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                                                                                  ABSTRACT 

In control system synthesis, it is interesting to use orthogonal basis functions such as various polynomials 

and series. 

However, there are still no examples of applying spectral methods to closed-loop control systems and poor 

applications to nonlinear plants. 

In this paper, we proposed a control method of allowing the state of the plant to pass through the desired 

points that the user suggests subjectively in case  a model of the control plant is given and the boundary 

values at a given time point are given. 

In other words, to generate the optimal response curve of the Volza problem, we used the standard 

Chebyshev pseudo-spectral (PS) method, which deals with the state and control of the plant with Chebyshev 

polynomial approximation, based on which the optimization problem is considered to be a nonlinear 

programming problem. At that time we obtained the desired control quantity u with the polynomial 

coefficients and thus implemented the control. 

In this paper, we demonstrated the practical applicability of this method by showing not only examples of 

linear plants but also applications of nonlinear plants. 

 

keywords: Chebyshev polynomials , pseudo-spectral, Response curve optimization, Optimal control 

problem. 

 

                                                                           1. Introduction 

In this paper we propose an easier method for solving the constrained optimization problem using 

Chebyshev polynomial approximation than the preceding method. 

To date, a number of papers related to Chebyshev polynomial approximation of optimal control problems 

have been presented [1,3, 5,8]. 

In 2012, a paper presented the penalized local quadratic interpolation approach as a method for solving 

constrained optimization problems using Legendre approximation and the pseudo-spectral integral-

differential matrix [6~10]. 

Since then, several papers have discussed the approximation process using pseudo-spectral integral-

differential matrices, which are difficult to consider and difficult to understand due to the use of complex 

formulas [11~16]. 

Hence, we have considered a simpler approach from a practical point of view. 

We chose the Clenshaw-Curtis quadrature method as an easy-to-realistic way to satisfy the accuracy in the 

integral calculation and used Chebyshev pseudo-spectral method whereby the accuracy of the boundary 

points in the approximation is very high. 
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process. 

As an example of the application of this paper, we have compared the results with those presented in the 

previous non-linear plants like airplanes. 

We believe that the approach presented here has a simple and easy-to-implement merit compared to the 

previous methods, and thus is an advance in Legendre approximation theory. 

Here is the outline of this paper. 

In Section 2, we set the optimal control problem with linear terminal constraints. 

In Section 3, we consider the Chebyshev pseudo-spectral method and the formulation of Chebyshev 

approximation for nonlinear optimal control problem. 

Section 4 presents numerical calculations and applications. 

 

                                                                            2. Problem Statement 

Direct numerical solutions are widely used in practical optimization problems to achieve better 

performance of the system and to realize computer-based programming. 

The pseudo-spectral (PS) method has the meaning that the designer places control and state variables 

across a given point, in this paper, based on the Chebyshev method, transforms the nonlinear optimal control 

problem into an algebraic system represented by Chebyshev coefficients, and describes the method of 

simultaneous determination of the linear equations consisting of Chebyshev coefficients by applying 

Pontryagin's maximum principle. 

 

Suppose there is the following nonlinear system: 
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Here, the initial and final conditions are 
hxhxxx  )(,)0( 0
 and )(tx   and )(tu   are states and control vectors of 

order 1n , 1q . 

))(,( tutH is assumed to be smooth or non-smooth continuous functions in Uh ],0[ . 

There exists the state satisfying (1) and a two-point boundary value condition hxhxxx  )(,)0( 0  and 

control variable pair ))(),(( tutx . 

The problem is to obtain an optimal control )(tu  that minimizes the following objective function, 

satisfying Eq.(1) in ht 0 . 
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The ))(,( txtf  in (2) is approximated by )()())(,( txtctxtf T . 
In addition, assuming a sufficiently smooth function, the following inequality state constraints can be 

considered. 
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                                                    3. Chebyshev pseudo-spectral method 



 

The pseudo-spectral method uses orthogonal functions as basic functions to approximate any functions 

including periodicity and non-periodicity. 

In this method, the weight of Chebyshev polynomials is great at the end of the interval and small in the 

middle, so the accuracy of the boundary points in the approximation is very high. 

This is suitable for response curve optimization that allows us to pass a given boundary point. 

Polynomial interpolation of various functions based on Chebyshev polynomials provides approximations 

with almost consistent accuracy in the interval [-1, 1] and its convergence has also been demonstrated in 

previous works [3]. 

   

 

                                                      3.1 Differential Equation Matrix 

The first derivative of the control variable u and the state variable x in formula (1) is approximated as 

follows. 
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, where )(tTk
 is the Chebyshev polynomial and 

kX ,
kU  are the expansion coefficients when the state 

variables and control variables are evolved. 

As mentioned above, all differential equations are approximated by Chebyshev polynomials. 

 

                                                          3.2 Integral scheme 
For the calculation of integral part, quadrature method is used. 

What is important in quadrature is how to weigh the point under consideration and its point. 

We used the Clenshaw-Curtis quadrature method, which is expressed as follows. 
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, where p is a given function for variable t and k  is the weight at each point. 

When N is even, the weight is as follows. 
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When N is odd, the weight is as follows. 
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                                                    3.3 Nonlinear Planning Issues 

Following the above procedure, the response curve optimization problem is transformed into the following 

nonlinear programming problem. 

The objective function is as follows. 

                                                                 dttutxtfJ
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Requirements to be met are as follows. 
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                                                   4.  Numerical Solution Example 

All calculations in the following numerical solutions were performed by the MATLAB program. 

We also used the function “ fmincon”  of MATLAB optimization toolbox with SQP algorithm for 

nonlinear programming solutions. 

Example 1: As a nonlinear plant, the following plant is selected. 
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                                                   (16) 

Let y(0)=0, y(0.8)=0.8, y(0.9)=0.9, y(1)=1 be the points that the response curve should pass. 

Then the objective function is chosen as follows. 
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For this subject, the simulation results by the above algorithm are as follows. 
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When performing the above simulation, we consider the process of sine waves, where the sine function is 

treated by a polynomial approximation using Fourier series expansion. 

                                                  

                                                   Fig.1   Output with and without controller                                           

                                                    (Red: Output without controller, Blue: Output with controller) 

Fig.2 shows the error of the sine polynomial approximation with the order up to 4. The higher the order of 

the approximation gets, the higher the accuracy of the approximation gets, and the lower the error gets. 

However, in such cases, the computational cost is high and the computation time is long, so the 

computational power and real-time of the computer must be taken into account. 

 

                                                     
 

                                            Fig 2.   Error of sine polynomial approximation of order 4     

                                                     (red-Real Trajectory , blue-Approximate Trajectories) 

  



 

Example 2: Let the following plant be given. 
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As above, we assume that the objective and objective functions are given and the response curve that the 

output of the object must follow is given as follows. 
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The simulation results are as follows. 
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                                                                    Fig 3.  Output response curve 

                          

                                      (Red- Desired response curve, Blue-Response curve with controller 

                                            Pink- Response curve without controller) 

As shown in the figure, it can be seen that the output response of the object follows exactly the desired 

response curve. 

 

Example 3: Consider the problem of trajectory of an airplane. The vehicle's motion model is as follows. 
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The parameters in this equation are as follows. 
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The objective function is then defined as follows to minimize the distance traveled by the aircraft. 
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We consider the problem of finding the law of change of angle   such that the spacecraft passes 

   0,0, 00 yx  and    10,1000, ff yx . 

 

Solving the above problem, the result is as follows. 

                                             22233648 708.1073.1678.197.12.301t   etetetete                     (25) 

 

                         
                                

                                                          Fig 4.   Orbit inclination angle curve  

 

Fig 4. compares the trajectory of the spacecraft obtained by the proposed method with the trajectory 

obtained by the previous optimization method. 



                             
 

                                              

 
                       

 

  Fig 5. Trajectories of the spacecraft obtained by the proposed method 

 and trajectories obtained by previous optimization method. 

    (red-previous optimization method , blue- proposed method) 

 

 

 

                                                                                   5. Conclusions 

In this paper, we described a method for solving optimal control problems with constraint and boundary 

conditions as nonlinear programming problems using approximations by Chebyshev polynomials. 

The method presented in this paper overcomes the drawback that if the object is complicated for nonlinear 

objects, the controller must be complicated by complexity, and approximates the object with known 

polynomials, making the modularization of controller design feasible and construction of controllers simple 

even if the object is complex. 

In particular, it can be simply applied to control if the uncertainty has been or analytical solution is difficult.  
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