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The most popular approach of understanding the cosmic evolution is Einstein’s General Rela-
tivity (GR). GR is the classical gateway to obtain the dynamics of the cosmic fluid and it can
at best describe the macroscopic evolution of the Universe. In this work, we have accomplished
an alternative tool to examine the microscopic dynamics of the cosmic fluid particles via quantum
field theory (QFT). We have proposed a cosmic fluid model with complex scalar field Lagrangian
corresponding to the modified Klein-Gordon equation (KG equation) of the scalar field in FLRW
space-time. Following this Lagrangian, the cosmic fluid system has been quantized under certain
restrictions on the parameters. This restrictions are used to determine the cosmic evolution pattern
in the macroscopic level.
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The mechanism behind the origin and evolution of
the Universe is still an unsolved topic for the cos-
mologists. Although General relativity (GR) is the
most widely accepted framework in the perspective
of the cosmology, yet it has some serious theoretical
issues [1–4]. GR is a completely classical tool and,
hence it should not be applied in the case of very
small length scales during the cosmic origin[5]. There-
fore some alternative quantum models can be formu-
lated to handle such situations. In some previous
works[6–8], S.Maity along with different collaborators
attempted to obtain the cosmic evolution pattern from
the microscopic dynamics of the cosmic fluid. Canoni-
cal Quantization of the different modified cosmic fluid
models has been prescribed and various aspects have
been explored. In this letter we are demonstrating
another such alternative model to obtain the cosmic
evolution pattern from the quantum field dynamics of
the cosmic fluid.
The Klein-Gordon (KG) equation of a real scalar

Boson cosmic fluid system in the curved space-time is
given by (

∇µ∇µ +m2
)
ϕ(X). = 0 (1)

For flat FLRW space-time, KG equation leads to the
following.

ϕ̈+ 3Hϕ̇−∇′2ϕ+m2ϕ = 0. (2)

H = ȧ
a , the Hubble parameter. ∇⃗′ = 1

a∇⃗, the gradient
operator in the comoving frame. a is the scale factor
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of the Universe. The term 3Hϕ̇ causes the dissipation
of energy from the real scalar field similar to a damped
oscillator.

Universe as an open quantum system :

In this work, we propose a pair of KG equations of
a two - component scalar field (complex scalar field)
such that one dissipates energy from the system while
another gains energy .

ϕ̈†0 + 3Hϕ̇†0 −∇′2ϕ†0 +m2ϕ†0 = −3

2
Ḣϕ†0 (3)

ϕ̈0 − 3Hϕ̇0 −∇′2ϕ0 +m2ϕ0 =
3

2
Ḣϕ0. (4)

The net dissipation of the fields is given by 3H(ϕ̇0 −
ϕ̇†0)− 3

2Ḣ(ϕ†0−ϕ0) = 2i[3Him(ϕ̇0)− 3
2Ḣim(ϕ0)]. The

net real dissipation is 0. Hence, in classical argument,
the Universe is an isolated system. However, it is still
an open quantum system [9–11] with an imaginary
dissipation of the fields.

The equivalent Lagrangian of the cosmic fluid in
Minkowski space-time and its canonical

quantization:

This pair of KG equations can be obtained from a
canonical Lagrangian density as

L = ∂µϕ
†
+∂

µϕ− −
(
m2 − 9

4
H2

)
ϕ†+ϕ− (5)

under Minkowski space-time. Here ϕ± =
ϕ0 exp

(
± 3

2

∫
Hdt

)
. Notably the equations (3) and (4)

can be written as (□2 + (m2 − 9
4H

2))ϕ± = 0 where

□2 ≡ ∂µ∂µ in the Minkowski space-time. The key
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feature in this proposition is that the signature of the
gravity has been included in the modified Lagrangian.
The modified Lagrangian in the comoving Minkowski

space-time (t,−ax,−ay,−az) describes the KG equa-
tion identical to that of the general Lagrangian in the
FLRW metric.

TABLE I. Dynamics of the scalar fields in Minkowski and FLRW metric

Real scalar field Complex scalar field

Nature of the
oscillation of the

scalar field

Minkowski L0 = 1
2
∂µϕ0∂

µϕ0 − 1
2
m2

0ϕ
2
0, L0 = ∂µϕ

†
0∂

µϕ0 −m2ϕ†
0ϕ0, . Free oscillator

(□2 +m2)ϕ0 = 0 (□2 +m2)ϕ†
0 = 0,(□2 +m2)ϕ0 = 0

ϕ̈0 −∇2ϕ0 +m2ϕ0 = 0

ϕ̈†
0 −∇2ϕ†

0 +m2ϕ†
0 = 0,

ϕ̈0 −∇2ϕ0 +m2ϕ0 = 0

FLRW L = 1
2
∇µϕ∇µϕ− 1

2
m2ϕ2 L = ∇µϕ

†∇µϕ−m2ϕ†ϕ Damped oscillator

(
∇µ∇µ +m2

)
ϕ = 0

(
∇µ∇µ +m2

)
ϕ† =

0,
(
∇µ∇µ +m2

)
ϕ = 0

ϕ̈† + 3Hϕ̇−∇′2ϕ+m2ϕ = 0

ϕ̈† + 3Hϕ̇† −∇′2ϕ† +m2ϕ† =

0, ϕ̈+ 3Hϕ̇−∇′2ϕ+m2ϕ = 0

TABLE II. Modification of the KG equation and the corresponding modified Lagrangian

Modified KG equation of ϕ†
0 Modified KG equation of ϕ0

Effective Lagrangian for the modified
KG equations

ϕ̈†
0 + 3Hϕ̇†

0 −∇′2ϕ†
0 +m2ϕ†

0 = − 3
2
ϕ†
0Ḣ, ϕ̈0 − 3Hϕ̇0 −∇′2ϕ0 +m2ϕ0 = + 3

2
ϕ̇0Ḣ, . L = ∂µϕ

†
+∂

µϕ− −
(
m2 − 9

4
H2

)
ϕ†
+ϕ−

Dissipation of energy with an in
homogeneous term − 3

2
Ḣϕ†

0

Gain of energy with an in homogeneous
term + 3

2
Ḣϕ0 . ϕ± = ϕ0 exp

(
± 3

2

∫
Hdt

)

The solutions of the KG equations can be written as

ϕ̂0(X) =
1

(2π)
3
2

∫
1√
2ω
d3k′

[
â(k⃗′)e−i

∫
KdX + b̂†(k⃗′)e+i

∫
KdX

]
, (6)

ϕ̂†0(X) =
1

(2π)
3
2

∫
1√
2ω
d3k′

[
â†(k⃗′)e+i

∫
KdX + b̂(k⃗′)e−i

∫
KdX

]
. (7)
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Here
∫
KdX =

∫
ω(t)dt− k⃗.x⃗, ω(t) =

√
|ω2

0 − 9
4H

2|,

ω0 =
√
k′2 +m2 . One may introduce x⃗ →

x⃗′ = ax⃗, k⃗ → k⃗′ = k⃗
a . x⃗′, k⃗′ are the comoving

space-coordinate and momenta respectively. Eventu-

ally k⃗.x⃗ = k⃗′.x⃗′.

The corresponding momenta density of the fields
of the Lagrangian density (5) will be π+ = ∂L

∂ϕ̇†
+

=

ϕ̇− and π− = ∂L
∂ϕ̇−

= ϕ̇†+. Hence the corresponding

Hamiltonian h =
∫
d3x′

[
π+ϕ̇

†
+ + π−ϕ̇− − L

]
can be

found in the form

h =

∫
d3x′

[
ϕ̇†+ϕ̇− + ∇⃗ϕ†+.∇⃗ϕ− + (m2 − 9

4
H2)ϕ†+ϕ−

]
(9)

Now putting the value of ϕ†+ and ϕ− in the expression
of h, one finds the explicit form of the normal ordered
Hamiltonian as,

: ĥ :=
∫
d3k′ 1

2ω

[(
2ω2 − 9

4H
2 − 3iHω cosh

(
3
2

∫
Hdt

))
â†
k⃗′ âk⃗′ +

(
2ω2 − 9

4H
2 + 3iHω cosh

(
3
2

∫
Hdt

))
b̂†
k⃗′ b̂k⃗′

]
+i 32H

∫
d3k′ sinh

(
3
2

∫
Hdt

) (
â†
k⃗′ b̂

†
−k⃗′e

2i
∫
ωdt − âk⃗′ b̂−k⃗′e

−2i
∫
ωdt

)
.

The above Hamiltonian is not hermitian. It can be
expressed as the sum of a hermitian and an anti-

hermitian Hamiltonian. : ĥ := ĥ+ + ĥ− with

ĥ+ =
∫

1
2ωd

3k′
[(
2ω2 − 9

4H
2
) (
â†
k⃗′ âk⃗′ + b̂†

k⃗′ b̂k⃗′

)
+ i3Hω sinh

(
3
2

∫
Hdt

) (
â†
k⃗′ b̂

†
−k⃗′e

2i
∫
ωdt − âk⃗′ b̂−k⃗′e

−2i
∫
ωdt

)]
and ĥ− = i 32H cosh

(
3
2

∫
Hdt

) ∫
d3k′

[
b̂†
k⃗′ b̂k⃗′ − â†

k⃗′ âk⃗′

]
.

This outcome is expected as the cosmic fluid system
is taken as an open quantum system[11].

At the static phase (H = 0), the anti-hermitian part
vanishes and the hermitian part leads to the quantised
complex scalar field Hamiltonian in the Minkowski

space-time. But at the other cosmic evolutionary
phase (when H ̸= 0), the anti-hermitian part become
significant. Although the anti-hermitian part is quan-
tised at any arbitrary condition, yet the hermitian
part can be quantised only under certain conditions
on the parameters involved in the cosmic evolution.

For hermitian part, one may introduce a Bogoliubov transformation

Ôk⃗′ = αâk⃗′ exp
(
−i

∫
ωdt

)
+ β∗b̂†

−k⃗′ exp
(
+i

∫
ωdt

)
and Ô†

k⃗′ = α∗â†
k⃗′ exp

(
+i

∫
ωdt

)
+ βb̂−k⃗′ exp

(
−i

∫
ωdt

)
.

Hence the hermitian part of the Hamiltonian can be written in the quantised form as,

ĥ+ =

∫
d3k′ ω Ô†

k⃗′Ôk⃗′ , (10)

with |α|2 = −|β|2 =
2ω2− 9

4H
2

2ω2 , α∗β∗ = i3H exp
(
2i

∫
ωdt

)
sinh

(
3
2

∫
Hdt

)
αβ =

−i3H exp
(
−2i

∫
ωdt

)
sinh

(
3
2

∫
Hdt

)
. The new creation and annihilation operator Ô†

k⃗′ , Ôk⃗′ follow the

canonical transformation [Ô, Ô†] = 1. This condition essentially implies |α|2 − |β|2 = 1.

The cosmic evolution scenario :

Accumulating the conditions for a valid quantisa-
tion, one obtains

|α|2 = −|β|2 =
1

2
(11)

ω = ±3

2
H (12)

sinh

(
3

2

∫
Hdt

)
=

1

6H
. (13)

The vacuum expectation value of the number operator

⟨0| Ô†
k⃗′Ôk⃗′ |0⟩ = |α|2 = 1

2 i.e. nonzero.
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The equation (13) yields the solution for Hubble parameter and scale factor as,

H(t) = ±1

6

1√
[ 14 (t− t0) +

√
1 + 1

36H2
0
]2 − 1

, (14)

a(t) = a0


∣∣∣∣∣(t− t0 +

2
3H0

√
1 + 36H2

0

)
+

√(
t− t0 +

2
3H0

√
1 + 36H2

0

)2

− 16

∣∣∣∣∣∣∣∣ 2
3H0

√
1 + 36H2

0 +
√

4
9H2

0
(1 + 36H2

0 )− 16
∣∣∣


± 2

3

. (15)

Here t0 is an arbitrary reference epoch of time with
H(t0) = H0 and a(t0) = a0. Here we take t0 as a

free parameter and choose t0 = 2
3H0

√
1 + 36H2

0 for
simplicity of the expressions. Thus the cosmological
solutions in the expanding Universe lead to

H(t) =
1

6

1√
( t4 )

2 − 1
(16)

and

a(t) = a0

 ∣∣t+√
t2 − 16

∣∣∣∣∣t0 +√
t20 − 16

∣∣∣
 2

3

(17)

Eventually at the limit t >> 4, the scenario ap-
proaches to the Einstein de -Sitter Universe[12] (a ∼
t
2
3 , H ∼ 1

t ).

Duality invariant cosmic evolution and the
complete scenario :

We have described an expanding Universe with

scale factor a(t) =

[
|t+√

t2−16|
4

] 2
3

, Hubble param-

eter H(t) = 1
6

1√
( t
4 )

2−1
with the choice a0 =[ ∣∣∣t0+√t20−16

∣∣∣
4

] 2
3

. While expansion (H > 0), the en-

ergy eigen value of the Hamiltonian over a single

particle state is ω(H) = + 3
2H i.e. ĥ+ |H > 0⟩ =

+ 3
2H |H > 0⟩.
Besides we can observe that transformation of the

system under t → −t yields a
t→−t−−−→ 1

a , H
t→−t−−−→

−H and the energy eigen value ω(H) = − 3
2H .

ĥ+ |H < 0⟩ = − 3
2H |H < 0⟩. Hence this present

model exhibits a duality invariant cosmic evolution-
ary scenario.
On the other hand, this cosmic evolution pattern is

not valid within the time epoch |t| ≤ 4. During this
period (−4 ≤ t ≤ +4), the Universe consists of a free

complex scalar field under flat minkowski space-time
with H = 0. But nearing |t| > 4, a global Noether
U(1) symmetry breaks up and the Universe changes
the evolution pattern as the above mentioned form
(equations (16),(17)).

Symmetry breaking at the termination of the
static phase :

The proposed Lagrangian (5) is the canonical part
of the whole Lagrangian density of the cosmic fluid.
Considering a self interaction of the scalar field, one
may take a complete Lagrangian as,

Ltotal = L+ ξH4(ϕ†+ϕ−)
2, (18)

ξ is a free parameter. The effective potential of this

Lagrangian is V (ϕ†+, ϕ−, H) = (m2 − 9
4H

2)ϕ†+ϕ− −
ξH4(ϕ†+ϕ−)

2.
Such self interaction can be termed as the gravita-

tion mediated self interaction.
However this Lagrangian holds a global U(1) sym-

metry under the transformation ϕ− → eiqϕ−, ϕ
†
+ →

e−iqϕ†+ . q is independent of the space-time.

At the static phase, ϕ†+ = ϕ†0, ϕ− = ϕ0 and the
cosmic fluid system behaves as a free canonical La-
grangian system. In this case, the ground state of
the system is found at ϕ0 = 0 and the U(1) sym-
metry holds for any arbitrary condition. we have
proposed earlier that this static phase (H = 0) pre-
vails during the time epoch |t| ≤ 4. But beyond
that epoch, the self interacting term grows (when
H ̸= 0) and the ground state of the system is shifted

to ϕ†+ϕ− = |ϕ0|2 =
m2− 9

4H
2

2ξH4 = J 2(say). Hence the

vacuum state field is given by ψ0 = J eil with l, an-
other real constant. Now near the ground state, the

nature of the field ϕ0 = 1√
2
(J +∆J )e

i 1√
2J

(l+∆l)
, ∆J

and ∆l are the small variations of J and l near the
vacuum state. Hence the potential near the ground
state takes the form
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(a)

(b)

FIG. 1. A duality invariant complete evolution of the Uni-
verse : (a)Variation of Scale factor : a with time t (top )
(b) Variation of Hubble parameter : Hwith t (bottom) .

V = V0 +
1

2
(4ξH4J 2)(∆J )2 +

√
2ξH4J (∆J )3 +

ξH4

4
(∆J )4, (19)

V0 is a constant.

Evidently the global U(1) symmetry of the Lagrangian
breaks spontaneously and it yields the masses of the

fields as m∆J =
√
2(m2 − 9

4H
2) and m∆i = 0. The

masslessness of ∆i is obvious because there is still a
hidden symmetry under ∆i√

2J → ∆i√
2J + γ with γ ,a

constant. Such massless Bosons are similar to Nambu-
Goldstone Bosons[13]. The other massive Bossons
∆J contributes in the canonical quantization process
of the Hamiltonian.
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The role of the anti-hermitian part of the
Hamiltonian :

For an open quantum system, the energy eigen value
is not stable due to dissipation. This effect is con-
tained within the expression of the Hamiltonian of
an open system. The complete Hamiltonian of the

system consists of a hermitian part ĥ+ which deliv-
ers the instantaneous energy eigen value and an anti-

hermitian part ĥ− which may be a signature of the dis-
sipation of energy from the system. For a well defined
representation, both operators can be simultaneously

measurable. Hence, ĥ+ and ĥ− have simultaneous

eigen states i.e. [ĥ+, ĥ−] = 0. In our model, this con-

dition holds if âk⃗′ b̂−k⃗′e
−2i

∫
ωdt be an anti-hermitian

quantity. Allowing this condition, we can introduce

a hermitian operator[11] Γ̂ = iĥ− which will serve as

a decay or dissipation rate operator with [ĥ+, Γ̂] = 0.
Hence one can rewrite the total Hamiltonian as

: ĥ := ĥ+ − iΓ̂. (20)

Discussion :

In this letter, we have proposed a modification of
the KG equations of a complex scalar field system
in the flat FLRW metric. Here we have considered
some dissipation in both the components of the scalar
field. Notably the net real dissipation is zero although
there is still some imaginary dissipation. For such
an open quantum system, we have obtained an effec-
tive Lagrangian which can be carried out under flat
Minkowski space-time in a co-moving frame and cor-
responds to the modified KG equations in FLRWmet-
ric. Thus we can study the microscopic dynamics of
the cosmic fluid in a comoving frame via the quantum
field theory instead of following any gravity theory
(including GR).

However in this model, the amplitudes of the scalar
fields become time varying. one becomes damped os-
cillator, another appears to be time growing. This
change is one of the effects of the gravity on the
scalar field. The corresponding Hamiltonian consists
of a hermitian and an anti-hermitian terms. The
canonical quantization of the hermitian part deter-
mines the cosmic evolution pattern. On the other
hand, the anti-hermitian part represents the dissipa-
tion of energy from or to the system. At the static
phase, there is no dissipation but under a sponta-
neous symmetry breaking mechanism the static phase
terminates and the dissipating term grows. The sym-
metry breaking process occurs due to a self interac-
tion of the field mediated by gravity. This is an-
other effect of the gravity on the scalar field system.
There is also a correspondence between the dissipa-
tion of energy and the Noether charge of this sys-
tem. The Noether charge corresponding to the U(1)

symmetry is q̂ =
∫
d3k′

[
â†
k⃗′ âk⃗′ − b̂†

k⃗′ b̂k⃗′

]
and hence

Γ̂ = 3
2H cosh

(
3
2

∫
Hdt

)
q̂.

In a nutshell, we conclude that the dynamics of
a complex scalar field in curved space-time (here in
FLRW) can be studied in a co-moving Minkowski met-
ric via quantum field theory. The role of gravity in
such scenario is to produce dissipation in the scalar
field system. Another role of gravity is in the sym-
metry breaking mechanism which occurs due to a self
interaction of the scalar field. The authors are hopeful
that this letter may open an alternative way of GR to
study the evolution of the Universe in the small scale.
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