Creating Hierarchical Dispositions of Needs in an
Agent

1% Tofara Moyo
Bulawayo , Zimbabwe
tofaramoyo @ gmail.com, Mazusa Al

Abstract—We present a novel method for learning hierarchical
abstractions that prioritize competing objectives, leading to
improved global expected rewards. Our approach employs a
secondary rewarding agent with multiple scalar outputs, each
associated with a distinct level of abstraction. The traditional
agent then learns to maximize these outputs in a hierarchical
manner, conditioning each level on the maximization of the
preceding level. We derive an equation that orders these scalar
values and the global reward by priority, inducing a hierarchy
of needs that informs goal formation. Experimental results on
the Pendulum v1 environment demonstrate superior performance
compared to a baseline implementation.We achieved state of the
art results.

I. INTRODUCTION

The advent of Artificial Intelligence (AI) has witnessed
significant advancements in Deep Reinforcement Learning
(RL). A crucial aspect of deep RL involves defining the output
layer of a neural network to accommodate the dimensionality
of the action space. When the action space is discrete and
relatively small, selecting an action from the output distribu-
tion is straightforward. However, as the dimensionality of the
action space increases or transitions to a continuous domain,
identifying the optimal action becomes a computationally
expensive optimization problem.

Many real-world applications, such as robotics and au-
tonomous vehicles, inherently require continuous action
spaces. For instance, controlling the movement of a robotic
arm or regulating the steering and acceleration of a self-driving
car necessitate precise and continuous actions. The complexity
of these tasks underscores the need for efficient and effective
deep RL methodologies capable of handling continuous action
spaces.

Instead of modeling the state-action Q-value function,
model-free continuous control via reinforcement learning di-
rectly optimizes a policy function which maps states to prob-
ability distributions over continuous action .

The complexity of a policy learned by reinforcement learn-
ing (RL) algorithms is inherently bounded by the complexity

of the reward function. Consequently, significant efforts have
been devoted to crafting intricate reward functions that can
guide RL agents towards sophisticated behaviors.In contrast,
humans and other animals appear to develop complex behav-
iors through a hierarchical process, wherein an initially simple
reward function focused on fundamental drives such as pain
avoidance and pleasure seeking serves as the foundation for a
layered structure of dispositions.

Each level in this hierarchy is oriented towards satisfying
the preceding levels, ultimately referencing the base reward
function.

The mechanisms underlying this process remain unclear.
However, if we could induce artificial agents to learn hier-
archical reward functions, it would enable the specification
of simple base reward functions, allowing the algorithm to
autonomously develop complex goals. A hierarchical reward
function would confer upon the agent the capacity to pursue
intricate objectives. The hierarchical structure of human needs
has been extensively studied, yielding frameworks such as
Maslow’s Hierarchy of Needs. This hierarchy progresses from
fundamental, essential needs to more abstract and complex
requirements, including self-actualization.

This paper presents a novel approach to inducing hier-
archical reward structures in artificial agents. Our method
involves introducing a secondary rewarding agent that parallels
the traditional agent, receiving identical state inputs. The
rewarding agent features a continuous action output layer,
wherein the outputs serve as signals rather than control inputs.

We propose an equation that integrates these signals, yield-
ing a reward signal that is used to reinforce the traditional
agent. This framework is designed to elicit a hierarchical
organization of needs within the traditional agent, promoting
more effective and efficient learning.

Our approach offers two primary benefits: enhanced stability
throughout the training process and improved accuracy in the
learned policy.



II. BACKGROUND

A. Markov decision process

We formulate our model of continuous control reinforce-
ment within the framework of a finite Markov Decision
Process (MDP). An MDP is defined by the tuple: M =
(S, A, sg,r) where S denotes the state space A denotes the
action space so € S denotes the initial state r(s,a) : S x A
denotes the reward function, which assigns a scalar value to
each state-action pair.At each time step t, the agent selects
an action a;41 according to a policyr : S — A, which
can be either stochastic or deterministic.A stochastic policy
is defined as a probability distribution over actions given a
state m(a | s) : S — P(A) where P(A) denotes the set
of probability distributions over A.A deterministic policy can
be obtained by taking the expected value of the stochastic
policy m(s) = Ear(a | s)[a].The objective of the agent is to
maximize its future expected reward: max WE[Z;ISO r(st, at)]-

B. Policy Gradient Methods

Policy gradient methods are a type of reinforcement learning
algorithm that learns to optimize the policy directly, rather
than learning the value function. The policy gradient theorem
provides the foundation for policy gradient methods. It states
that the gradient of the expected cumulative reward with
respect to the policy parameters can be computed as:

Vo (19) = Er7ig[Y1_o Vo log m0(as | s¢) Qe (¢, ay)]

where J(my) is the expected cumulative reward 7y is the
policy parameterized by 07 is a trajectory sampled from the
policy s; and a, are the state and action at time ¢ Q70(s, a;)
is the action-value function 76 log w0(a; | s¢) is the gradient
of the log-probability of the action.

1) Actor-Critic Methods: Actor-critic methods are a type
of policy gradient method that uses an actor to represent the
policy and a critic to estimate the value function. The actor
and critic are updated simultaneously using the policy gradient
theorem. In this work we used a PPO implementation based
of an actor critic network. The actor update rule is :

0 +—— 0+ ozE,M;e[UtT:O v Ologmh(a; | s¢)(Qro(st,ar) —
Viry (5¢))]

where Vy,(s¢) is the state-value function.
The critic update rule being:
W 4 W BBy [, (Quo (5, 81) = Vi (50)) VeV, (52)]

where ws is the critic’s parameter and Jis the learning rate.

2) Proximal Policy Optimization: We implement a policy
gradient method using a truncated version of the generalized
advantage estimator (GAE). The GAE is computed as:

Ay =60+ (YN0t + oo e+ (N5 (1)

where

6t =T¢ =+ ’}/V(St+1) — V(St), (2)

The policy is run for T' timesteps, with 7' less than the
episode size. We use the standard notation for the discount
factor v and GAE parameter A. To perform a policy update,
each of N parallel actors collects 7' timesteps of data. We then
construct the surrogate loss on these N'T" timesteps of data and
optimize it using the ADAM algorithm with a learning rate a.
We use mini-batches of size m < NT for K epochs.

We use a combined loss function that includes the policy
surrogate, value function error term, and entropy term:

LtCLIP+VF+S
(0) = Ei [LEMP(6) — eiLYT(6) + exSTmo)(51)]

where S denotes the entropy bonus, L;VF' is the value
function squared-error loss, and c¢; and ¢y are coefficients for
the value function loss and entropy term, respectively.

C. Hierarchical Reward Functions

We design a hierarchical reward function that induces a
hierarchy of dispositions. The reward function is defined as:

r=Rxri+ R

where R is the global reward at time step ¢ and r is a single
scalar value derived from the sole output of the rewarding
agent. This equation sets up a two-stage hierarchy, where the
actions associated with optimizing r; are followed in such a
way that they simultaneously optimize R and hence 7.

III. EXPERIMENTS

This section presents the results of our experimental eval-
uation of the proposed hierarchical reward function on a
continuous control problem from the OpenAl Gym suite: the
Pendulum-v1 environment with a low-dimensional state space.

The architecture of our experimental setup for the
Pendulum-v1 environment consisted of a neural network with
a final layer outputting a 1-dimensional real-valued vector. Our
implementation of the Proximal Policy Optimization (PPO)
algorithm was based on a publicly available GitHub repository.



For each environment, we trained five models using different
random seeds for a fixed total number of time steps. Following
completion of training, each model was evaluated over 100
consecutive episodes to assess its performance.

The performance of each model was evaluated using the
cumulative reward obtained over the 100 evaluation episodes.
This metric provides a comprehensive assessment of the
model’s ability to maximize the reward function while adapt-
ing to the environment’s dynamics.

A. Pendulum-vl

The Pendulum-v0 environment is a well-established contin-
uous control task from the OpenAl Gym suite. The primary
objective of this task is to stabilize a pendulum by applying a
torque, effectively balancing the pole in an upright position.

The Pendulum-vO environment is characterized by: An
unbounded, 3-dimensional observation space A 1-dimensional
action space, where actions represent the torque applied to the
pendulum Bounded actions within the interval [—2, 2].

£
A

The agent follows an actor-critic framework. The actor
mg(a|s) consists of a neural network made of 3 fully-connected
layers of 64 units each, with tanh activation functions. The
output layer has 1 linear neuron. The critic Vj, (s) does not
share layers with the actor, but has an equivalent architecture
of 3 hidden layers, and one output neuron representing the
value function.

B. Reward agent

The reward agent follows an actor-critic framework. The
actor mp(a|s) consists of a neural network made of 5 fully-
connected layers of 64 units each, with tanh activation func-
tions. The output layer has 6 linear neuron. This is because we
wanted to set up a 6 level heirarchy.The equation we used was
of the form of the equation we presented earlier but evolved
to include a hierarchy of 6 steps. It took the following form.

r=Rx(rl«(r2x*(r3x(rdx*(rb
x16 +75)+rd)+r3)+r2)+rl)+ R

As you can see the equation is a rewrite of the earlier
equation, with a replacement of terms.

IV. RESULTS AND DISCUSSION

A. Pendulum-vl

For the Pendulum-vl environment, we observe that our
method learnt faster, with greater stability and higher rewards
than the PPO method without our adjustments.See FIG 2.

. /—/

10k 20k 30k 40k 50k 60k 70k 80k a0k 100k

In blue is our algorithm vs black, the established method
-Average rewards over a 10-episode window for the Pendulum
task.

Additionally ,in another run, we were able to beat the state
of the art with the TLA model after adapting the github code to
include our reward function.The previous state of the art was
held by the vanilla version of the TLA algorithm.The results
obtained by it were -154 reward points while ours achieved a
higher score of -125.Below is a comparison of the two methods
results.

Mean Rewards: -125.82181779185366
STD Rewards: 18.34442386313291
mean Repetitions: ©.8673

Mean actions: 288.8

Mean decisions: 38.6

Mean jerk: 8.5361446738243163
RepetitionsXk: 88.73%

Mean slow actions: 34.8

Mean fast actions: 5.52



Mean Rewards: -154.91541574934872
STD Rewards: 21.966949159992797
mean Repetitions: 8.78325

Mean actions: 2688.8

Mean decisions: 62.31

Mean jerk: ©.622791588386427
Repetitionsi: 78.325%

Mean slow actions: 34.8

Mean fast actions: 34.86

V. FUTURE WORK

In our initial approach, we assumed a linear reward function,
where scalar values are prioritized and each level is multiplied
by the level above, with an additional term. However, this
simplistic model may not accurately capture the complexities
of real-world systems.

A more comprehensive approach would involve using a
graph to model the reward dynamics of the system. In this
framework nodes at the same depth would be summed, rather
than multiplied, to capture the cumulative effects of different
factors and nodes above would be multiplied to represent the
hierarchical relationships between different components.This
graph-based approach would enable a more nuanced and
accurate representation of the reward function.

To implement this graph-based reward modeling, we pro-
pose a reward critic architecture that takes the state of the
agent as input and outputs a graph representing the reward
dynamics. We would then trace each leaf node up to the root,
collecting values in an array to form a line-based partial reward
function for the traditional agent and sum the rewards over all
leaves to obtain the final reward.

To further enhance the reward critic, we can modify it to
take into account the actions of the traditional agent, in addi-
tion to the state. This would enable the reward critic to evaluate
both states and actions, providing a more comprehensive
assessment of the agent’s behavior.By exploring these graph-
based reward modeling and reward critic architectures, we can
develop more sophisticated and accurate reward functions that
capture the complexities of real-world systems.

VI. CONCLUSIONS

In this study, we conducted a comprehensive evaluation
of the effectiveness of hierarchical reward functions in rein-
forcement learning. Our results demonstrate that agents trained
with hierarchical reward functions exhibit faster convergence,
improved stability, and higher final rewards compared to
agents implementing standard Proximal Policy Optimization
(PPO) algorithms.

A comparative analysis of the performance of agents trained
with hierarchical reward functions and standard PPO algo-
rithms reveals significant advantages of the former approach.
Specifically: Agents trained with hierarchical reward functions
exhibit faster convergence rates, achieving optimal perfor-
mance in fewer iterations .The stability of agents trained
with hierarchical reward functions is improved, with reduced
variance in performance across different trials and the final
rewards obtained by agents trained with hierarchical reward
functions are consistently higher than those achieved by agents
implementing standard PPO algorithms.

Our results suggest that the proposed method of implement-
ing hierarchical reward functions is effective for simple cases.
To further establish the scalability and generalization of this
approach, we plan to extend our experiments to more complex
environments with intricate dynamics.

We propose to develop more complex graph-based hier-
archical reward functions to capture nuanced relationships
between different components. This will enable the creation of
more sophisticated reward functions that can effectively guide
the learning process in complex environments.

A key advantage of the proposed hierarchical reward func-
tion approach is the potential for component reuse and transfer
learning. By fostering the reuse of components learned early
on in the development process, we can accelerate the learning
process and improve the overall performance of the agent.

The proposed hierarchical reward function approach has
significant implications for complex goal formation and navi-
gation in real-world environments. By emulating the hierarchy
of needs exhibited by humans, we can create agents that are
capable of navigating complex environments and achieving
sophisticated goals.

Future work will focus on extending the proposed hierarchi-
cal reward function approach to more complex environments
and developing more sophisticated graph-based reward func-
tions.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski et
al., “Human-level control through deep reinforcement learning,” nature,
vol. 518, no. 7540, pp. 529-533, 2015.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A.
Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the
game of go without human knowledge,” nature, vol. 550, no. 7676, pp.
354-359, 2017.

[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436444, 2015.

[4] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning. PMLR, 2015, pp. 1889-1897.

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.



[6]

[7]

[8]

[10]

(11]
[12]
[13]
[14]

[15]

[16]

[17]
[18]

[19]

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D.
Silver, and K. Kavukcuoglu, “Asynchronous methods for deep reinforce-
ment learning,” in International conference on machine learning. PMLR,
2016, pp. 1928-1937.

Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,
and N. de Freitas, “Sample efficient actor-critic with experience replay,”
arXiv preprint arXiv:1611.01224, 2016.

P.-W. Chou, D. Maturana, and S. Scherer, “Improving stochastic policy
gradients in continuous control with deep reinforcement learning using
the beta distribution,” in International conference on machine learning.
PMLR, 2017, pp. 834-843.

R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for Reinforcement learning with function approxima-
Tion,” in Advances in neural information processing systems, 2000, pp.
1057-1063.

J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “Highdi-
mensional continuous control using generalized advantage estimation,”
arXiv preprint arXiv:1506.02438, 2015.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J.
Tang, and W. Zaremba, “Openai gym,” 2016.

I. Kostrikov, “Pytorch implementations of reinforcement learning algo-
rithms,” https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail, 2018.
D. Ha and J. Schmidhuber, “Recurrent world models facilitate policy
evolution,” 2018.

P. Rodrigues and S. Vieira, “Optimizing agent training with deep
learning on a self-driving reinforcement learning environment,” in 2020
IEEE Symposium Series on Computational Intelligence (SSCI). IEEE,
2020, pp. 745-752.

S. Risi and K. O. Stanley, “Deep neuroevolution of recurrent and
discrete world models,” in Proceedings of the Genetic and Evolutionary
Computation Conference, 2019, pp. 456-462.

A. Gaier and D. Ha, “Weight agnostic neural networks,” arXiv preprint
arXiv:1906.04358, 2019.

R. Jena, C. Liu, and K. Sycara, “Augmenting gail with bc for sample
efficient imitation learning,” arXiv preprint arXiv:2001.07798, 2020
Optimizing Attention and Cognitive Control Costs Using Temporally-
Layered Architectures- Devdhar Patel, Terrence Sejnowski, Hava Siegel-
mann



