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This paper explores the extension of free electron behavior to general relativity through a closed
algebraic Hamiltonian description of electron micro-oscillations. The author’s research, which
predicted the anomalous magnetic moment of electrons from first principles using closed algebraic
equations, for a single electron oscillator, the time difference between rest and laboratory frames
can be explained through the anomalous magnetic moment, providing a concrete mechanism for
reconciling quantum and relativistic time concepts. The framework unifies seemingly disparate
physical principles - energy conservation, geometric structure, and proper time - while offering an
exact mathematical description of quantum phenomena that suggests a natural path toward bridging
quantum mechanics and general relativity without requiring modifications to Einstein’s theory. We
present a detailed analysis of how an electron, when moving from point A to B, completely converts
its mass energy into kinetic energy and subsequently reconverts it to mass energy at point B. Our
analysis reveals that Snell’s law governs these microscopic electron motions; this applicability of
Snell’s law naturally leads to the principle of least action, enabling us to demonstrate that electrons
undergo micro-oscillations along geodesic paths. While conventional quantum theory, based on field
theory, has struggled to reconcile its inherent absolute time with the relative time of relativity theory,
our proposed 0-Sphere model represents individual quantum particles as micro-oscillators through
closed algebraic equations. This enables the incorporation of both rest-frame and laboratory-frame
time scales, as the model does not rely on the absolute time of field theory.

I. INTRODUCTION

Quantum mechanical systems exhibiting geometric
phases have long provided profound insights into the
fundamental nature of particle dynamics and field
interactions [1–4]. This paper presents a comprehensive
analysis and synthesis of the author’s previous work on
electron behavior [5–7], focusing on deeper implications
of the trigonometric Hamiltonian system we discovered.
While no new equations are introduced, we demonstrate
how this established mathematical framework offers novel
insights into the connection between quantum mechanics
and general relativity. We will discuss the results of
the author’s research. In this research, instead of
the conventional perturbation-theory-based method for
calculating the anomalous magnetic moment of electrons,
we use a closed algebraic equation to predict the value
of the anomalous magnetic moment using first-principles
calculations.

A fundamental challenge in quantum mechanics has
been the reconciliation of wave-particle duality with
a clear physical picture of electron motion [8–10].
Our 0-Sphere electron model addresses this challenge
through a specific quantum evolution mechanism where
an electron’s thermal potential energy (TPE) undergoes
transformations between two fixed points, governed by
Snell’s law and the principle of least action. This
geometric framework is captured by our previously
established Hamiltonian [5]:
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H = cos4
(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2 (ωt) = 1. (I.1)

In this model, the electron’s particle nature is
represented by discrete TPE localization points, while
its wave nature manifests through the continuous
oscillation of the photon sphere. The fixed points
serve as boundary conditions for the action integral,
providing a unique determination of the electron’s path
through space-time [11]. This framework naturally
accommodates quantum mechanical principles while
offering a clear physical mechanism for wave-particle
duality [12].
The significance of this formulation extends beyond its

mathematical structure. By demonstrating that electron
motion follows geodesic paths guided by the principle
of least action, our framework suggests a natural bridge
between quantum mechanics and general relativity. This
connection emerges through the application of Snell’s law
to microscopic electron motions, leading to the principle
of least action and consequently to geodesic paths.
Our approach combines analytical methods from

quantum mechanics [13], differential geometry [14], and
the principle of least action to provide a comprehensive
understanding of the system’s behavior. Through this
analysis, we demonstrate how the apparent paradoxes of
quantum mechanics can be resolved through a geometric
framework that preserves both energy conservation and
quantum mechanical principles.
The remainder of this paper is organized as

follows. Section II presents a detailed mathematical
formulation of our Hamiltonian system and its physical
foundation through the geometric phase and the sum
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of time derivatives of the Hamiltonian in thermal
potential energy dynamics. Section III explores the
implications of our model through four key aspects: a
reconsideration of an electron’s physical properties, the
convergence between Zitterbewegung and TPE radiation
gradients, the connection to the Stefan-Boltzmann law,
and the incorporation of proper time into quantum
mechanics. We also discuss the limitations of our current
framework regarding macroscopic electron behavior and
the Lagrangian formulation. The paper concludes with
Section IV, summarizing our findings and discussing their
implications for unifying quantum mechanics and general
relativity.

II. NEWLY DISCOVERED EQUATIONS BY
THE AUTHOR

This section introduces the equations that the author
has previously researched, describing the inherent
geometric behavior of electrons. The following equations
may serve as a basis for fundamentally re-examining
particle physics, which has relied on perturbation theory.
First, according to Eq. (I.1), if the energy possessed
by a single free electron is denoted as E0, this electron
oscillates according to a geometrically closed algebraic
equation. The oscillating description by phase is
provided by the following equation:

E0 = E0

(
cos4

(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2(ωt)

)
.

(II.1)
The radiation gradient obtained by Eq. (II.1) yields
the following equation, which is responsible for the
mechanism that converts the mass portion created by
a free electron itself into kinetic energy. This will be
explained in more detail in the following sections.

grad (EA(t)− EB(t)) = sin θ. (II.2)

Equation (II.2), as detailed in Appendix VIC, depicts a
very clean oscillation - a sine wave. This mass gradient
allows the kinetic energy of a single free electron to
be expressed in classical theory with the position of its
center of mass as follows:

(Position) : x = sin(ωt),

(Velocity) : v = cos(ωt),

(Acceleration) : a = −sin(ωt).

(II.3)

Equation (II.3), as detailed in Appendix VID2, provides
an image of an electron exchanging radiation energy
on a straight line between two points, rather than in
circular motion. This overturned the concept that has
been common in quantum mechanics that the angular
momentum of electron spin arises from circular motion.
To reconsider the characteristics of electron spin angular
momentum, the paper [7] re-examined the equation
provided by Thomas, who offered a model that imparts

angular momentum to electrons, and reconsidered the
definition of spin angular momentum, going back to the
era of quantum mechanics in 1925. Thomas stated that
even on a straight line, if an object performs accelerated
motion, it possesses angular momentum [15].
Therefore, when an object undergoes accelerated

motion between two points, it has angular momentum
even if it passes through the origin. The author deepened
the consideration of this point, which has not been
emphasized much in quantum mechanics so far. As a
result, it was derived from the above closed algebraic
equation that a free electron possesses the spin angular
momentum expressed by the following equation, which is
an extension of Thomas’s consideration.

Ω =
1

2c2
·
(
−1

2
sin2ωt

)
, (II.4)

Equation (II.4), as detailed in Appendix VID2, does
not contradict the knowledge and experimental results
obtained from quantum mechanics regarding the angular
momentum of electron spin. The characteristics of
this point will be examined in detail in the following
sections. Furthermore, based on the consideration
of these equations, the author predicted that the
anomalous magnetic moment of the electron is caused
by Zitterbewegung , see Appendix VIG4 in detail.
According to this consideration, the electron oscillates

at a velocity close to the speed of light due to
Zitterbewegung, and the influence of the theory of
relativity cannot be ignored. The author considered
that the anomalous magnetic moment of the electron
arises from Zitterbewegung. As a result of observing
the electron from the observational system shown in the
theory of relativity, which observes the electron from
outside the electron, the following equation was obtained:

L

L0
=

1

1 + 1√
2
aexpe

. (II.5)

Equation (II.5), as detailed in Appendix VID3, is
an equation that connects the anomalous magnetic
moment of the electron and the Lorentz transformation
of the special theory of relativity. This is also an
unprecedented equation whose validity was predicted by
the author. What this equation shows is that it is
seeking the average velocity of the fine oscillation of
the electron due to Zitterbewegung. By substituting
the value of the anomalous magnetic moment of the
electron, which has been precisely observed so far, into
this equation, the author predicted that the average
velocity of Zitterbewegung is about four percent of the
speed of light. This result has not yet been observed
experimentally.
Furthermore, focusing on the fact that the above

discussion and equations are calculation formulas from
first principles using closed algebraic equations, the
following consideration was obtained from the knowledge
that an equation for calculating the anomalous magnetic
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moment of the electron from first principles was obtained.
In other words, the anomalous magnetic moment of the
electron is caused by the precession of the electron, and
its observed value will be influenced not only by the
special theory of relativity but also by the general theory
of relativity. In general relativity, Riemannian geometry
is used to describe the curvature of spacetime, while
in quantum mechanics, Hilbert space is used to treat
states probabilistically. The following equation proposes
a starting point for handling quantum mechanics in
continuous spacetime. By incorporating the effects
of both special and general relativistic precession into
the Lorentz transformation, this equation provides a
geometric connection between quantum mechanics and
general relativity.

L

L0
=

1

1 + 1√
2
aexpe − ∆ϕgeodetic

2π

. (II.6)

where the term aexpe represents the observed value of
the anomalous magnetic moment of the electron. The
term ∆ϕgeodetic requires the input of the electron radius
relectron and the electron mass melectron. The term
∆ϕgeodetic is the formula to calculate the precession
due to general relativity, which is already widely
disseminated. Among the necessary values, aexpe and
the mass of one electron melectron have already been
observed. One of the distinctive predictions of this
research is the assumption that the electron is not a
point, but has a finite size. In the future, if the size
of the electron is actually measured, it will tremendously
enhance the logical reinforcement of this equation.

Equation (II.6), as detailed in Appendix VIF, is
an equation born from the Lorentz transformation,
taking into account the effects of precession due to
the special theory of relativity and the general theory
of relativity. The denominator on the right-hand side
of Eq. (II.6) contains two terms that indicate the
effects of each precession. The value of the observed
anomalous magnetic moment is substituted for the term
that affects the precession due to the special theory of
relativity. Furthermore, the term that takes into account
the influence of the general theory of relativity, that
is, the term with a negative sign in the denominator
on the right-hand side, geometrically connects quantum
mechanics and the general theory of relativity.

The purpose of this paper is to carefully express
and put together the research results that have been
submitted as papers so far, based on the consideration
by the author mentioned above that the anomalous
magnetic moment of the electron can be calculated from
first principles by the closed geometric algebraic equation
of the electron.

III. GEOMETRIC PHASE AND MINIMAL
ACTION IN THERMAL POTENTIAL ENERGY

DYNAMICS

A. Historical Development and Mathematical
Framework of the 0-Sphere Model

The mathematical framework presented in this paper
builds upon a series of investigations [5–7] that have
established a novel approach to understanding electron
dynamics. Through these studies, we discovered
that electron behavior could be described by a closed
algebraic system composed of trigonometric functions,
representing a significant departure from traditional
quantum mechanical descriptions.
The development of the 0-Sphere model began with the

observation that electron motion might be understood
through the interplay of discrete thermal potential
energy (TPE) states and continuous field evolution.
Our previous work [5] introduced the fundamental
Hamiltonian:

H = cos4
(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2 (ωt) = 1. (III.1)

Equation (III.1) is visualized in Fig. 1. The figure
clearly shows several key features: the complementary
oscillation of the two TPE terms (cos4(ϕ/2) and
sin4(ϕ/2)) with a period of 4π, the double-frequency
oscillation of the kinetic energy term (1/2) sin2(ϕ) with
a period of 2π, and most importantly, their sum
maintaining a constant value of unity throughout the
entire cycle, demonstrating exact energy conservation.
This elegant algebraic equation successfully

describes the temporal phase evolution of electrons
while maintaining strict energy conservation. The
mathematical beauty of this formulation lies in its
ability to represent quantum phase transitions without
requiring the virtual energy fluctuations typically
incorporated into conventional theories to account
for quantum uncertainties. By expressing electron
dynamics through these trigonometric functions, we
have developed a model that naturally preserves
energy conservation throughout all phase changes,
eliminating the need for virtual energy fluctuation terms
commonly introduced in traditional quantum mechanical
approaches.
This Hamiltonian emerged not from theoretical

postulates but from careful analysis of energy
conservation in quantum systems. The half-angle terms
reflect the spinorial nature of electron states, while the
full-angle term represents the bosonic contribution of the
mediating field. This mathematical structure naturally
incorporates the fundamental spin-1/2 character of
electrons, where a 4π rotation is required to return to
the initial state [8].
Subsequent research [5–7] established several key

discoveries about electron behavior:
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Fig. 1. Visualization of the total Hamiltonian function
for the 0-Sphere model. The graph depicts the time
evolution of various trigonometric terms that contribute
to the Hamiltonian, including the complementary
oscillations of the thermal potential energy (TPE)
terms cos4(ϕ/2) and sin4(ϕ/2), the double-frequency
oscillation of the kinetic energy term (1/2) sin2(ϕ), and
their sum, which remains constant at a value of 1,
demonstrating exact energy conservation throughout
the entire cycle with a period of 4π.

• The existence of thermal potential energy at two
distinct locations, generating thermal radiation
gradients through their simultaneous presence

• The interpretation of the anomalous magnetic
moment as a consequence of circumferential
Lorentz contraction

• The geometric interpretation of the anomalous
magnetic moment through the model’s structure

• The Zitterbewegung predicted by the Dirac
equation is thought to correspond to the
back-and-forth motion of electrons described by the
0-Sphere model

• The anomalous magnetic moment arises from
electron precession due to relativistic effects

• The anomalous magnetic moment requires
consideration of both special and general
relativistic effects

• The electron radius can be predicted when
accounting for precession effects in general
relativity

Building upon these established results, the present
work develops new theoretical insights:

• The relationship between TPE transfer and Snell’s
law, leading to a natural emergence of the principle
of least action

• The emergence of geodesic paths from energy
conservation principles

• The incorporation of proper time through fixed
TPE points, providing a bridge to general relativity

The mathematical structure of this model is
particularly noteworthy for single-electron dynamics.
Our framework, while utilizing established equations,
reveals new physical interpretations and connections
between quantum mechanics and general relativity. The
present work focuses on exploring these deeper physical
implications, especially regarding the unification of
quantum mechanical and relativistic principles through
the geometric properties of electron motion.

B. Physical Realization of Quantum States

In this study, we proceed based on insights derived
from the thermal potential energy (TPE) and kinetic
energy revealed by the 0-Sphere model. Let us outline
our approach at the outset. We begin by examining
energy conservation through Eq. (III.3), verifying that
its time derivative vanishes. The 0-Sphere model then
suggests radiative energy transfer between two TPE
points. From this, we deduce that energy transfer must
follow Snell’s law. This implies that when all energy is
initially localized at point A (t = 0), it must completely
transform into radiative energy. The path of this energy
transfer differs fundamentally from traditional quantum
mechanical path integral approaches; instead, energy is
transmitted along a single, shortest path between points
A and B, following Snell’s law.
Furthermore, since the electron’s total energy moves

from point A to point B following Snell’s law, we
can apply the principle of geodesics from general
relativity to understand the distance l between these
points. Thus, we establish here our research milestone:
demonstrating that a single electron’s traveling involves
energy transport along geodesic paths. This framework
anticipates a bridge between quantum theory and general
relativity.
The 0-Sphere electron model provides a concrete

physical realization of quantum mechanical behavior
through the interplay of discrete TPE states and
continuous field evolution [5]. At any given moment, the
electron’s state is described by:

EA(t) = E0 cos
4

(
ωt

2

)
(TPE at point A),

EB(t) = E0 sin
4

(
ωt

2

)
(TPE at point B),

EK(t) =
E0

2
sin2(ωt) (Photon sphere kinetic energy).

(III.2)

This distribution represents a fundamental advance
in our understanding of quantum motion [14]. Like
an inchworm’s movement, which combines discrete foot
placements with continuous body deformation, the
electron’s motion unifies discrete quantum states with
continuous field evolution.
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Building upon our previous work [5, 7], we discovered
a remarkable equation that describes the quantum
behavior of an electron in classical terms while
maintaining energy conservation. This fundamental
equation demonstrates the partitioning of total energy
E0 into distinct components:

E0 = E0

(
cos4

(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2(ωt)

)
= EA(t) + EB(t) + EK(t),

(III.3)

where EA(t) and EB(t) represent the thermal potential
energies of two bare electron states, and EK(t)
corresponds to the kinetic energy of a mediating
virtual photon [5]. This equation reveals a profound
connection between classical energy conservation and
quantum mechanical behavior, manifesting through the
interplay of half-angle terms (reflecting spinor nature)
and full-angle terms (representing bosonic contributions).
The mathematical structure of this equation, particularly
its maintenance of energy conservation while exhibiting
periodic behavior, forms the foundation for our present
investigation into the geometric aspects of quantum
systems [14].

As shown in Eq. (I.1), our system is described
by a unique Hamiltonian that emerges from the
consideration of energy conservation in a quantum
mechanical context [12]. This Hamiltonian arises from
a careful consideration of energy partitioning in a closed
quantum system, where the total energy E0 is conserved
and equals unity in our normalized units. The structure
of this Hamiltonian reflects a fundamental decomposition
of the system’s energy into three distinct components,
each representing a different physical aspect of the
quantum system.

The first two terms in Eq. (I.1), cos4
(
ωt
2

)
and

sin4
(
ωt
2

)
, correspond to the thermal potential energy

states of two bare electrons, denoted as EA(t) and EB(t)
respectively. While this term was previously denoted as
Te1 and Te2 in our earlier works [5–7]. The half-angle
dependence (ωt/2) in these terms is particularly
significant as it reflects the spinor nature of the electron
states [8]. This mathematical structure naturally
incorporates the fundamental spin-1/2 character of
electrons, where a 4π rotation is required to return to
the initial state.

The third term in Eq. (I.1), 1
2 sin

2 (ωt), represents
the kinetic energy term EK(t). While this term was
previously denoted as γ∗K.E. in our earlier works [5–7],
both notations describe the same physical quantity:
the kinetic energy of the virtual photon mediating the
interaction. In this paper, we adopt the notation EK(t)
for consistency with our energy distribution formalism.

The full-angle dependence (ωt) in this term is
characteristic of vector bosons, distinguishing it from
the spinor contributions. This term emerges from

the quantum electrodynamic nature of the system,
where virtual photon gas mediate the electromagnetic
interaction between the bare electron states.
The unity on the right-hand side of Eq. (I.1) represents

the total conserved energy E0, normalized to one. This
conservation is not merely a mathematical constraint
but reflects the fundamental physical principle that in
an isolated system, the total energy remains constant
despite the dynamic exchange between its various forms.

C. Time Evolution Analysis of the Quantum
Hamiltonian System

For now, let us proceed to deepen our understanding
of the Hamiltonian by examining the time derivative of
Eq. (III.3) in the next subsection. The Hamiltonian of
our system, given by Eq. (I.1):

H = cos4
(
ωt

2

)
+ sin4

(
ωt

2

)
+

1

2
sin2(ωt) = 1. (III.4)

exhibits strict conservation, as demonstrated by its
vanishing time derivative [7]. This conservation law is
fundamental to understanding the system’s dynamics.
The quantum Hamiltonian system described in Eq.

(III.3) exhibits three distinct contributions to the total
energy, each representing different physical aspects of
the electron-photon interaction. Figure 1 illustrates how
these components evolve over time while maintaining
constant total energy.
The total Hamiltonian shown by the solid line,

remains constant at unity throughout the evolution,
demonstrating the conservation of energy in the
system. This conservation is not merely a mathematical
constraint but reflects a fundamental physical principle
of isolated quantum systems. The spinorial nature of the
electron is represented by two terms: cos4

(
ωt
2

)
(dashed

line) and sin4
(
ωt
2

)
(dotted line). These terms exhibit the

characteristic half-angle dependence that is a signature
of spin-1/2 particles. The half-angle dependence requires
a 4π rotation for the system to return to its initial state,
which is a fundamental property of fermionic systems.
The third component, 1

2 sin
2 (ωt) (dash-dotted line),

represents the bosonic contribution arising from virtual
photon mediation in the electromagnetic interaction.
This term shows full-angle dependence, distinguishing it
from the spinorial terms and reflecting its vector boson
character.
The time evolution of these components demonstrates

the intricate interplay between the spinorial and bosonic
aspects of the quantum system. Over a complete 4π
cycle, we observe how the spinorial terms smoothly
exchange energy while the bosonic term modulates
with twice the frequency, yet the total energy remains
invariant. This behavior illustrates the fundamental
relationship between electron spin and electromagnetic
interaction in quantum electrodynamics.
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At the initial time t = 0, the energy configuration is
particularly noteworthy:

cos4(0) = 1

sin4(0) = 0

sin2(0) = 0

(III.5)

This initial condition represents a state where all
thermal potential energy (TPE) is localized at point A,
manifesting as a mass-equivalent point particle [5]. This
localization is not merely a mathematical convenience
but reflects the fundamental nature of the electron’s
thermal potential energy state.

Taking the time derivative of the Hamiltonian shown
in Eq. (III.3), we analyze each term separately. The
detailed calculation reveals the intricate mathematical
structure underlying our system’s dynamics, particularly
the interplay between spinorial and bosonic degrees of
freedom [2].

For the first term, representing one component of the
spinorial contribution:

d

dt

[
cos4

(
ωt

2

)]
= 4 cos3

(
ωt

2

)
·
(
− sin

(
ωt

2

))
· ω
2

= −2ω cos3
(
ωt

2

)
sin

(
ωt

2

)
= −ω

2
(1 + cos(ωt)) sin(ωt)

= −ω
2
sin(ωt)− ω

2
cos(ωt) sin(ωt).

(III.6)

This term exhibits the characteristic half-angle
dependence reflecting the spinorial nature of the
electron state [7]. The transformation to full-angle
expressions through the double-angle formulas reveals
how this spinorial component contributes to the overall
dynamics.

For the second spinorial component:

d

dt

[
sin4

(
ωt

2

)]
= 4 sin3

(
ωt

2

)
· cos

(
ωt

2

)
· ω
2

= 2ω sin3
(
ωt

2

)
cos

(
ωt

2

)
=
ω

2
(1− cos(ωt)) sin(ωt)

=
ω

2
sin(ωt)− ω

2
cos(ωt) sin(ωt).

(III.7)

This complementary term shows how the second spinorial
component balances the first, maintaining the system’s
symmetry while contributing to the geometric structure
of the evolution.

For the bosonic contribution:

d

dt

[
1

2
sin2(ωt)

]
= ω sin(ωt) cos(ωt). (III.8)

This term, involving only full-angle expressions,
represents the bosonic component of our system,
specifically the virtual photon mediating the
interaction [5].
In deriving these expressions, we make use of

the following double-angle formulas, which bridge the
spinorial and bosonic descriptions:

cos2
(
ωt

2

)
=

1 + cos(ωt)

2
. (III.9)

sin2
(
ωt

2

)
=

1− cos(ωt)

2
. (III.10)

When we combine all terms, a remarkable cancellation
occurs:

dH

dt
= −ω

2
cos(ωt) sin(ωt)− ω

2
cos(ωt) sin(ωt)

+ ω sin(ωt) cos(ωt)

=
(
−ω
2
− ω

2
+ ω

)
sin(ωt) cos(ωt)

= 0.

(III.11)

This exact cancellation to zero is not merely a
mathematical coincidence but reflects a deep physical
principle: the conservation of energy in our quantum
system [12]. However, the path to this conservation,
involving the intricate balance between spinorial and
bosonic terms, reveals the geometric richness of our
system’s evolution [14].
The analysis demonstrates how the system maintains

constant energy while potentially exhibiting nontrivial
geometric phases in its evolution [1]. The half-angle
terms, characteristic of spin-1/2 particles, suggest that
even though the energy remains constant, the quantum
state may acquire geometric phases as it evolves. This
is reminiscent of the geometric phases in quantum
mechanics, where a state can acquire a phase factor even
when the energy is conserved.
The appearance of both half-angle and full-angle terms

in our Hamiltonian, and their precise cancellation in
the time derivative, suggests a fundamental relationship
between energy conservation and the geometric structure
of quantum evolution [2]. This relationship becomes
particularly relevant when considering the topological
aspects of spin-1/2 systems, where a 4π rotation is
required to return to the initial state, even though the
energy remains constant throughout the rotation.

IV. DISCUSSION

A. Reconsideration of Electron’s Physical
Properties

In this study, we have analyzed electron motion
governed by Snell’s law. Our findings necessitate the
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Fig. 2. Point mass observed in the laboratory
coordinate system. The blue dots move from +a to −a
with different accelerations. (a) As the point mass
passes through the origin of the coordinate axes in
uniform linear motion (a = 0), the angular momentum,
Ω, is zero. (b) According to Thomas’s study, the
angular momentum does not have a zero value when the
point mass passes through the origin of the coordinate
axes in accelerated motion.

reconsideration of several established concepts regarding
electrons, specifically concerning two fundamental
assumptions:

• The electron as a point particle

• The infinite lifetime of electrons

Furthermore, particle physics has traditionally held
that electrons have infinite lifetime. While this paper
agrees that electrons do not decay into other elementary
particles, the 0-Sphere model suggests a more nuanced
understanding of electron temporality. Expanding
upon the conventional view of electron oscillation, our
model indicates that the electron’s state undergoes
continuous phase changes in time. Crucially, we find that
electrons repeatedly undergo creation and annihilation
over extremely short time intervals. An electron at point
A must convert its very substance into light energy to
execute its microscopic oscillation to point B. Whether
this process constitutes a “lifetime” depends on how we
define particle lifetime in elementary particle physics. At
this stage, we refrain from challenging the definition of
electron’s eternal existence.

One anticipated criticism might be: “How can a point
particle, which is considered dimensionless in particle
physics, ’dissolve’ and convert its TPE into kinetic energy
according to temporal variations?” To address this,
we propose that electrons possess finite size. This is
admittedly a bold hypothesis, given that current particle
physics treats electrons as dimensionless points without
internal structure. In classical mechanics, rigid bodies
are conceived as objects that cannot deform under any
conditions. Moreover, as noted in [17], the theory
of relativity generally precludes the existence of rigid
bodies. It is well known that if an electron possessed

finite extent, classical rotational motion would result
in equatorial velocities exceeding the speed of light,
contradicting special relativity.
Regarding this point, the author’s previous work [7]

suggested that electrons might have finite diameter.
A significant achievement of that paper was the
prediction that the electron’s anomalous magnetic
moment arises from Lorentz transformation in the
circumferential direction. To elaborate, when assuming
an electron as a rigid body in rotational motion, the
total circumference observed by a stationary observer
becomes shorter than the circle’s length and unequal
to 2π. This has historically hindered the development
of considerations regarding particle circular motion and
Lorentz transformations. However, through our research
and current paper’s explanation, we have already
submitted that even for electrons assumed to have finite
extent, Lorentz contraction arguments can be developed
without requiring rigid body rotation, provided the
energy moves along a straight line.
A crucial point in this paper is the reconsideration

of Thomas’s principle. An important aspect previously
overlooked in Thomas’s principle is his finding that when
a point mass at coordinate point a on the x-axis moves
to point −a, this point mass exhibits angular velocity
from the observer’s perspective during accelerated linear
motion.
Let us apply Thomas’s research findings to geodesics

derived from the 0-Sphere model. While the radiation
and absorption of electron TPE between two points is
linear, the center of mass of the photon sphere due
to kinetic energy is given by 1

2 sin
2 (ωt) (Eq. III.2).

Applying this geometric energy transfer to Thomas’s
research, an external observer of the electron would
observe angular velocity and Lorentz contraction effects
as the electron exchanges radiation energy linearly
between points A and B. See Appendix VID3 Eq.
(VI.13)

L

L0
=

1

1 + aexpe
, (IV.1)

where aexpe is the constant defining the observed
anomalous magnetic moment.
This leads to the following equation (Note: derivation

details added to Appendix):

√
1− v2

c2
=

1

1 + 1√
2
aexpe

. (IV.2)

Traditionally, the electron’s anomalous magnetic
moment exceeding Dirac’s predicted value of g = 2
has been traditionally attributed to QED effects [22,
23]. We revise this understanding, concluding that the
deviation from exactly g = 2 results from external
observation of the electron. Expanding upon points not
fully articulated in our previous paper [7], we propose
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that if magnetic moment measurements were made from
the electron’s own frame of reference, the observer
would not experience Lorentz contraction effects, yielding
exactly g = 2 as predicted by the Dirac equation.
Conversely, measurements from an external reference
frame—i.e., actual measuring instruments constructed
by real observers—would show an anomalous magnetic
moment affected by Lorentz contraction. Our previous
paper provided specific numerical predictions to verify
this hypothesis.

If the deviation from 2 in the electron’s anomalous
magnetic moment arises from Lorentz contraction, the
velocity of electron’s fine oscillation, while remaining
below the speed of light as predicted by the Dirac
equation, would be:

β2 = (
vγ∗

c
)2 = 0.00163798087 (IV.3)

where vγ∗/c represents the virtual photon sphere from
our previous papers, equivalent to EK(t) in the current
paper.

This value predicts electron motion at approximately
four percent of the speed of light. Currently,
subtle electron oscillations are beginning to be
experimentally observed. We anticipate that future
precise measurements of electron Zitterbewegung will
validate this prediction.

B. Convergence of Zitterbewegung and TPE
Radiation

The interference term in the Dirac equation gives
rise to the Zitterbewegung, an interpretation shared by
the 0-Sphere model. See Appendix VIG4 “Oscillatory
Term” in detail. While traditional theory attributes
Zitterbewegung to positron-electron interference [18, 19],
the 0-Sphere model reframes it as a photon sphere moving
along the radiation flow between kernels A and B. The
Dirac equation’s prediction of negative mass (−m) has
long challenged physicists’ understanding. Conventional
theory associates positive mass (+m) and negative mass
(−m) with electrons and positrons respectively.

However, this interpretation warrants reconsideration,
as both electrons and positrons should possess positive
mass (m > 0). Developing a new perspective on
elementary particle theory requires a more coherent
interpretation of these positive and negative mass
states. Our research resolves this paradox by modeling
mass through thermal potential energy (TPE). In this
framework, TPE—the source of mass—undergoes cycles
of radiation and absorption based on phase ϕ(t). This
model distinguishes between two states: one where the
kernel’s TPE increases over time (dEdt > 0), and another

where it decreases (dEdt < 0). Consequently, the positive
and negative masses predicted by the Dirac equation
can be understood as different states coexisting within

a single electron, expressed as:

meff(t) = m0

(
dE

dt

)
/

∣∣∣∣dEdt
∣∣∣∣ . (IV.4)

This equation describes how the effective mass of
the electron oscillates between positive and negative
values depending on whether the TPE is increasing or
decreasing.
When TPE increases, the effective mass becomes

positive (+m0), and when TPE decreases, it becomes
negative (−m0), revealing that these opposite mass
states are manifestations of the same electron’s energy
dynamics rather than distinct particle-antiparticle pairs.
Here, meff(t) represents the time-dependent effective
mass of the electron, m0 is the electron’s rest mass,
dE/dt is the rate of change of TPE, and |dE/dt| is its
absolute value, with their ratio yielding either +1 or −1
to determine the sign of the effective mass.
Furthermore, in examining the quantum oscillations

of electrons, a remarkable coincidence emerges between
two seemingly distinct phenomena: the sinusoidal wave
pattern derived from Zitterbewegung and the radiation
gradient of thermal potential energy (TPE) predicted by
the 0-Sphere model. The Zitterbewegung effect, first
identified by Schrödinger as a rapid trembling motion
of electrons, produces quantum fluctuations that can be
mathematically expressed as a sine wave.
Our analysis suggests that this quantum trembling

may be fundamentally equivalent to the sinusoidal
radiation gradient arising from TPE exchange in the
0-Sphere model. This potential unification offers a
novel perspective on the physical nature of quantum
oscillations and provides a concrete mechanism for the
mysterious trembling motion of electrons.
The fundamental affinity between the Dirac equation

and the 0-Sphere model lies in their shared four
degrees of freedom. The first of these is spin, where
both frameworks accommodate the up and down spin
states. However, a crucial distinction emerges in the
interpretation of the remaining degrees of freedom. In
the conventional understanding of the Dirac equation,
these additional degrees manifest as electron and positron
states, an interpretation that has become widely accepted
in the physics community. In contrast, the 0-Sphere
model posits these degrees of freedom as two distinct
kernels - kernel A and kernel B - positioned at the
initial point A and terminal point B respectively. This
alternative interpretation was first anticipated in the
author’s previous work [6], suggesting a fundamentally
different perspective on the nature of electron states.
The radiative gradient between points A and B can be

determined by calculating the time derivatives of TPE
at both points and taking their difference, as detailed
in Appendix VIC. The calculation yields a remarkably
simple form for the radiative gradient:

grad (EB(t)− EA(t)) = E0 sin(t) . (IV.5)
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This sinusoidal form of the radiative gradient, derived
from the fundamental properties of TPE exchange in
the 0-Sphere model, bears a striking resemblance to the
oscillatory behavior predicted by Zitterbewegung. The
emergence of this mathematical concordance suggests
a deeper physical connection between these seemingly
distinct quantum phenomena.

Drawing from these insights, the author
previously predicted in [7] that while the electron’s
micro-oscillations have not yet been directly observed,
the average velocity of these oscillations between points
A and B should be approximately four percent of the
speed of light. This specific prediction offers a crucial
opportunity for experimental verification of the 0-Sphere
model. If future precision measurements of electron
Zitterbewegung confirm this predicted velocity, it would
provide compelling experimental support for both the
model and the theoretical framework presented here.
Such experimental validation would not only strengthen
our understanding of electron micro-oscillations but
also substantiate the proposed equivalence between
Zitterbewegung and TPE radiation gradients in the
0-Sphere model.

C. Stefan-Boltzmann Law and Four Degrees of
Freedom

The representation of electron mass-energy through
temporal cos4 and sin4 functions has a profound physical
interpretation rooted in the Stefan-Boltzmann law, which
states that the total energy radiated by a black body
is proportional to the fourth power of its temperature.
This connection between TPE and radiative energy
flow reveals a fundamental aspect of the 0-Sphere
model: the thermal radiation from TPE follows the
same mathematical structure as black body radiation
described by the Stefan-Boltzmann law [24, 25].

The Stefan-Boltzmann law can be expressed
mathematically as:

I = σT 4, (IV.6)

where I is the total radiant heat energy, T is the absolute
temperature, and σ is the Stefan–Boltzmann constant.
This equation directly relates the radiant heat energy to
the fourth power of the black body’s temperature, much
like how the electron mass-energy in the 0-Sphere model
is represented by cos4 and sin4 temporal functions.
Furthermore, the fourth-power terms in TPE

oscillations suggest an intriguing relationship with the
four degrees of freedom in quantum mechanics. For each
kernel (A and B), there exist two possible spin states (up
and down), resulting in four distinct quantum states.
The cos4 and sin4 terms in our model indicate that
all these states contribute equivalently to the radiative
energy flow. This mathematical structure leads to a
novel interpretation of the four degrees of freedom

inherent in the Dirac equation: all four states generate
identical contributions to the radiative flux, unifying
them through their thermal radiation properties.
In other words, this means that the thermal potential

energy, which has two degrees of freedom representing
the two starting and end points, EA(t) and EB(t), and
two degrees of freedom representing the spin, can be
expressed in four terms: +

√
1, −

√
1, +

√
i, and −

√
i.

However, it is important to note that this “Temperature”
includes the degrees of freedom associated with spin.
Since the thermal radiation potential is the same for each
term, when they are raised to the fourth power according
to the Stefan-Boltzmann law, they all become unity and
can be interchanged.
This interpretation provides a new perspective on

the relationship between quantum states and thermal
radiation, suggesting that the fundamental four-fold
structure of the Dirac equation might be intimately
connected to the fourth-power relationship in black
body radiation. This connection between quantum
degrees of freedom and thermal radiation laws offers
another bridge between quantum mechanics and
classical thermodynamics through the 0-Sphere model’s
framework.

D. Electron Dynamics in Stationary and Observer
Frames: Beyond Absolute Time in Quantum Physics

1. Limitations of Absolute Time in Quantum Mechanics

The Schrödinger equation, while foundational to
quantum mechanics, inherently treats time as an absolute
parameter—a singular, uniform quantity that flows
identically for all observers. This absoluteness stands
in stark contrast to the relativistic understanding of
time, where proper time varies with the observer’s frame
of reference [26]. The equation’s Newtonian heritage
becomes evident in its inability to account for relativistic
effects or spacetime curvature, fundamentally limiting
its capacity to describe proper time effects in quantum
systems.
This limitation becomes particularly significant when

examining electron dynamics. Our analysis of the
g − 2 factor reveals that a complete understanding
of electron behavior necessitates consideration of both
rest and laboratory frames, much as in relativistic
systems. Specifically, while the magnetic moment
precisely equals 2 in the electron’s rest frame, as
predicted by the Dirac equation, we observe deviations
from this value—the anomalous magnetic moment—in
the laboratory frame due to Lorentz contraction effects.
This frame dependence suggests that quantum theory
must transcend its traditional foundation in absolute
time [20, 21].
If this goal is achieved, we can calculate the

anomalous magnetic moment from the oscillation speed
of Zitterbewegung on a first-principles basis, rather than
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relying on QED perturbation theory. This first-principles
approach was first proposed in [7]. The key to this
advancement lies in recognizing that electron dynamics
must be analyzed through the dual lens of stationary and
observer systems, a perspective that naturally bridges
quantum mechanical and relativistic descriptions.

2. Geometric Structure of the 0-Sphere Model

The 0-Sphere model offers a novel framework for
understanding electron dynamics through its unique
geometric and energetic structure. Our system
comprises a two-point manifold with an energy-mediating
field [2], exhibiting the 4π rotation characteristic of
spin-1/2 particles [8]. This geometry is fundamentally
characterized by two distinct points:

• Point A: Represented by the cos4(ωt
2 ) term, serving

as the initial TPE location

• Point B: Represented by the sin4(ωt
2 ) term, serving

as the final TPE location

Within this framework, the thermal potential energy
(TPE) follows a precise mathematical distribution
between these points:

EA(t) = E0 cos
4

(
ωt

2

)
at point A,

EB(t) = E0 sin
4

(
ωt

2

)
at point B.

(IV.7)

The dynamic behavior of this system exhibits a
remarkable temporal structure. When an electron’s TPE
converts to radiative energy during its transit from point
A to point B, the TPE exists as localized kernel states
at both endpoints. At these points, there is no spatial
movement over time, effectively rendering the kernels at
a standstill. This constraint condition, required by the
minimum action principle, determines both the starting
and ending points of the electron’s path.

The system’s evolution is governed by strict energy
conservation, expressed mathematically as:

dH

dt
= 0, (IV.8)

ensuring that the oscillation occurs within a closed
system. This conservation law, combined with the
specific form of TPE distribution, creates a unique
framework where discrete quantum states are connected
through continuous field evolution. The total energy
remains constant while allowing for dynamic exchange
between the two points, demonstrating how quantum
mechanical principles manifest in the dynamics of
thermal potential energy [7].

3. Radiation-Mediated Dynamics and Geodesic Motion

The dynamic evolution of our system reveals a
profound connection between quantum mechanical
behavior and classical geometric principles. Our
model’s verification has demonstrated that the electron’s
micro-oscillation between points A and B is mediated
by radiative energy, and this energy transfer mechanism
naturally incorporates Snell’s law:

sin θA
sin θB

=
vA
vB

≡ nA→B (IV.9)

where vA and vB are the wave velocities in mediums
A and B respectively, θA and θB are the corresponding
angles of incidence and refraction, and nA→B represents
the relative refractive index.
This adherence to Snell’s law reveals a deeper

geometric structure in the electron’s motion. The
photon sphere, moving along the radiation gradient from
point A to point B, follows the geodesic of smooth
spacetime. This geometric behavior allows us to employ
the formalism of geodesic equations, traditionally used
in general relativity [27, 28]. The motion can be derived
from the action integral:

S =

∫ B

A

ds (IV.10)

which leads naturally to the geodesic equation:

d2xβ

dτ2
+ Γβ

αν

dxα

dτ

dxν

dτ
= 0 (IV.11)

This mathematical progression—from Snell’s
law through the action integral to the geodesic
equation—provides a coherent framework for
understanding the electron’s motion. The
radiation-mediated energy transfer between points
A and B follows the path of least action, as determined
by these geometric principles. This formulation elegantly
unifies several key concepts:
1. The discrete nature of TPE states at points A

and B 2. The continuous evolution of the radiation
field between these points 3. The geometric principles
governing the path of energy transfer 4. The preservation
of total energy during the oscillation
This framework demonstrates how quantum behavior

naturally emerges from geometric principles, providing
a bridge between quantum mechanical descriptions and
classical geometric concepts. The adherence to Snell’s
law in the radiation-mediated energy transfer ensures
that the path taken between the fixed points A and B is
indeed the path of least action, fundamentally connecting
quantum behavior with classical geometric principles.

4. Proper Time Emergence in the 0-Sphere Model

This dual temporal nature in our model provides
a quantum mechanical analog of relativistic proper
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time. The effective time experienced in the system
manifests differently depending on whether we consider
the electron’s internal state (stationary system) or
its laboratory observation (observer system). This
distinction is fundamental: while an imaginary observer
within the photon sphere would experience the electron
in its rest frame, we can only observe the electron’s
micro-oscillations from the laboratory frame.

This system-observer duality becomes particularly
evident in the behavior of the magnetic moment. In
the stationary system, where we theoretically consider
the electron’s internal state, the g-factor maintains its
canonical value (g = 2) as predicted by the Dirac
equation. However, in our laboratory observations, we
necessarily measure g ̸= 2. This discrepancy, manifesting
as the anomalous magnetic moment, arises not from any
inherent irregularity but from our inevitable position as
external observers.

Our theoretical framework leads to a specific
prediction that bridges these perspectives: the electron’s
micro-oscillations occur at approximately four percent
of the speed of light [7]. This prediction is particularly
significant as it:

• Quantifies the relationship between internal and
external observations

• Provides a measurable consequence of proper time
effects in quantum systems

• Offers a concrete path for experimental verification
of our dual-system interpretation

This natural emergence of proper time in our
model transcends the absolute time limitation of the
Schrödinger equation, demonstrating how quantum
systems can inherently accommodate both internal and
external temporal perspectives. Unlike traditional
approaches that struggle to reconcile quantum mechanics
with proper time, the 0-Sphere model naturally
incorporates this duality through its geometric structure
and energy dynamics.

5. Bridging Quantum and Relativistic Phenomena

Building on this natural accommodation of dual
temporal perspectives, our framework reveals even
broader implications for fundamental physics. The
0-Sphere model provides three fundamental bridges
between seemingly disparate aspects of physics:

First, it establishes a natural connection between
quantum mechanics and general relativity at the
single-electron level. While the TPE values EA(t) and
EB(t) undergo temporal variations at their respective
positions, these positions themselves remain fixed in
space. These fixed initial and terminal points serve as
natural boundary conditions for calculating the action
integral in accordance with the principle of least action.

The spatial fixity of points A and B not only provides
well-defined constraints for the action principle but also
ensures that the geodesic path between these points is
uniquely determined through Snell’s law.
A crucial aspect of this framework is that the radiation

gradient between points A and B manifests as a
scalar potential. This scalar nature is fundamental to
our theory as it remains invariant under coordinate
transformations, maintaining the same value in both
the stationary and observer systems. This invariance
provides a robust foundation for connecting quantum and
relativistic descriptions, as the scalar potential serves as
a bridge between the discrete quantum states at points A
and B and the continuous radiation field between them.
Second, our model demonstrates how a quantum

particle exhibits both discrete and continuous behaviors
simultaneously. The discrete nature manifests in the
localized TPE states at points A and B, while the
continuous aspect appears in the radiation-mediated
energy transfer between these points. This duality offers
a resolution to the long-standing wave-particle paradox:
the particle-like behavior corresponds to the discrete
TPE states, while the wave-like behavior emerges from
the continuous radiation field evolution.
Looking forward, this theoretical framework opens

several promising avenues for future investigation:

• The potential extension of the model to
multi-electron systems

• Applications to other quantum phenomena where
proper time effects may be significant

• Development of new experimental techniques for
measuring micro-oscillation velocities

• Exploration of implications for quantum
computing, particularly in understanding
decoherence

Ultimately, the 0-Sphere model suggests that the
apparent conflict between quantum mechanics and
relativity may be resolved not through the subordination
of one theory to the other, but through a deeper
understanding of how proper time manifests in quantum
systems. This perspective offers new insights into the
nature of quantum phenomena and provides a concrete
framework for exploring the intersection of quantum and
relativistic effects at the most fundamental level.

E. Limitations 1: The randomness of electron
vibrations on a macroscopic scale

While our framework provides a complete description
of electron motion from point A to point B, it is
important to acknowledge its current limitations and
future challenges. The distance between points A and
B in our model is assumed to be on the order of
the Compton wavelength, consistent with our previous
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work [5]. This assumption is physically justified, as it
corresponds to the scale at which the electron’s TPE
can be fully converted to radiative energy. However,
the critical question of how the electron selects its next
destination (point C) remains under investigation.
Several considerations are necessary for extending our

framework beyond the A-to-B transition. First, we
must account for the influence of surrounding electric
and magnetic fields. This requires careful examination
of whether these influences are best described through
classical field theory or through a more detailed analysis
of photon flows around the electron. Just as a radiation
gradient drives the photon sphere’s motion between
points A and B, the surrounding electromagnetic fields
likely create significant energy gradients that influence
the electron’s subsequent motion.

In situations where field influences are weak or
where surrounding photon energies are very small, we
anticipate that the selection of point C may become
probabilistic. This behavior could be mathematically
modeled using Wiener processes, suggesting that the
electron’s trajectory beyond point B might exhibit
characteristics of Brownian motion. While the path from
A to B follows Snell’s principle and satisfies the principle
of least action, the complete trajectory including point
C would likely display continuous but highly irregular,
zigzag patterns.

This leads to an interesting mathematical property:
while the electron’s motion between points A and B
is differentiable and amenable to geometric analysis (as
demonstrated in this paper), the overall path including
subsequent points would likely be non-differentiable,
similar to Brownian motion paths. This limitation of
our current framework points to the need for a more
comprehensive theory that can bridge the deterministic,
geometric description of individual segments with the
potentially stochastic nature of longer-term electron
trajectories [7].

However, in cases where magnetic and electric fields are
strong, or when the photon flow surrounding the electron
is energetically sufficient to suppress random behavior,
we expect the electron’s motion to remain differentiable
at both microscopic and macroscopic scales. Under such
conditions, the electron’s trajectory between points A, B,
and C would likely be approximable as a differentiable
path, maintaining the geometric character of our current
A-to-B analysis.

F. Limitation 2: Construction and Effectiveness of
Lagrangian

The principle of least action governs the path of energy
transfer between points A and B [11]:

δS = δ

∫ B

A

Ldt = 0. (IV.12)

This principle manifests physically through the
photon sphere’s oscillation, which provides a continuous
connection between the discrete TPE states. The
oscillation represents the actual geometric path in
spacetime, analogous to the continuous body of the
inchworm connecting its discrete foot positions.
The system’s evolution between points A and B is

governed by the principle of least action [11]. The
spinorial nature of the wavefunctions, manifested in the
half-angle terms ωt

2 , plays a crucial role in this evolution.
The action integral takes the form:

S =

∫ t2

t1

Ldt =

∫ t2

t1

(T − V )dt. (IV.13)

where T represents the kinetic energy of the virtual
photon ( 12 sin

2(ωt)) and V represents the potential
energy distribution between points A and B.
The author is currently investigating the Lagrangian

formulation for the 0-Sphere model, as the potential
energy is not simply the sum of EA(t) and EB(t).
In this model, the TPE drives the kinetic energy
oscillation. As shown in Eq. (VI.5) in the Appendix,
our model’s potential energy is derived from the time
derivative and difference calculation of TPE between
two points. This represents a significant departure from
conventional potential energies, such as gravitational
potential or spring-mass systems, where the potential is
determined by a single position. The oscillatory behavior
emerges naturally from this principle, as the system
seeks the path of least action while maintaining energy
conservation [14]. This oscillation is fundamentally
different from classical harmonic motion, as it involves
the quantum mechanical transfer of TPE between
discrete points through a continuous field. Whether a
consistent formulation can be achieved by using

V = EA(t)− EB(t), (IV.14)

in the general Lagrangian equation (IV.13) remains a
topic for future investigation.
These limitations and considerations, while

highlighting areas for future investigation, do not
diminish the fundamental advances achieved through
our framework. Let us now summarize our findings
and their implications for the future development of
quantum theory.

G. Limitations 3: Implications for Quantum
Entanglement, Zero-Point Energy, and Connections

to BCS Theory Assumptions

The 0-Sphere model is used in this section to
explore the geometric meaning of Cooper pairs in
superconductivity theory. This paper has not addressed
the duality of electron spin or the origin of the electron’s
magnetic properties, as the author’s ideas on these topics
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are still under development. However, further research in
this area, combined with the comprehensive integration
of the 0-Sphere model and the equations presented in
this paper, may lead to deeper insights into quantum
entanglement and zero-point energy.

To briefly explain the current state of this research,
quantum entanglement is considered by examining two
electrons. One electron is located at starting point A at
time t = 0, while the other electron is located at starting
point B at time t = 0. As time progresses, each electron
generates a radiation flow due to thermal radiation, with
one flow directed from point A to point B and the other
from point B to point A. In this scenario, the radiation
gradients, symbolized by sine waves, cancel each other
out, resulting in a net gradient of zero. The sum of the
gradients of the potential energies of the two electrons
facing each other can be understood by combining it with
Eq. (VI.5) as follows:

grad (EBe1(t)− EAe1(t)) + grad (EAe2(t)− EBe2(t)) = 0.

(IV.15)

The first grad term in the left-hand side represents
the radiation gradient generated by the first electron,
e1, while the other grad term represents the radiation
gradient generated by the second electron, e2. This sum
represents the cancellation of the positive and negative
sine waves, indicating that the time derivative of the
radiative flux is zero.

This result is equivalent to one of the assumptions of
BCS theory [29], which states that “the center-of-mass
momentum of a Cooper pair is zero,” suggesting that the
0-Sphere model may provide a new perspective on the
mechanisms underlying Cooper pair formation. This new
perspective is provided by the geometrical representation
through closed algebraic equations.

As research in this area progresses, it may
shed light on the fundamental nature of quantum
entanglement, zero-point energy, and the relationship
between the 0-Sphere model and established theories of
superconductivity. Future work will focus on further
developing these ideas and exploring their implications
for our understanding of quantum phenomena and the
electron’s intrinsic properties.

H. Potential Application to the Muon Anomalous
Magnetic Moment

The equations introduced in this paper, which
express the anomalous magnetic moment using closed
algebraic equations from first principles, may have
further applications. One such potential application
is in resolving the significant discrepancy between the
standard model prediction and the observed value of
the muon anomalous magnetic moment, also known
as the muon g − 2 problem. The muon anomalous

magnetic moment, like that of the electron, represents the
deviation of the muon’s magnetic moment from the value
predicted by the Dirac equation. Recent experimental
measurements of the muon g − 2 at Fermilab have
shown a significant discrepancy with the standard model
prediction, with a statistical significance of over four
standard deviations [30]. This discrepancy has generated
significant interest in the particle physics community, as
it may hint at the existence of new physics beyond the
standard model.

The equations presented in this research have
connected the electron’s anomalous magnetic moment
with general relativity. The author believes that these
first-principles equations may not be limited to electrons
and could potentially predict the value of the muon
anomalous magnetic moment through first-principles
calculations. However, to apply the 0-Sphere model for
predicting the theoretical value of the muon g − 2, two
unknown quantities must be obtained experimentally.
The first is the average oscillation velocity of the muon
due to Zitterbewegung.

The second is to experimentally confirm that the
elementary particle muon, which has been traditionally
considered a point particle, has a non-zero finite size.
These experimental challenges are similar to those
encountered when considering the electron’s anomalous
magnetic moment in this paper. If the average velocity
of the muon’s Zitterbewegung and its finite size can
be measured experimentally, the theoretical framework
presented in this paper can be applied to muons.
This would enable the calculation of the theoretical
prediction of the muon’s anomalous magnetic moment
from first principles, which can then be compared
with the experimental value and the prediction of the
standard model. Such a comparison would be significant
in verifying the effectiveness and generality of the
theoretical framework presented in this paper.

However, it is important to note that this potential
application is speculative at this stage and requires
further theoretical and experimental work. The
adaptation of our equations to the muon system
may not be straightforward and could require
significant modifications. Moreover, the experimental
measurements required are technically very challenging
and require further advancements in experimental
techniques.

Despite these challenges, the potential application of
our framework to the muon g − 2 problem represents
an exciting avenue for future research. It could provide
new insights into the nature of the muon and potentially
reveal new physics beyond the standard model. As such,
it is a promising direction for further investigation and
collaboration between theorists and experimentalists in
the field of particle physics.
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V. CONCLUSION

In this paper, we have presented a revolutionary
approach to understanding electron dynamics through
the 0-Sphere electron model, described by a unique
Hamiltonian system that provides an exact, closed-form
solution [5, 7]. Based on our preceding analysis,
we conclude that electrons described by the 0-Sphere
Electron Model determine their trajectories according
to Snell’s law, thereby preserving energy conservation.
Our key contribution lies in the discovery of a complete
algebraic description of electron behavior, as introduced
in Eq. (I.1), which unifies discrete quantum states and
continuous field evolution in a fundamentally new way.

Most profoundly, our work suggests a new path
toward reconciling quantum mechanics and general
relativity [16]. Unlike traditional approaches that
attempt to modify general relativity to accommodate
quantum effects, our framework demonstrates
that properly understood quantum systems can
naturally align with relativistic principles through
radiation-mediated energy transfer. This alignment is
particularly evident in our treatment of the anomalous
magnetic moment, which emerges naturally from
Lorentz transformation effects. In our companion
paper [7], we present specific predictions for this effect:
the observation of Zitterbewegung velocity would lead
to predictions of the anomalous magnetic moment
as a precession motion. The paper provides detailed
calculations of precession corrections derived from
both special and general relativity using first-principles
calculations—employing the same principles used in
GPS corrections. Readers are encouraged to review this
complementary work for a complete understanding of
these predictions.

The equations we have discovered demonstrate
several remarkable properties that set them apart from
conventional quantum mechanical descriptions [14]:

• Exact energy conservation proven through the

vanishing time derivative of the Hamiltonian

• Natural emergence of oscillatory behavior through
the principle of least action

• Direct connection between quantum phenomena
and relativistic effects through radiation-mediated
energy transfer

Looking forward, this work opens several promising
directions for future research:

• Experimental verification of the predicted
Zitterbewegung velocity and its relationship
to the anomalous magnetic moment

• Extension of this non-perturbative framework to
other fundamental particles and their interactions

• Development of experimental tests to verify
the predicted radiation-mediated energy transfer
mechanism

• Investigation of multi-particle systems within this
exact algebraic framework

• Application of our first-principles approach to other
quantum-relativistic phenomena

Our contribution thus extends beyond a mere
mathematical description of electron behavior; it
provides a concrete path toward understanding how
quantum systems can be described exactly, how they
naturally incorporate relativistic principles, and how
the apparent conflicts between quantum mechanics and
general relativity might be resolved through proper
understanding of energy transfer mechanisms [11]. The
synthesis of quantum and relativistic effects in our model,
particularly evident in our treatment of the anomalous
magnetic moment, suggests that the unification of
quantum mechanics and gravity may require not the
modification of existing theories, but rather a deeper
understanding of how they are already connected through
the fundamental principles of radiation and least action.

[1] Berry, M. V., Quantal phase factors accompanying
adiabatic changes, Proceedings of the Royal
Society of London A, 392, 45-57 (1984).
doi:10.1098/rspa.1984.0023

[2] Wilczek, F. & Zee, A., Appearance of gauge structure in
simple dynamical systems, Physical Review Letters, 52,
2111 (1984). doi:10.1103/PhysRevLett.52.2111

[3] Bohm, A., Mostafazadeh, A., Koizumi, H.,
Niu, Q. & Zwanziger, J., The Geometric Phase
in Quantum Systems, Springer, Berlin (2003).
doi:10.1007/978-3-662-10333-3

[4] Aharonov, Y. & Bohm, D., Significance of
Electromagnetic Potentials in the Quantum
Theory, Physical Review, 115, 485-491 (1959).
doi:10.1103/PhysRev.115.485

[5] Hanamura, S., A Model of an Electron Including Two
Perfect Black Bodies, viXra:1811.0312, viXra preprint
(2018).

[6] Hanamura, S., Coexistence Positive and Negative-Energy
States in the Dirac Equation with One Electron,
viXra:2006.0104, viXra preprint (2020).

[7] Hanamura, S., Redefining Electron Spin and Anomalous
Magnetic Moment Through Harmonic Oscillation and
Lorentz Contraction, viXra:2309.0047, viXra preprint
(2023).

[8] Dirac, P. A. M., The quantum theory of the electron,
Proceedings of the Royal Society of London A, 117,
610-624 (1928). doi:10.1098/rspa.1928.0023

[9] Bjorken, J. D. & Drell, S. D., Relativistic Quantum
Mechanics, McGraw-Hill, New York (1965).

https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.52.2111
https://doi.org/10.1007/978-3-662-10333-3
https://doi.org/10.1103/PhysRev.115.485
http://vixra.org/abs/1811.0312
https://vixra.org/abs/2006.0104
https://vixra.org/abs/2309.0047
https://doi.org/10.1098/rspa.1928.0023


15

[10] Holstein, B. R., Topics in Advanced Quantum Mechanics,
Addison-Wesley, New York (1990).

[11] Misner, C. W., Thorne, K. S. & Wheeler, J. A.,
Gravitation, W. H. Freeman, San Francisco (1973).

[12] Weinberg, S., The Quantum Theory of Fields, Volume
1: Foundations, Cambridge University Press, Cambridge
(1995). doi:10.1017/CBO9781139644167

[13] Griffiths, D. J. & Schroeter, D. F., Introduction
to Quantum Mechanics, Cambridge University
Press, Cambridge, 3rd edition (2018).
doi:10.1017/9781316995433

[14] Shapere, A. & Wilczek, F., Geometric Phases in Physics,
World Scientific, Singapore (1989). doi:10.1142/0613

[15] L. H. Thomas, The Motion of the Spinning Electron,
Nature, 117 (1926), 514; Philosophical Magazine, 3
(1927), 1. doi:10.1038/117514a0

[16] Wheeler, J. A., On the Nature of Quantum
Geometrodynamics, Annals of Physics, 2, 604-614
(1957). doi:10.1016/0003-4916(57)90050-7

[17] Landau, L. D. & Lifshitz, E. M., The Classical Theory
of Fields, Fourth Revised English Edition: Volume 2
(Course of Theoretical Physics Series), Pergamon Press,
Oxford (1975). doi:10.1016/C2009-0-14608-1

[18] Barut, A. O. & Bracken, A. J., Zitterbewegung and the
internal geometry of the electron, Physical Review D, 23,
2454 (1981). doi:10.1103/PhysRevD.23.2454

[19] Hestenes, D., The Zitterbewegung Interpretation of
Quantum Mechanics, Foundations of Physics, 20,
1213-1232 (1990). doi:10.1007/BF01889466

[20] Briggs, J. S., Quantum flows in phase space:
The proper time and classical limit of quantum
mechanics, Physical Review A, 91, 052119 (2015).
doi:10.1103/PhysRevA.91.052119

[21] Pauli, W., Theory of Relativity, Dover Publications, New
York (1981).

[22] Kinoshita, T., Quantum Electrodynamics, World
Scientific, Singapore (2010). doi:10.1142/7598

[23] Schwinger, J., On Quantum-Electrodynamics and the
Magnetic Moment of the Electron, Physical Review, 73,
416 (1948). doi:10.1103/PhysRev.73.416

[24] Landau, L. D. & Lifshitz, E. M., Statistical
Physics, Part 1, Pergamon Press, Oxford (1980).
doi:10.1016/C2009-0-24487-4

[25] Feynman, R. P., Statistical Mechanics: A Set of Lectures,
Benjamin/Cummings, Reading (1972).

[26] Fock, V., Proper time in classical and quantum
mechanics, Zeitschrift für Physik, 12, 404-425 (1937).

[27] DeWitt, B. S., Quantum field theory in curved
spacetime, Physics Reports, 19, 295-357 (1975).
doi:10.1016/0370-1573(75)90051-4

[28] Birrell, N. D. & Davies, P. C. W., Quantum Fields in
Curved Space, Cambridge University Press, Cambridge
(1984). doi:10.1017/CBO9780511622632

[29] Bardeen, J., Cooper, L. N., and Schrieffer, J. R. Theory
of Superconductivity , Phys. Rev., vol. 108, no. 5, pp.
1175-1204, 1957.

[30] Abi, B., Albahri, T., Al-Kilani, S. et al., Measurement
of the Positive Muon Anomalous Magnetic Moment
to 0.46 ppm, Phys. Rev. Lett. 126, 141801 (2021).
doi:10.1103/PhysRevLett.126.141801

[31] Fan, X., Myers, T. G., Sukra, B. A. D. & Gabrielse, G.,
Measurement of the Electron Magnetic Moment, Phys.
Rev. Lett. 130, no.7, 071801 arXiv:2209.13084 (2023).
doi:10.1103/PhysRevLett.130.071801

[32] James B. Hartle, GRAVITY – An Introduction to
Einstein’s General Relativity –, p.302, Cambridge
University Press (2021). doi:10.1017/9781316995457

[33] “GP-B STATUS UPDATE — May 4, 201”. Gravity
Probe B. NASA and Stanford University. NASA
Headquarters Science Update/Press Conference. GP-B
STATUS UPDATE — May 4, 2011 (2011)

[34] Dehmelt, H., A Single Atomic Particle Forever
Floating at Rest in Free Space: New Value for
Electron Radius, Physica Scripta. T22: 102–110,
doi:10.1088/0031-8949/1988/T22/016 (1988)

VI. APPENDIX

A. An electron’s structure in this study

In the 0-Sphere electron model [5], an electron’s
structure is assumed as follows. First, consider there
is a tiny thermal source in the center. This thermal
spot, named the bare electron or the spinor or the kernel
in author’s previous papers already submitted, can be
moved by radiation, however, it stops time and fixes it in
the center of the electron. Next, consider a real photon
that surrounds the bare electron, the kernel. This real
photon has an electromagnetic interaction with the bare
electron.
The concept of virtual photons has not changed since

mentioned on paper [5, 7]. The photons surrounding the
two thermal sources exchanging energy with each other
are real photons. Because the photon is connected to the
thermal spot by the electromagnetic force, this photon
does not emit energy to the external system and cannot
be observed. In this paper, one electron is regarded as a
closed system in thermodynamics, and this paper is not
expanded to the interaction with other electrons.
From this viewpoint, this real photon may be called a

virtual photon. However, the virtual photons used in the
past are particles that are temporarily generated during
an interaction, and the meaning of the virtual photons
in this paper is very different in that they do not satisfy
the energy conservation law.

B. What is the 0-sphere

A 0-sphere is a pair of points and has no area. The
general form of 0-sphere is represented as n-sphere [11].
In this subsection, we will review the electronic model

with the 0-sphere. A 0-sphere is a pair of points at
the ends of a one-dimensional line segment. A 1-sphere
is a circle as shown in Fig. 4 (a,b). Alternatively,
the 0-sphere is indicate an intersection of a straight
line and a circle put on the same plane. In other
words, by expanding a two-dimensional circle into three
dimensions, the 0-sphere is an intersection points with a
straight line passing through a hollow sphere.
In this paper, the Lorenz contraction and the geodetic

precession are explained by semicircles. In reality,
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Fig. 3. Behavior of the virtual photon as a spatial
simple harmonic oscillator while the two kernels behave
as emitters and absorbers. The blue and green dots are
two kernels inside one electron. Since the equation of
Kernel1 +Kernel2 + γ∗Kinetic.E = E

0
, the sum of the

thermal potential energy (TPE) of the two kernels and
the kinetic energy of the virtual photon is constant.
The energy conservation law is preserved. See paper [5]
for details.

Fig. 4. (a) a 0-sphere (b) a 1-sphere. The 0-sphere
consists of two points. In this paper, it illustrated in the
blue and green dots. These spots named and mentioned
the bare electrons or the two spinors in author’s
previous papers. In this paper, these blue and green
dots are mentioned as the kernels.

however, light travels by the shortest path [11], the
virtual photon would travel the shortest distance between
the blue and green points.

C. Thermal energy gradient caused by two kernels

The Appendix quotes from the paper [5, 7] on how the
energy gradient arises from two kernels. To maintain the
law of conservation of energy, we take each of the two
kernels or bare electrons as a thermal potential energy.
These two kernels act as both emitters and absorbers
in turn. To meet the requirements for simultaneous
emission and absorption, assign Te1 and Te2 as follows [5];

(Oscillator 1) : Te1 = E0 cos
4

(
ωt

2

)
,

(Oscillator 2) : Te2 = E0 sin
4

(
ωt

2

)
,

(VI.1)

where E0 is the ground state of quantised energy [7].
Set the two electrons as paired oscillators with Te1 =
E0 cos

4 ωt/2 and Te2 = E0 sin
4 ωt/2. The temperature

gradient between the two kernels is calculated as,

grad Te = grad (Te2 − Te1) . (VI.2)

Since the values of thermal energy at both thermal
kernels vary with time, the temperature gradient changes
with time. Let the previous ωt is θ,

grad Te1 =
d

dθ

(
E0 cos

4

(
θ

2

))
= −2E0 cos

3

(
θ

2

)
sin

(
θ

2

)
. (VI.3)

grad Te2 =
d

dθ

(
E0 sin

4

(
θ

2

))
= 2E0 cos

(
θ

2

)
sin3

(
θ

2

)
. (VI.4)

grad Te1 and grad Te2 include only time derivative
terms; their space derivatives are zero, because the
kernels do not change in position with time. That is,

grad (Te2 − Te1) = 2E0 cos

(
θ

2

)
sin3

(
θ

2

)
+ 2E0 cos

3

(
θ

2

)
sin

(
θ

2

)
= 2E0 cos

(
θ

2

)
sin

(
θ

2

)
= E0 sin θ . (VI.5)

Equation (VI.5) shows that the temperature gradient
between grad Te1 and grad Te2 produces a force F [5].
The force drives the velocity of the virtual photon along
with simple harmonic motion. On the basis of the above
assumption, the virtual photon swing back and force
spatially between the two kernels.
Interaction between thermal and kinetic energy is

essential in the 0-Sphere electron model, because the
interaction between the two kinds of energy, i.e., the
thermal potential energy of the spinors and the kinetic
energy of the virtual photon, drives the virtual photon
along with the harmonic oscillator. See yellow line on
Fig. 3.

D. The relationship between Lorentz contraction
and anomalous magnetic moment

The following is a reprint of excerpts from the author’s
paper [7] that are useful for reading this paper .
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1. Review the Thomas precession

To make this idea quantitative, this study does not
make the assumption of constant acceleration (a :
acceraration = f : fource) in Thomas theory. The
acceleration of the electrons can be changing. The
electron does not travel in an uniform linear motion but
with an intrinsic velocity, which could be expressed by
a sinusoidal function. If the velocity v is expressed by
v = cosθ, the acceleration is expressed by its derivative,
a = −sinθ. In this study, at the beginning, we reviewed
Thomas’s work and substituted a = −sinθ instead of
constant value (a = f) into the Thomas precession.
The discussion begins with the background of the

association of spin with precessional motion. In
relativity, if the electron is in uniform linear motion, the
coordinate system describing the electron’s motion can
be calculated by Lorentz transformation. However, if
the electron is in an accelerated motion, it is calculated
that the axis of the coordinate system describing this
electron rotates when observed from the laboratory
system. Thomas wrote in his paper that the axes of a
coordinate system with an origin and translating with the
electrons are observed in a laboratory system to rotate
with the following angular velocity as in Eq. (VI.6),

Ω =
1

2c2
[a× v], (VI.6)

where a is the acceleration of the electron and v is the
velocity of the electron. Note that in Eq. (VI.6), the
approximation (β = 1 − v2/c2 ≒ 1) is set in Lorenz
transformation. Equation (VI.6) can also be applied to
the general case where the particles are not in uniform
circular motion. As the particles are in uniform circular
motion, the following equation is obtained,

Ω = −1

2

v2

c2
ωconst. (VI.7)

The spin image in precession that we now recall comes
from Eq. (VI.7). The angular velocity Ω obtained is a
constant proportional to ωconst. In this study, however,
we will not consider the issue using Eq. (VI.7), but rather
equation (VI.6).

2. Assuming a simple harmonic oscillation instead of
uniform circular motion

This section is the innovative part of this study. The
quantisation of the orbital angular momentum into units
of h̄ reflects the nature of space, which returns to its
original state after one rotation. According to the
relationship between angular momentum and magnetic
moment, if the angular momentum is halved to h̄/2, the
magnetic moment should also be µe/2. However, the
magnetic moment of the spin angular momentum is equal

to µe, even though the angular momentum is h̄/2. This
means that spin rotation can generate magnetic fields
twice as efficiently as orbital rotation and responds to
magnetic fields with twice the sensitivity. This property
could not be explained by theories based on circular
currents observed in three-dimensional space.

Consider this discrepancy from the perspective of the
Thomas precession. Equation (VI.5) forms an important
basis for this paper. The traveling of the virtual photon,
γ∗, is represented by a sinusoidal function (cf. Eq. (VI.5)
and see yellow line on Fig. 3). The study was described
as the 0-Sphere electron model. In this electron model,
the thermal potential energy (TPE) of the electron is
a set of radiation and absorption, which describes the
motion of the electron; the TPE changes partly kinetic
energy, which drives the photon. The motion of the
photon could be represented by a very simple sinusoidal
function in this research model. First, we let the two
values as follows;

(V erocity) : vγ∗ = cosωt,

(Acceraration) : aγ∗ = −sinωt.
(VI.8)

Substitute Eq. (VI.8) into Eq. (VI.6) then,

Ω =
1

2c2
[aγ∗ × vγ∗ ]

=
1

2c2
[−sinωt× cosωt]

=
1

2c2
·
(
−1

2
sin2ωt

)
.

(VI.9)

The above discussion yields an extremely important
result. Namely, when the outer product of cosine and sine
is calculated, − 1

2 sin2ωt appears. Equation (VI.9) is the
basis for obtaining a doubled angular velocity cycle. It
was found that the displacement, velocity and period of a
single oscillation have a cycle of ωt, whereas the angular
velocity has a cycle of 2ωt. One wave period of single
oscillation is determined by the angular velocity. The
angular velocity with Thomas precession has a period of
half the displacement.

The results of the study of the above equation provide a
basis for the quantisation of the spin angular momentum
to a value half the Planck constant.

Equation (VI.9) provides us with a further important
conclusion. The angular velocity of an electron can
take both positive and negative values over a range of
time transitions, since sine takes values in the range
from −1 to 1. This result does not follow from Eq.
(VI.7). In conventional quantum mechanics, spin has
been described as quantum superposition of up-spin
and down-spin states. Equation (VI.9) indicates that
the electron repeats up-spin and down-spin with time
transitions.
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Fig. 5. Presence of rotational Lorentz contraction.
Presence of rotational Lorentz contraction. To be
precise, rotation should be regarded as the motion of a
point through the origin, as shown in Fig. 2. However
here it is shown as a circumference for visual clarity. (a)
Lorenz contraction was applied to rotational
coordinates. If the electrons are travelling significantly
slower than the speed of light, the rotational Lorentz
contraction can be neglected. (β = 1− v2/c2 ≒ 1) (b)
Lorentz contraction cannot be ignored when the speed
of electrons travelling approaches the speed of light.
Therefore, the length of the π circumference shrinks.
This contraction is considered to be the cause of the
anomalous magnetic moment.

3. Average velocity of electron micro-oscillation

The difference is the anomalous magnetic moment,
denoted a and defined as,

a =
g − 2

2
. (VI.10)

As can be seen from the fact that this defining
equation is divided by 2, we should consider the
fraction of the circumference of 1π that is shortened
by Lorentz contraction, not the circumference of 2π per
circumference.

The current experimental value and uncertainty is [31],

aexpe = 0.001 159 652 180 59 (13). (VI.11)

Let L0 be the length of a bar in the coordinate
system moving with the electrons and L be the length
of the bar when the moving electrons are viewed from
the laboratory system, the following relationship holds
between the two. Lorentz contraction is expressed by
the following equation,

L = L0

√
1− v2

c2
. (VI.12)

According to Eq. (VI.9), the angular momentum
moving with acceleration −sinθ was expressed by sin2θ.

This is a strong evidence that spin rotation can generate
a magnetic field twice as efficiently as orbital rotation.
This was due to the change from θ to 2θ.
In other words, the interpretation was that instead

of having to rotate 360 degrees in space to generate
a magnetic field, one half of that, 180 degrees, could
be used to generate a magnetic field. In this study,
we can consider that the anomalous magnetic moment
generates the magnetic field at an angle even less than
180 degrees. That is, we reinterpret the 180-degree angle
as a rotational Lorentz contraction that can generate a
magnetic field at an angle shorter than 180 degrees (Fig.
5).
According to the above view, the equation since

expresses the relationship between Lorentz contraction
and anomalous magnetic moment,

L

L0
=

1

1 + aexpe
. (VI.13)

We further modify Eq. (VI.13). We take the
root-mean-square (RMS) value of aexpe because we
are trying to find the average velocity; multiplying
by the RMS is similar to the reason why the
maximum and effective voltages of an AC voltage are
different. In other words, the Lorentz contraction is
also subject to fluctuations in its length because the
harmonic oscillator would constantly produce varying
accelerations. Therefore, in order to determine the
average speed of the electron motion, the anomalous
magnetic moment should probably be converted to an
RMS value. The revised formula is;

L

L0
=

1

1 + 1√
2
aexpe

. (VI.14)

The rationale for this modified idea is that the value
of the anomalous magnetic efficiency might be calculated
from the highest value of the acceleration caused by the
harmonic oscillator. Further observations will confirm
the correctness of this idea.
Furthermore, from the following relationship,

L

L0
=

√
1− v2

c2
. (VI.15)

From these two equations, we obtained,

√
1− v2

c2
=

1

1 + 1√
2
aexpe

. (VI.16)

It should be noted that Eq. (VI.16) derived here will
be modified to Eq. (VI.21) in the next chapter to take
account of general relativity.
Substituting the anomalous magnetic moment

obtained experimentally for aexpe , β2 = (v/c)2 is
obtained,
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Fig. 6. “Geodetic precession. This is a schematic view
of the equatorial plane of a nonrotating spherical body.
A gyroscope orbits in a circle of Schwarzschild
coordinate radius R. At the start of one orbit at t = 0,
its spin is oriented in the radial direction. At the
completion of one orbit, its spin has been rotated by an
angle ∆ϕgeodetic in the direction of orbital motion in a
time P = 2π/Ω.” See [32] for details.

β2 = (
vγ∗

c
)2 = 0.00163798087 (VI.17)

vγ
∗

electron ≒ 0.04047197635× c. (VI.18)

With this beta value, the average speed was calculated
to be approximately 12,133 km/s. For reference, we can
compare the values of the muon with the results of Eq.
(VI.18).

Combining the beta implications of the above equation
with the 0-Sphere electron model yields the following
consequence. This means that the energy of the electron
is moving from point +a to point −a with an average
0.04047 times the speed of light.

E. Geodetic precession

“Suppose at the start of an orbit the observer orients
the gyro in a direction in the equatorial plane (say in the
direction of a distant star). General relativity predicts
that on completion of an orbit, the gyro will generally
point in a different direction making an angle ∆ϕgeodetic
with the starting one. That change in direction is called
geodetic precession and its illustrated schematically in
Fig. 6.” [32].

The spin comes back after one orbit rotated by an
angle,

∆ϕgeodetic = 2π

[
1−

(
1− 3M

R

)1/2
]
(per orbit),

(VI.19)
in the direction of motion, as illustrated in Fig. 6.

F. General relativity’s geodetic effect on electron
spin

In addition to the results obtained in the previous
section we further consider the influence of general
relativity. Namely, gravity. As is well known, attempts
have been made to generate a theory that integrates
quantum mechanics and gravity. It is called quantum
gravity theory. The reason why this attempt has not been
fulfilled is that attempts to relate the gravitational field
to the quantum field have not been successful. This is due
to the properties of the fields, which take on continuous
values.
The geodesic and frame-dragging effect predicted by

general relativity has been successfully and accurately
confirmed by NASA’s Gravity Probe B satellite. GP-B
final experimental results were announced on May 4,
2011 [33]. This chapter attempts to apply the geodesic
effect to electron spin. Note that the quantisation of
gravity is beyond the scope of this paper.
Up to the previous section, electron spin has been

analysed using classical models. In this section, the
concept of geodesic precession of general relativity is
applied to electron spin. To calculate the geodetic
precession on electron spin, we refer to the following
geodetic precession equation already found [32],

∆ϕgeodetic = 2π

[
1−

(
1− 3M

R

)1/2
]
(per orbit),

(VI.20)
where M is mass and R is the Schwarzschild radius.
Equation (VI.20) is expressed in units of radians. As

considering the anomalous magnetic efficiency of the
electron, we should consider half the circumference of
a circle to be a unit. Based on our discussion of Eq.
(VI.10), we use the value of the above equation without
multiplying it by 2π,

L

L0
=

1

1 + 1√
2
aexpe − ∆ϕgeodetic

2π

. (VI.21)

The size of the electrons is not currently determined.
Observation of a single electron in a Penning trap
suggests the upper limit of the particle’s radius to be
1.0 × 10−22 meters [34]. That means the following
equation (VI.22) is obtained from Eqs. (VI.20) and
(VI.21) to calculate Table I. Substitute the mass of the
electron for melectron and the radius of the electron for
relectron, the result is,

L

L0
= 1

/(
1 +

1√
2
aexpe −

[
1−

(
1− 3melectron

relectron

)1/2
])

.

(VI.22)
Once one of the values is measured, the other can

be calculated. Table I shows that once the electron
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radius has been determined, the average speed at which
electrons travel can be calculated. For example, if

the speed-of-light ratio of vγ
∗

electron is measured to be
0.0400c, the radius of the electron would be between
1.0× 10−25(m) and 1.0× 10−26(m).

Table. I. The velocity and the radius of an electron

relectron(m) ∆ϕgeodetic/2π vγ
∗

electron/c

1× 10−22 1.3670000× 10−8 0.040471633

1× 10−23 1.3665000× 10−7 0.040468601

1× 10−24 1.3664100× 10−6 0.040438275

1× 10−25 1.3664170× 10−5 0.040133758

1× 10−26 1.3666501× 10−4 0.036949906

The conclusion of this theory is to calculate the size
of the electron kernel, but for this we have to wait
for the results of the two variable experiment. The
first is the development of more powerful measuring
instruments capable of detecting electron magnitudes
below 1.0× 10−22(m), and the second is a technique for
measuring the velocity of micro-oscillation of an electron.
The validity of the results of the above equations would
be verified if the radius, relectron, of the electron and the

value of its average traveling velocity, vγ
∗

electron, could be
measured experimentally.

G. Dirac’s Zitterbewegung

Zitterbewegung, a phenomenon arising from the
interference between positive and negative energy states
in the Dirac equation, is a rapid oscillatory motion
of elementary particles that obey relativistic quantum
mechanics. This appendix explores the mathematical
formulation and key characteristics of Zitterbewegung.

Dirac fully agreed with Schrödinger’s observation,
writing in his 1933 Nobel lecture:

“The variables also give rise to some rather unexpected
phenomena concerning the motion of the electron. These
have been fully worked out by Schrödinger. It is found
that an electron which seems to us to be moving slowly,
must actually have a very high frequency oscillatory
motion of small amplitude superposed on the regular
motion which appears to us. As a result of this oscillatory
motion, the velocity of the electron at any time equals
the velocity of light. This is a prediction which cannot
be directly verified by experiment, since the frequency
of the oscillatory motion is so high and its amplitude is
so small. But one must believe in this consequence of
the theory, since other consequences of the theory which
are inseparably bound up with this one, such as the law
of scattering of light by an electron, are confirmed by
experiment.” Dirac (1933, p322)

“The well-known Zitterbewegung may be looked upon
as a circular motion about the direction of the electron

spin with radius equal to the Compton wavelength*
× 1/2π of the electron. The intrinsic spin of the
electron may be looked upon as the orbital angular
momentum of this motion. The current produced by
the Zitterbewegung is seen to give rise to the intrinsic
magnetic moment of the electron.” – in Hestenes 2008 [*
The Compton wavelength of a particle is the same as the
wavelength of a photon with equivalent energy.]

1. The Dirac Equation and its Solutions

To begin with, the time-dependent Dirac equation is
given by:

ih̄
∂ψ

∂t
= (cα · p+ βmc2)ψ. (VI.23)

Here, ψ is the wave function represented as a
four-component spinor, α and β are the Dirac matrices,
c is the speed of light, p is the momentum operator, and
m is the mass of the particle. For a free particle, we can
write a plane wave solution:

ψ(x, t) = u(p) exp (i(p · x− Et)/h̄) . (VI.24)

where u(p) is a four-component spinor, E is the energy,
and p is the momentum.
The Dirac equation yields solutions encompassing

both positive and negative energy states, reflecting the
intrinsic symmetry between particles and antiparticles in
relativistic quantum theory.

2. Trigonometric Representation

To elucidate the wave-like nature of these solutions,
we can express them in terms of trigonometric functions
using Euler’s formula:

exp

(
i
p · x− Et

h̄

)
= cos

(
p · x− Et

h̄

)
+i sin

(
p · x− Et

h̄

)
.

(VI.25)
This trigonometric form illuminates several key aspects

of the wave function:

1. The cosine term represents the real part,
corresponding to the wave’s amplitude.

2. The sine term, multiplied by the imaginary unit
i, represents the imaginary part, indicating the
wave’s phase.

3. The argument (p ·x−Et)/h̄ determines the wave’s
spatial and temporal periodicity.
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3. Simplified Zitterbewegung Expression

Zitterbewegung can be expressed as a sinusoidal
function in time. For an electron, the motion can be
approximated as:

ψ(t) = ψ0 sin(ωt+ ϕ), (VI.26)

where:

• ψ(t) represents the amplitude of the oscillatory
motion at time t,

• ψ0 is the amplitude of the oscillation,

• ω is the angular frequency of the oscillation,

• ϕ is the phase of the oscillation.

In terms of the relativistic energy of the electron, the
angular frequency ω is:

ω =
Erest

h̄
, (VI.27)

where Erest = mc2 is the rest energy of the electron, m
is the electron mass, and c is the speed of light.

Therefore, the Zitterbewegung can be written as:

ψ(t) ≈ ψ0 sin

(
mc2

h̄
t+ ϕ

)
. (VI.28)

4. Position Expectation Value

A more comprehensive representation of
Zitterbewegung can be given through the position
expectation value:

⟨x⟩(t) ≈ x0 +
cp

E
t+

h̄c2

2E
sin

(
2Et

h̄

)
. (VI.29)

The notation ⟨x⟩(t) represents the expectation value
of position as a function of time in quantum mechanics,
where:

• Observables like position are represented by
operators.

• The angle brackets ⟨⟩ denote the expectation value,
which is the average value of many measurements
of an observable if they were to be performed on
identically prepared systems.

• x inside the brackets refers to the position operator.

• (t) indicates that this expectation value is a
function of time.

This equation describes how the average position of a
particle (like an electron) evolves over time, consisting of:

1. Initial Position Term : x0
This term represents the initial position of the
particle at t = 0.

2. Drift Term : cp
E t

This term accounts for the average relativistic
motion of the particle due to its momentum p,
where c is the speed of light and E is the total
energy of the particle. This term represents the
classical drift of the particle.

3. Oscillatory Term : h̄c2

2E sin
(
2Et
h̄

)
This term describes the oscillatory motion

(Zitterbewegung) with amplitude h̄c2

2E and angular

frequency 2E
h̄ .

5. Characteristics of Zitterbewegung

The Zitterbewegung representation encapsulates
several key features:

• Amplitude: On the order of the Compton
wavelength (λ = h̄

mc ), approximately 10−13 meters
for an electron.

• Frequency: The angular frequency ω = 2E
h̄ ,

which for a particle at rest is approximately 2mc2

h̄ ,

corresponding to about 1021 Hz for an electron.

• Relativistic Nature: The presence of c (speed
of light) in the amplitude and E (total energy
including rest mass) in the frequency indicates that
Zitterbewegung is a relativistic effect.

• Quantum Interpretation: This oscillation can
be thought of as a quantum effect where the particle
rapidly switches between different spin states due
to the interference of positive and negative energy
solutions of the Dirac equation.

This formulation shows that the particle’s average
position isn’t just moving uniformly, but also has a rapid
oscillatory component due to the Zitterbewegung effect
predicted by the Dirac equation.
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