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ABSTRACT 
In satellite mission, attitude control system plays an important role, and precise attitude control 

presents high attitude determination requirements. The TRIAD (TRIaxial Attitude Determination) 

method, which is widely used for satellite attitude determination, requires two sensor signals. 

However, when the reference vector direction to be observed in these sensors is close, the attitude 

determination error increases. Thus, in this case, attitude estimation is required, and the state 

estimator of nonlinear objects is widely used for extended Kalman and unscented Kalman filters. In 

this paper, we propose a method for determining satellite attitude using an unscented Kalman filter 

with high estimation accuracy compared to an extended Kalman filter. To reduce the amount of 

computation in the unscented Kalman filter and to ensure the real-time of the estimation, we use the 

unscented Kalman filtering method with a new sigma point selection. Compared with the 

traditional unscented Kalman filter, it ensures better real-time and higher accuracy. 

Keywords: sigma points, Kalman filter, state estimation, magnetometer, satellite attitude 

1. Introduction 

Satellite attitude determination is mainly done by static methods such as TRIAD and 

QUEST (QUaternion ESTimation), and dynamic methods using state estimators [1,2]. 

Static attitude determination methods have the advantage of high real-time and non-

divergent, but more than two sensors must be used, and the reliability of attitude 

determination can be reduced if the sensor signal is insufficient in various operating 

environments or the direction of the reference vector is close. 

Therefore, the extended Kalman filtering methods for estimating satellite attitude in a 

dynamic way have been investigated. Extended Kalman filter is a theory that extends linear 

Kalman filtering theory to nonlinear objects, which linearizes nonlinear objects near the 

operating point [3,4]. Therefore, there is necessarily a linearization error in the system 

model, which affects the state estimation accuracy of the system [4,5]. The extended 

Kalman filter estimates the state with a first degree of accuracy and, importantly, it makes 

the estimation possible to vary greatly depending on how the initial value is set. 

To overcome these drawbacks and improve the estimation accuracy and reliability, the 

unscented Kalman filtering theory has been developed [3,6-9]. 
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The unscented Kalman filter can estimate nonlinear objects with three degrees of 

accuracy by computing the predicted and covariance of the next time in a statistical manner 

without linearizing nonlinear systems [10-13]. 

In general, the unscented Kalman filter uses two times or more sigma points of the state 

number[14-18]. And to compute these sigma points, matrix square root operations are 

performed, and this matrix square root computation is often computationally expensive, 

and moreover, the regularity of the matrix is destroyed and the operation cannot be done 

[19-21]. 

Many applications as satellite attitude sensors are solar sensors and magnetometers [1]. 

The solar sensor has a relatively high measurement accuracy compared to the 

magnetometer, but it is not available in the shaded area. In many cases, attitude 

determination using solar sensors and magnetometers simultaneously is required, but in 

this case, attitude determination using magnetometer alone is necessary [6]. 

Therefore, we propose a new method to improve the reliability of low-cost and sigma 

point selection and apply it to satellite attitude estimation using magnetometer signals only 

to verify its effectiveness. 

This paper is organized as follows. 

First, a new sigma point selection method is introduced. Then, a method for estimating 

satellite attitude using magnetometer signals only is proposed. Finally, the simulation 

results of the proposed method are presented.  

 

2. Selecting method of sigma points 

This section describes the selecting method of sigma points using the solution of 

simultaneous equation. 

Let the sigma points set as 
iχ whose expected value is 1

ˆ
kx

 
and co-variance matrix is 

1kP
. 

Assume that the co-variance matrix 1kP is  
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By the permutation of jkijij xa ,1
ˆ

   , the Eq.(2.1) is given below. 
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Theorem 1: Given the mean and covariance, n2  sigma points are selected as follows 
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We use the following Lemmas to prove theorem 1. 

Lemma 1.1: If 2n , that is, in the case of 2 order system, using the solution  
ija  of 

the simultaneous equation 
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and equation 
ijjkij ax   ,1

ˆ , we obtain the sigma points set  
ij . 

Proof: Consider covariance 1kP of time 1k  as 
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Where, 2112 PP 
.
 

From Eq.(2.1) and the fact that the covariance matrix is symmetric, the following 3 

simultaneous equations can be obtained. 
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In this simultaneous equation, the number of equations is three, and the number of the 

variables is four, so the one of them is assumed to be free. Consider the free variable as 

021 a , 
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Then, obtain 
ija and replace ijjkij ax   ,1

ˆ  to get  
ij . 
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Lemma 1.2: If 3n , that is, in the case of 3 order system, using the solution  
ija  of the 

simultaneous equation 
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and equation 
ijjkij ax   ,1

ˆ , we obtain the sigma points set  
ij . 

Proof: Consider covariance 1kP of time 1k  as 

 


















333231

232221

131211

1

PPP

PPP

PPP

kP  

Where, 
jiij PP  . Using Eq.(2.1) and the covariance matrix is symmetric, the following 

simultaneous equations are obtained 
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In this simultaneous equation, the number of equation is six, and the variable is nine, so 

we assume that three of them are free. 

If the free variable is 0323121  aaa ,  
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Then, obtain 
ija and replace ijjkij ax   ,1

ˆ  to obtain  
ij . 

Lemma 1.4: If 4n , that is, in the case of 4 order system, using the solution  
ija  of the 

simultaneous equation 
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and equation 
ijjkij ax   ,1

ˆ , we obtain the sigma points set  
ij . 

We can prove theorem 1 in the same way as the above for a certain natural number from 

lemma 1.1, 1.2 and 1.3. 

Theorem 2: The amount of calculation for selecting sigma points using the solution of 

the simultaneous equations is smaller than that using the matrix square roots. 

Proof: The previous UKF gets the sigma points set using matrix square root of 

covariance matrix, i.e. Cholesky decomposition. 

First, Cholesky decomposition is given as the following equation through the LDL 

decomposition of the covariance matrix. 

  TTT
LDDLLDDLLDLP                             (2.9) 

Here, the calculation amount is given as follows. 

In LDL decomposition, the calculation is 6/3n times of multiplication, addition, and 

subtraction (n times of division). Then, calculate square root of diagonal matrix D and 

multiply on the both sides – it results in n times of square root, 22n  times of 

multiplication. In total, there are 3/3n times of addition and subtraction, nn
n

 2
3

2
6  

times of multiplication and division, and n times of square root calculation. 

Then, the calculation amount to get solution of simultaneous equation is as follows. 

There is no addition, nnn  23 6/ times of subtraction, and 6/6/ 23 nnn   times of 

multiplications and division, n  times of square root. 

The amount of calculation for selecting sigma points using the matrix square roots and 

the solution of simultaneous equations is shown in Table 1. 

 

Table 1: Comparison of the amount of calculation for selecting sigma points  

using the matrix square roots and the solution of simultaneous equations 

Method 
Addition 

Total 
Multiplication 

Total 
Square 
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As you can see in Table 1, the amount of calculation of the new method for selecting 

sigma points is smaller than that of the previous methods. 

Theorem 3: In general, in the simultaneous equation, the number of variables shouldn’t be 

smaller than the number of equations, so the number of sigma points should be at least 
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At this point, the amount of calculation is given in Table 2. 

 

Table 2: The amount of calculation for selecting sigma points using the solution of 

minimum simultaneous equations 
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3. A method to determine the satellite attitude using only magnetometer signals  

3.1. Satellite attitude equation of motion 

The satellite attitude equation of motion consists of satellite attitude dynamic equation 

and kinematic equation. 

The satellite attitude dynamic equation describes the relation between the torque and the 

angular velocity of the satellite and is expressed as follows. 
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Where J -inertial matrix of the satellite 

            ω - angular velocity vector in ECI frame. 
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Satellite kinematic equation describes the relation between the attitude kinematic 

parameters and is expressed as 
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Combining Eq.(3.1) and Eq.(3.2), the state vector is taken to be  T][ ωqX  
 ][ 4321 zyxqqqq  and the satellite attitude equation of motion is given as follows. 
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3.2. Measurement equation of magnetometer 

To determine the satellite attitude using magnetometer, the intensity of earth magnetic 

field is measured and its equation is expressed below. 
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Where bB - intensity vector of earth magnetic field for satellite body frame. 

iB - intensity vector of earth magnetic field for inertial frame. (It can be   
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3.1. Design of UKF 

To design the discrete Kalman Filter, the continuous satellite attitude model should be 

converted to the discrete model. 

The discrete equation of motion of satellite attitude is given as follows. [Appendix A] 
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kw - Noise vector of the system. 

The covariance of kw  is kQ and is given as follows. 
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Then, the measurement equation of three-axis magnetometer is expressed as follows. 

 kkikibkkk vBqRvxhy  ,)(),(                                            (3.6) 

Where, ki,B  is the intensity vector of earth magnetic field for the ECI frame at a given 

position of the orbit at time k and kv is known as the covariance matrix of the measurement 

noise. 
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As a result, nonlinear discrete state equation and observation equation of Eq.(3.5) and 

Eq.(3.6) can be expressed as follows. 

) ,(1 kkk wxfx                                                      (3.8) 

) ,( kkk vxhy                                                        (3.9) 

We can estimate the attitude of satellite by applying UKF algorithm (Appendix B) into 

the discrete nonlinear system using Eq.(3.8) and Eq.(3.9). 

 

4. Simulation examples 

In this paper, the parameters are given as follows. 

First, the satellite orbit elements are as follows. 
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Semi-major axis: km1.7214a  

Eccentricity: 3108.7 e  

Inclination: 4.97i  

Right ascension of ascending node: 96.324  

Argument of perigee 74.155  

Time of passing perigee: 10h 0m 0s, Sep 1, 2022. 

Second, the satellite attitude parameter - inertial matrix is given as follows. 

2mkg

1200
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0010



















J  

Third, IGRF-2020 is used as the earth magnetic field model. 

Fourth, the intensity noise of earth magnetic field is assumed to be in the range of 

nT50 . 

Fifth, sampling period is 1s and the initial value of UKF is set as follows. 
T]0001000[)0( x  

])2)^180/pi5.0(2)^180/pi5.0(2)^180/pi5.0(10101010([diag)0( 1111  
P  

Finally, attitude estimation procedure of the UKF using matrix square root is compared 

with that of the UKF using the solution of simultaneous equation and its result is shown 

in figure 1 and 2. 

 
Figure1. Estimation process of attitude quaternion in 0-5000s 
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Figure2. Estimation process of attitude angular velocity in 0-5000s 

To analyse the estimation speed, the following are the estimation result of the attitude 

quaternion and attitude angular velocity in 0-500s. 

 
Figure3. Estimation process of attitude quaternion in 0-500s 
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Figure4.Estimation process of attitude angular velocity in 0-500s 

To analyse the accuracy, the following estimation results of the attitude quaternion and 

attitude angular velocity in 450-500s are shown below. 

 
Figure5.Estimation process of attitude quaternion in 450-500s 
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Figure6. Estimation process of attitude angular velocity in 450-500s 

As we can be see from the simulation results, this new UKF method is proved to be very 

effective not only in calculation amount but also in time and accuracy of estimation. 

 

5. Conclusion 

This paper proposed a new method for selecting sigma points without calculating matrix 

square roots.  

The amount of calculation for selecting sigma points proposed in this paper is smaller 

than that using the matrix square root. This method is proved to be efficient in the 

estimation of satellite attitude using magnetometer. This can be efficiently used in the 

attitude estimation of low-orbit and low cost satellite because of high accuracy and 

reliability. 

 

Appendix A: Discretization of satellite attitude equation of motion 

First, consider discretization of satellite attitude dynamic equation Eq.(3.1). 

The discretization of dynamic equation can be performed by the definition of derived 

function-
t

ttt ibib

t
ib








)()(
lim

0

ωω
ω  

])]([[ 11

1 kkkkk t TJJωωJωω


                           (A.1) 

Then, consider discretization of the satellite attitude kinematic equation Eq.(3.2). 

Kinematic equation can be expressed as follows. 
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From the formula of linear differential equation, the solution to Eq.(A.2) is: 
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The exponential function of the equation can be expanded into a Taylor series. 
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Now, we substitute the function matrix )(ωΩ ,  then the following relation is given. 
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Substituting Eq.(A.5) into Eq.(A.4) , the following result is obtained: 
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Eq (A.3) is sampled with a sampling period tt  . 
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Combining Eq.(A.1) and Eq.(A.7), the discrete equation of satellite attitude is as follows. 
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Appendix B: UKF algorithm using the new method for selecting sigma points 

Step1: Initialize the state and covariance matrix. 

(0)(0),ˆ
00 PPxx                                                   (B.1) 

Step2: Calculate the sigma points using the state estimation value and covariance matrix 

of the previous time. Select the sigma points using theorem 1. 
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Step3: Substituting the given sigma points into the nonlinear discrete plant model, get the 

another sigma points that determine the posterior statistic. Then, using them, calculate 

posterior mean value and covariance matrix. 
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Step4: The calculated sigma points disseminate through the nonlinear measured model 

and using these disseminated sigma points, calculate the measuring prediction value and 

covariance matrix. 
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



n

i

ikkk
n

2

0

,1/
2

1
ˆ yy                                              (B.5) 





























n

i

T

kikkkkikkyx

n

i

T

kikkkikky

n

n
2

1

,1/1/,1/

2

1

,1/,1/

)ˆ)(ˆ(
2

1

)ˆ)(ˆ(
2

1

yyxχP

yyyyP

                  (B.6) 

Step 5: Using the calculated covariance matrix, calculate the Kalman gain and update the 

state variable and covariance matrix. 
1 yyxk PPK                                                (B.7) 
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Step6: Change 1:  kk  and repeat the steps from 2 to 5. 
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