lemma 2:
From Lemma 1, the number of Sophie Germain primes less than x satisfies

πSG(x) ≤ C1
x

(ln x)2
.

Let xk = 2k, so ln xk = k ln 2.
Consider the function

f(k) =
2k

(k ln 2)2
.

Then, from Lemma 1,
πSG(xk) ≤ C1f(k).

We are interested in estimating the difference
∆πSG(k) = πSG(xk+1)− πSG(xk) ≤ C1[f(k + 1)− f(k)].

Compute the derivative of f(k):

f ′(k) =
d

dk

(
2k

(k ln 2)2

)
=

2k ln 2

(k ln 2)2
− 2k · 2(k ln 2) ln 2

(k ln 2)4
=

2k ln 2

(k ln 2)2

(
1− 2

k

)
.

For k ≥ 3, 2
k
≤ 2

3
< 1, so f ′(k) > 0. Thus,

f(k + 1)− f(k) = f ′(ξk),

for some ξk ∈ (k, k + 1) by the Mean Value Theorem. Therefore,
∆πSG(k) ≤ C1[f(k + 1)− f(k)] = C1f

′(ξk) ≤ C1f
′(k).

Using the expression for f ′(k), we have

∆πSG(k) ≤ C1f
′(k) = C1

2k ln 2

(k ln 2)2

(
1− 2

k

)
≤ C1

2k ln 2

(k ln 2)2
.

Simplifying,
∆πSG(k) ≤

C1

k2
2k.

The maximum reciprocal of a prime in [xk, xk+1) is 1

xk

=
1

2k
.

Therefore, the contribution to SSG from this interval is at most

SSG,k ≤ ∆πSG(k) ·
1

xk

≤ C1

k2
2k · 1

2k
=

C1

k2
.

Let C = C1. Then,
SSG,k ≤

C

k2
.
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4.3 Summing Over All Intervals
The total sum SSG is bounded above by

SSG ≤
∞∑

k=k0

SSG,k ≤ C
∞∑

k=k0

1

k2
.

The series
∑∞

k=k0

1

k2
is a convergent p-series with p = 2 > 1.

Therefore,

SSG ≤ C

∞∑
k=k0

1

k2
< ∞.

4.4 Conclusion of Theorem 1
Since SSG is bounded above by a convergent series, it follows that the sum of the recip-
rocals of all Sophie Germain primes converges.

Q.E.D.

5 Proof of Theorem 2
The proof for safe primes follows a similar structure to that of Sophie Germain primes.

5.1 Estimating the Counting Function πSP(x)

Lemma 3: There exists a constant C3 > 0 such that for all x ≥ 2,

πSP(x) ≤ C3
x

(ln x)2
.

Proof of Lemma 3:
Let πSP(x) denote the number of safe primes less than or equal to x, where a safe

prime q is a prime such that p = q−1
2

is also prime.
Our goal is to establish the upper bound

πSP(x) ≤ C3
x

(ln x)2
,

for some constant C3 > 0.
We will employ the Brun sieve to estimate πSP(x). Consider the set

A =

{
n ≤ N

∣∣∣∣n is an integer, 2n+ 1 ≤ x

}
,

where N =
⌊
x−1
2

⌋
.

Let P be the set of all primes up to a parameter z (to be chosen later), excluding
p = 2, i.e.,

P = {p prime | 3 ≤ p ≤ z}.
For each prime p ∈ P , define the set of residue classes Rp ⊂ Z/pZ to be excluded:

Rp = {0, rp},
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where rp satisfies 2n+ 1 ≡ 0 mod p when n ≡ rp mod p.
Since 2n+ 1 ≡ 0 mod p implies n ≡ p−1

2
mod p, we have

rp =
p− 1

2
mod p.

Thus, for each p ∈ P , we exclude the residue classes 0 and rp =
p−1
2

.
Explanation of Residue Classes:
- If p | n, then n ≡ 0 mod p.
- If p | 2n+1, then 2n+1 ≡ 0 mod p. Since p ≥ 3 is an odd prime and gcd(2, p) = 1,

we can solve for n:

2n ≡ −1 mod p =⇒ n ≡ p− 1

2
mod p.

Thus, for each p ∈ P , we exclude the residue classes 0 and rp = p−1
2

modulo p. The
number of residue classes to exclude modulo p is νp = 2.

Application of Brun’s Sieve:
The upper-bound form of Brun’s sieve states that the number S(A,P , z) of integers

n ≤ N such that n avoids all residue classes Rp for p ≤ z satisfies

S(A,P , z) ≤ N
∏
p≤z
p≥3

(
1− νp

p

)
.

Substituting νp = 2, we have

S(A,P , z) ≤ N
∏
p≤z
p≥3

(
1− 2

p

)
.

Estimating the Product:
Taking logarithms, we have

ln
∏

3≤p≤z

(
1− 2

p

)
=

∑
3≤p≤z

ln

(
1− 2

p

)
.

For p ≥ 3, 0 < 2
p
< 1, so we can use the inequality ln(1−x) ≤ −x− x2

2
for 0 < x < 1

2
.

Since 2
p
≤ 2

3
< 1

2
, we have

ln

(
1− 2

p

)
≤ −2

p
− 22

2p2
= −2

p
− 2

p2
.

Thus,
ln

∏
3≤p≤z

(
1− 2

p

)
≤ −2

∑
p≤z

1

p
− 2

∑
p≤z

1

p2
.

We know that ∑
p≤z

1

p
= ln ln z +M + ε1(z),
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and ∑
p≤z

1

p2
= B + ε2(z),

where M and B are constants, and ε1(z), ε2(z) → 0 as z → ∞.
Therefore,

ln
∏

3≤p≤z

(
1− 2

p

)
≤ −2(ln ln z +M + ε1(z))− 2(B + ε2(z)).

Combining constants and error terms, we let C = −2(M +B), so

ln
∏

3≤p≤z

(
1− 2

p

)
≤ −2 ln ln z + C + ε(z),

where ε(z) = −2(ε1(z) + ε2(z)) → 0 as z → ∞.
For sufficiently large z, ε(z) becomes negligible and can be absorbed into the constant

C. Exponentiating both sides, we obtain∏
3≤p≤z

(
1− 2

p

)
≤ eC

1

(ln z)2
.

Let C4 = eC , so ∏
3≤p≤z

(
1− 2

p

)
≤ C4

(ln z)2
.

Choosing the Parameter z:
Let us choose z = x. Then ln z = ln x.
Substituting back into the inequality for S(A,P , z), we get

S(A,P , z) ≤ N · C4

(ln x)2
.

Recall that N =
⌊
x−1
2

⌋
≤ x

2
. Thus,

S(A,P , z) ≤ x

2
· C4

(ln x)2
=

C4x

2(ln x)2
.

Adjusting for Primes Greater Than z:
When we choose z = x, all primes p ≤ x are included in P . Therefore, there are no

additional primes p > z ≤ x to consider, and we do not need to adjust for larger primes.
Moreover, since we are interested in q such that both q and p = q−1

2
are prime, the

actual count πSP(x) is less than or equal to S(A,P , z). This is because S(A,P , z) includes
integers n for which 2n + 1 may not be prime due to composite factors not detected by
the sieve.

Conclusion:
Therefore,

πSP(x) ≤ S(A,P , z) ≤ C4x

2(ln x)2
.

Setting C3 =
C4

2
, we have established the desired upper bound:

πSP(x) ≤ C3
x

(ln x)2
.

Q.E.D.
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5.2 Estimating the Partial Sums
We aim to estimate the partial sum

SSP =
∑

q is a safe prime

1

q
.

We partition the interval [2,∞) into dyadic intervals [2k, 2k+1) for k ≥ k0, where k0
is chosen such that 2k0 ≥ 2.

Lemma 4: The contribution to SSP from safe primes in [2k, 2k+1) is at most C

k2
,

where C > 0 is a constant.
Proof of Lemma 4:
From Lemma 3, the number of safe primes less than x satisfies

πSP(x) ≤ C3
x

(ln x)2
.

Let xk = 2k, so ln xk = k ln 2.
Consider the function

f(k) =
2k

(k ln 2)2
.

Then, from Lemma 3,
πSP(xk) ≤ C3f(k).

We are interested in estimating the difference

∆πSP(k) = πSP(xk+1)− πSP(xk) ≤ C3[f(k + 1)− f(k)].

By the Mean Value Theorem, there exists some ξk ∈ (k, k + 1) such that

f(k + 1)− f(k) = f ′(ξk).

Compute the derivative of f(k):

f ′(k) =
d

dk

(
2k

(k ln 2)2

)
=

2k ln 2

(k ln 2)2
− 2k · 2(k ln 2) ln 2

(k ln 2)4
=

2k ln 2

(k ln 2)2

(
1− 2

k

)
.

Since f ′(k) is decreasing for k ≥ 3, we have

∆πSP(k) ≤ C3f
′(ξk) ≤ C3f

′(k).

Therefore,

∆πSP(k) ≤ C3
2k ln 2

(k ln 2)2

(
1− 2

k

)
≤ C3

2k ln 2

(k ln 2)2
.

Simplifying,
∆πSP(k) ≤

C3

k2
2k.

The largest reciprocal of a prime in [xk, xk+1) is 1

xk

=
1

2k
.

Therefore, the contribution to SSP from this interval is at most

SSP,k ≤ ∆πSP(k) ·
1

xk

≤ C3

k2
2k · 1

2k
=

C3

k2
.

Let C4 = C3. Then,
SSP,k ≤

C4

k2
.
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5.3 Summing Over All Intervals
Combining the estimates from Lemma 4, we can bound the total sum SSP by

SSP =
∑
q≤∞

q is a safe prime

1

q
=

∞∑
k=k0

SSP,k.

From the estimation in Lemma 4, we have

SSP,k ≤
C4

k2
.

Therefore,

SSP ≤
∞∑

k=k0

C4

k2
= C4

∞∑
k=k0

1

k2
.

Since the series
∑∞

k=k0
1
k2

is a convergent p-series with p = 2 > 1, it follows that

SSP ≤ C4

∞∑
k=k0

1

k2
< ∞.

5.4 Conclusion of Theorem 2
Since SSP is bounded above by a convergent series, it follows that the sum of the recip-
rocals of all safe primes converges.

Q.E.D.

5.5 Alternative Proof Based on Sophie Germain Primes
If we have already established that the sum of the reciprocals of Sophie Germain primes
converges, we can deduce that the sum of the reciprocals of safe primes also converges.

Consider the one-to-one correspondence between Sophie Germain primes and safe
primes defined by q = 2p+1, where p is a Sophie Germain prime and q is the corresponding
safe prime. Since each safe prime q is uniquely associated with a Sophie Germain prime
p, we can relate their reciprocals.

Observe that
1

q
=

1

2p+ 1
≤ 1

2p
.

Therefore, ∑
q∈P

q=2p+1, p∈P

1

q
≤ 1

2

∑
p∈P

2p+1∈P

1

p
.

Since the sum
∑

p∈P
2p+1∈P

1

p
converges (by Theorem 1), it follows that

SSP =
∑
q∈P

q=2p+1, p∈P

1

q
< ∞.

This provides an alternative proof of Theorem 2 based on the convergence of the sum
over Sophie Germain primes.

Q.E.D.
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6 Discussion
The convergence of the sums SSG and SSP illustrates the relative sparsity of Sophie
Germain primes and safe primes among all prime numbers. The fact that their counting
functions grow no faster than x

(ln x)2
is crucial for the convergence of the reciprocals. By

the integral test for series convergence, a series with terms decreasing like 1

x/(ln x)2
will

converge, highlighting the significant impact of the counting function’s growth rate on
the convergence of the reciprocal series.

This contrasts with the set of all primes, for which the counting function π(x) ∼ x

ln x

leads to the divergence of
∑

p≤x

1

p
. Despite primes becoming sparser as numbers grow

larger, the harmonic series over the primes diverges due to the subtle balance between
the decreasing size of the terms and the increasing number of primes, albeit at a slower
rate than the integers.

Our proofs rely on upper bounds for πSG(x) and πSP(x) derived from sieve methods
and average estimates of primes in arithmetic progressions. While the exact asymptotic
densities of these primes remain unproven and are subject to conjecture—such as the
Hardy-Littlewood conjecture generalized for these cases—the established upper bounds
suffice to demonstrate the convergence of the sums. Conjecturally, the number of Sophie
Germain primes less than x is believed to be approximately C

x

(ln x)2
, where C is a

constant involving the twin prime constant, though this remains an open problem in
number theory.

The convergence of the sums provides insight into the distribution of these primes
and underscores the delicate interplay between term size and quantity in determining the
convergence of infinite series. It also raises questions about whether improved bounds on
πSG(x) and πSP(x) might be achievable with advancements in sieve methods or analytic
techniques.

7 Conclusion
We have rigorously proven that the sums of the reciprocals of Sophie Germain primes
and safe primes are both convergent. This result underscores the thinness of these sets
within the prime numbers and provides insight into their distribution. The convergence
indicates that these primes are sufficiently rare compared to all primes, whose reciprocal
sum diverges.

This work contributes to the understanding of prime distributions and highlights
the effectiveness of sieve methods in establishing density estimates for special classes of
primes. Potential implications of these results extend to fields such as cryptography,
where the properties of such primes are utilized. Further research may focus on improv-
ing the bounds for πSG(x) and πSP(x), exploring their exact asymptotic behaviors, or
examining similar questions for other special classes of primes.
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