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Abstract

A continuation of the Born Reciprocal Relativity Theory (BRRT) pro-
gram in phase space shows that a natural temperature-dependence of
mass occurs after recurring to the Fulling-Davies-Unruh effect. The tem-
perature dependence of the mass m(T ) resemblances the energy-scale de-
pendence of mass and other physical parameters in the renormalization
(group) program of QFT. It is found in a special case that the effective
photon mass is no longer zero, which may have far reaching consequences
in the resolution of the dark matter problem. The Fulling-Davies-Unruh
effect in a D = 1 + 1-dim spacetime is analyzed entirely from the per-
spective of BRRT, and we explain how it may be interpreted in terms of
a linear superposition of an infinite number of states resulting from the
action of the group U(1, 1) on the Lorentz non-invariant vacuum |0̃⟩ of
the relativistic oscillator studied by Bars [8].

1 Novel findings in Born Reciprocal Relativity
Theory

Most of the work devoted to Quantum Gravity has been focused on the geometry
of spacetime rather than phase space per se. The first indication that phase
space should play a role in Quantum Gravity was raised by [1]. The principle
behind Born’s reciprocal relativity theory [3], [5] was based on the idea proposed
long ago by [1] that coordinates and momenta should be unified on the same
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footing. Consequently, if there is a limiting speed (temporal derivative of the
position coordinates) in Nature there should be a maximal force as well, since
force is the temporal derivative of the momentum. The principle of maximal
acceleration was advocated earlier on by [2]. A maximal speed limit (speed
of light) must be accompanied with a maximal proper force (which is also
compatible with a maximal and minimal length duality) [5].

We explored in [5] some novel consequences of Born’s reciprocal Relativity
theory in flat phase-space and generalized the theory to the curved spacetime
scenario. We provided, in particular, some specific results resulting from Born’s
reciprocal Relativity and which are not present in Special Relativity. These are
: momentum-dependent time delay in the emission and detection of photons;
relativity of chronology; energy-dependent notion of locality; superluminal be-
havior; relative rotation of photon trajectories due to the aberration of light;
invariance of areas-cells in phase-space and modified dispersion relations.

The generalized velocity and force (acceleration) boosts (rotations) transfor-
mations of the flat 8D Phase space coordinates , where Xi, T, E, P i; i = 1, 2, 3
are c -valued (classical) variables which are all boosted (rotated) into each-other,
were given by [3] based on the group U(1, 3) and which is the Born version of the
Lorentz group SO(1, 3). The U(1, 3) = SU(1, 3)× U(1) group transformations
leave invariant the symplectic 2-form Ω = − dT ∧dE+δijdX

i∧dP j ; i, j = 1, 2, 3
and also the following Born-Green line interval in the flat 8D phase-space

(dω)2 = c2(dT )2 − (dX)2 − (dY )2 − (dZ)2 +

1

b2
(
(dE)2 − c2(dPx)

2 − c2(dPy)
2 − c2(dPz)

2
)

(1.1)

The maximal proper force is set to be given by b. The symplectic group is
relevant because U(1, 3) = Sp(8, R) ∩O(2, 6); U(3, 1) = Sp(8, R) ∩O(6, 2), and
U(2, 2) = Sp(8, R) ∩O(4, 4).

The generators Zab of the U(1, 3) algebra can be decomposed into the Lorentz
sub-algebra generators L[ab] and the ”shear”-like generators M(ab) as

Zab ≡
1

2
(M(ab) + L[ab]) ⇒ Lab ≡ L[ab] = (Zab − Zba); Mab ≡ M(ab) = (Zab + Zba),

(1.2)
the “shear”-like generators M(ab) and the Lorentz generators L[ab] are Hermi-
tian. The explicit commutation relations of the Mab, Lab generators is given
by

[Lab, Lcd] = i (ηbcLad − ηacLbd − ηbdLac + ηadLbc). (1.3a)

[Mab, Mcd] = − i (ηbcLad + ηacLbd + ηbdLac + ηadLbc). (1.3b)

[Lab, Mcd] = i (ηbcMad − ηacMbd + ηbdMac − ηadMbc). (1.3c)

Therefore, given Zab =
1
2 (Mab+Lab), Zcd = 1

2 (Mcd+Lcd) after straightforward
algebra it leads to the U(1, 3) commutators

[ Zab, Zcd ] = − i ( ηbc Zad − ηad Zcb ). (1.3d)
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as expected.
The commutators of the Lorentz boosts generators Lab and Xc, Pc are of the

form

[Lab, Xc] = i ( ηbc Xa − ηac Xb ); [Lab, Pc] = i ( ηbc Pa − ηac Pb ) (1.4)

The Hermitian Mab generators are the “reciprocal” boosts/rotation transforma-
tions which exchange X for P , in addition to boosting (rotating) those variables,
and one ends up with the commutators of Mab and Xc, Pc given by

[Mab,
Xc

λl
] = − i

λp
( ηbc Pa + ηac Pb ); [Mab,

Pc

λp
] = − i

λl
( ηbc Xa + ηac Xb )

(1.5)
where λl, λp are suitable length and momentum scales, for instance the Compton
wavelength and momentum associated to a particle of proper mass m.

The rotations, velocity and force (acceleration) boosts leaving invariant the
symplectic 2-form and the line interval in the 8D phase-space are rather elabo-
rate. In four spacetime dimensions the velocity-boosts generators along the xi

spatial directions (i = 1, 2, 3) are given by Ki = L0i. The force-boots (acceler-
ation boosts) generators along the xi spatial directions are given by Ni = M0i.

The rotation generators are Ji = ϵjki Ljk. The shear generators are Mij ,M00.
In general, given the U(1, 3) generator Z = 1

2θ
ABZAB the transformations of

X = (T,Xi);P = (E,Pi) are given by

X′ = e
1
2 θ

ABZAB X e−
1
2 θ

ABZAB , P′ = e
1
2 θ

ABZAB P e−
1
2 θ

ABZAB (1.6)

leading to

X′ = X + [Z, X] +
1

2!
[Z, [Z, X]] +

1

3!
[Z, [Z, [Z, X]]] + . . . (1.7)

and a similar relation for P′ in terms of the nested commutators.
By recurring to the commutation relations (1.5) and the nested commutators

in eq-(1.7), one finds that the group transformations of the 8-dim phase space
coordinates involving both velocity and force boosts are given by [3] (page 18)

T ′ = T coshξ + (
ξiv Xi

c
+

ξia Pi

b
)
sinhξ

ξ
(1.8a)

E′ = E coshξ + (−b ξia Xi + c ξiv Pi)
sinhξ

ξ
(1.8b)

X ′i = Xi + (coshξ −1)
(ξiv ξjv + ξia ξja) Xj

ξ2
+ (c ξiv T − ξia E

b
)
sinhξ

ξ
(1.8c)
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P ′i = P i + (coshξ −1)
(ξiv ξjv + ξia ξja) Pj

ξ2
+ (b ξia T +

ξiv E

c
)
sinhξ

ξ
(1.8d)

where ξiv are the velocity-boost rapidity parameters along the ei directions; ξ
i
a

are the force (acceleration) boost rapidity parameters along the ei directions,
i = 1, 2, 3, and ξ is the net effective rapidity parameter of the primed-reference
frame given by

ξ =
√

(ξiv)
2 + (ξia)

2, i = 1, 2, 3 (1.9)

A straightforward way of understanding how one obtains the above transfor-
mations of eqs-(1.8) can be found by simply recalling the most general (Lorentz)
velocity boosts transformations of the spacetime coordinates after splitting the
vectors X⃗, P⃗ into the parallel X⃗∥ and transverse X⃗⊥ components with respect to

the velocity boost parameter ξ⃗ = (ξ1, ξ2, ξ3); ξ =
√
(ξ1)2 + (ξ2)2 + (ξ3)2. Such

decomposition is of the form

X⃗∥ = (X⃗ · ξ⃗) ξ⃗

ξ2
, X⃗⊥ = X⃗ − X⃗∥ = X⃗ − (X⃗ · ξ⃗) ξ⃗

ξ2
(1.10)

P⃗∥ = (P⃗ · ξ⃗) ξ⃗

ξ2
, P⃗⊥ = P⃗ − P⃗∥ = P⃗ − (P⃗ · ξ⃗) ξ⃗

ξ2
(1.11)

so that the Lorentz transformations of X⃗, P⃗ can be written in vector form as

X⃗ ′ =

(
X⃗ − (X⃗ · ξ⃗) ξ⃗

ξ2

)
+ (X⃗ · ξ⃗) ξ⃗

ξ2
coshξ +

c T sinhξ

ξ
ξ⃗ (1.12)

P⃗ ′ =

(
P⃗ − (P⃗ · ξ⃗) ξ⃗

ξ2

)
+ (P⃗ · ξ⃗) ξ⃗

ξ2
coshξ +

E sinhξ

c ξ
ξ⃗ (1.13)

where the modulus ξ = |ξ⃗| of the velocity boost parameters, and the modulus
|v⃗| of the velocity v⃗ of the moving frame of reference are related by tanh(ξ) =

β =

√
v2
1+v2

2+v2
3

c . One then finds that the transverse directions to the velocity
remain unaffected by the Lorentz transformations, while the parallel directions
are. One can see by simple inspection that by setting the force-boost parameters
to zero ξia = 0 in eqs-(1.8), one recovers the standard Lorentz transformations.

These transformations can be simplified drastically when the velocity and
force (acceleration) boosts are both parallel to the x-direction and leave the
transverse directions Y, Z, Py, Pz intact. There is now a subgroup U(1, 1) =
SU(1, 1)× U(1) ⊂ U(1, 3) which leaves invariant the following line interval

(dω)2 = c2(dT )2 − (dX)2 +
(dE)2 − c2(dP )2

b2
=
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(dτ)2
(

1 +
(dE/dτ)2 − c2(dP/dτ)2

b2

)
= (dτ)2

(
1 − F 2

F 2
max

)
, P = Px

(1.14)
where one has factored out the proper time infinitesimal (dτ)2 = c2dT 2 − dX2

in (1.2). The proper force interval (dE/dτ)2 − c2(dP/dτ)2 = −F 2 < 0 is
“spacelike” when the proper velocity interval c2(dT/dτ)2 − (dX/dτ)2 > 0 is
timelike. The analog of the Lorentz relativistic factor in eq-(1.14) involves the
ratios of two proper forces.

One may set the maximal proper-force acting on a fundamental particle of
Planck mass to be given by Fmax = b ≡ mP c

2/LP , wheremP is the Planck mass
and LP is the postulated minimal Planck length. Invoking a minimal/maximal
length duality one can also set b = MUc

2/RH , where RH is the Hubble scale
and MU is the observable mass of the universe. Equating both expressions for
b leads to MU/mP = RH/LP ∼ 1060. The value of b may also be interpreted
as the maximal string tension.

The U(1, 1) group transformations involving the velocity and force boosts
along the X direction of the phase-space coordinates X,T, P,E which leave the
interval (1.14) invariant are obtained directly from eqs-(1.8) in this special case
as follows

T ′ = T coshξ + (
ξv X

c
+

ξa P

b
)
sinhξ

ξ
(1.15a)

E′ = E coshξ + (−b ξa X + c ξvP )
sinhξ

ξ
(1.15b)

X ′ = X coshξ + (c ξv T − ξa E

b
)
sinhξ

ξ
(1.15c)

P ′ = P coshξ + (
ξv E

c
+ b ξa T )

sinhξ

ξ
(1.15db)

ξv is the velocity-boost rapidity parameter; ξa is the force (acceleration) boost
rapidity parameter, and ξ is the net effective rapidity parameter of the primed-
reference frame. These parameters ξa, ξv, ξ are defined respectively in terms of
the velocity v = dX/dT and force f = dP/dT (related to acceleration) as

tanh(ξv) =
v

c
; tanh(ξa) =

F

Fmax
, ξ =

√
(ξv)2 + (ξa)2 (1.16)

It is straight-forward to verify that the transformations (1.15) leave invariant
the phase space interval c2(dT )2−(dX)2+((dE)2−c2(dP )2)/b2 but do not leave
separately invariant the proper time interval (dτ)2 = c2dT 2 − dX2, nor the
interval in energy-momentum space 1

b2 [(dE)2 − (dP )2]. Only the combination

(dω)2 = (dτ)2
(

1 − F 2

F 2
max

)
(1.17)
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is truly left invariant under force (acceleration) boosts. They also leave invariant
the symplectic 2-form (phase space areas) Ω = − dT ∧ dE + dX ∧ dP .

A physical picture of how velocity-boosts and force-boosts transformations
operate on reference frames is best captured if one focus on the full phase-
space configuration. Since dτ ̸= dω, one has Fµ = dpµ

dτ ;F =
√
|FµFµ|, and

Fµ = dpµ

dω ;F =
√
|FµFµ|, such that

F =
F√

1− F 2/b2
=

m a√
1− F 2/b2

= m(F ) a, m(F ) =
m√

1− F 2/b2

(1.18)
which is the BRRT version of the Special Relativistic relation

P =
m v√

1− v2/c2
= m(v) v, m(v) =

m√
1− v2/c2

(1.19)

depicting the velocity-dependence of the mass.
From eq-(1.18) one learns that when F = b ⇒ m(F = b) = ∞, when the

proper (rest) mass m ̸= 0. Hence, a natural UV cutoff at F = b appears. In
case of a photon whose proper mass is zero, one may recall the (right) Rindler
wedge corresponding to a family of accelerated observers describing hyperbolic
trajectories in D = 1 + 1 spacetime given by t = 1

asinh(aτ);x = 1
acosh(aτ) in

c = 1 units. a is the proper acceleration and τ is the proper time. In the limit
a → ∞, the hyperbolas degenerate into the light-cone lines (Rindler horizon)
corresponding to the null trajectories of a massless particle (like a photon).
Consequently, one may choose to have the following double scaling limit

m → 0, a → ∞, m a → F0 ≤ b (1.19)

and which corresponds to reaching the null-lines of the Rindler horizon. One
then learns that m(F0 < b) = 0 and the effective mass remains zero. However, if
F0 = b, then m(F0) =

m√
1−F 2

0 /b
2
= 0

0 is undetermined when m = 0 and F0 = b.

In this limiting case, when ma → F0 = b, the effective (photon) mass is no
longer zero and resembles the introduction of an infrared cutoff. This may have
far reaching consequences in the resolution of the dark matter problem. See [5]
for further applications of BRRT in Cosmology.

The Fulling-Davies-Unruh effect [12] states that a uniformly accelerating ob-
server experiences the vacuum state of a quantum field in Minkowski spacetime
as a mixed state in thermodynamic equilibrium. Such mixed state is comprised
of a thermal bath (warm gas) of Rindler particles whose temperature is propor-
tional to the acceleration. By invoking the expression of Unruh’s temperature
in terms of the acceleration T = a

2π one finds that the Planck temperature
TP = mP corresponds to an acceleration aP = 2πmP

1 so that the ratio
T
TP

= a
aP

= a
2πmP

. Hence, if one sets the maximal proper force to be given

by Fmax = b = 2πm2
P (instead of m2

P ), then one arrives at

1Reinstating the units one has 2πmP c3/h̄ = aP = 2πc2/LP furnishing a huge acceleration
associated with the Planck temperature
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F

b
=

m a

2πm2
P

=
m

mP

a

2πmP
=

m

mP

a

aP
=

m

mP

T

TP
(1.20)

and in doing so, one may rewrite m(F ) in terms of the temperature m(T ) as
follows

m(F ) =
m√

1− F 2/b2
⇒ m(T ) =

m√
1 − m2

m2
P

T 2/T 2
P

(1.21)

and one arrives at an interesting relationship between mass and temperature.
The reader might object invoking the Fulling-Davies-Unruh effect (which re-
quires the use of Quantum Field Theory) in obtaining eq-(1.21) and which
involves a classical theory. However one may notice that the h̄ factors cancel
out (decouple) in the ratio a/aP . This can be verified by simply reinstating the
dimensionful constants h̄ = c = kB = 1 that were set to unity in the ratio

a

aP
=

(h̄a/2πkBc)

(h̄aP /2πkBc)
=

T

TP
(1.22)

The Hawking radiation of black holes was derived based on treating the gravi-
tational field as classical field while the matter was treated quantum mechani-
cally. The temperature-dependence of the mass m(T ) bears some resemblance
to the energy-scale dependence of the mass and other physical parameters in
the Renormalization program of QFT, like the difference between the bare and
renormalized mass.

2 The Relativistic Oscillator and the Fulling-
Davies-Unruh effect

Bars [8] has rigorously shown that the familiar Fock space commonly used to
describe the relativistic harmonic oscillator, for example as part of string theory,
is insufficient to describe all the states of the relativistic oscillator. He found
that there are three different vacua leading to three disconnected Fock sectors,
all constructed with the same creation-annihilation operators. These have dif-
ferent spacetime geometric properties as well as different algebraic symmetry
properties or different quantum numbers. Two of these Fock spaces include
negative norm ghosts (as in string theory) while the third one is completely free
of ghosts. He discussed a gauge symmetry in a worldline theory approach that
supplies appropriate constraints to remove all the ghosts from all Fock sectors
of the single oscillator. The resulting ghost free quantum spectrum in D = d+1
dimensions is then classified in unitary representations of the Lorentz group
SO(d,1). Moreover all states of the single oscillator put together make up a
single infinite dimensional unitary representation of a hidden global symmetry
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SU(d, 1), whose Casimir eigenvalues are computed. One of the purpose of this
section is to exploit the U(d, 1) symmetry.

As it is customary, Bars [8] began his results by absorbing all the dimen-
sionful parameters, as well as the frequency of the oscillator, by rescaling the
phase space coordinates xµ, pµ, such that the relativistic oscillator eigenvalue
equation (in units h̄ = c = 1) turns out to be

1

2
(−∂µ∂µ + xµx

µ)Ψλ(x
µ) = λ Ψλ(x

µ) (2.1)

One of the key findings in [8] was in understanding that the symmetry properties
of the solutions of eq-(2.1) were based precisely on the U(1, 3) group (U(3, 1)
group depending on the signature). As usual, eq-(2.1) can be recast as an
operator equation QΨλ = λΨλ in terms of Lorentz covariant oscillators

aµ =
1√
2
(xµ + ipµ), āµ =

1√
2
(xµ − ipµ) (2.2)

where the operator Q is

Q =
1

2
(pµp

µ + xµx
µ) = ηµν āµ aν +

d+ 1

2
(2.3)

The hidden symmetry is U(d, 1) with generators : āµaν , and all of these (d+1)2

generators commute with Q.
The author [8] remarked that in a unitary Hilbert space the operators xµ, pµ

are Hermitian; in that case āµ is the Hermitian conjugate of aµ i.e. āµ = a†µ.
A unitary Hilbert space without ghosts (negative norm states) is possible only
if and only if xµ, pµ are hermitian or equivalently if āµ = a†µ. The canonical
commutation relations are

[xµ, pν ] = iηµν , [aµ, āν ] = ηµν = diag (−1, 1, 1, 1) (2.4)

Lorentz covariant solutions based on a vacuum state Ψvac ∼ e−
1
2 (x

µxµ) (that
is a Lorentz invariant Gaussian) have a number of problems, including issues of
infinite norm and negative norm states. Bars [8] explored the spacelike xµx

µ >
0, and the timelike xµx

µ < 0 cases, and assigned the vacuum states |0⟩ ↔
e−

1
2 (x

µxµ); |0′⟩ ↔ e
1
2 (x

µxµ), respectively, to the spacelike and timelike cases.
The relevant vacuum state we shall explore in this work is the unitary Fock

space based on the non-symmetric vacuum (Lorentz non-invariant vacuum) in

D = d + 1 spacetime, Ψvac ∼ e−
1
2 (x

ixi+t2), i = 1, 2, . . . , d. Note that xµxµ ̸=
xixi + t2. This vacuum state was labeled as |0̃⟩ by [8].

The solutions we are interested in are found by separating the spatial vari-
ables from the temporal one as follows

1

2
[ (−∂i∂i + xix

i) − (−∂2
t + t2) ] Ψλ(x

i, t) = λΨλ(x
i, t), i = 1, 2, . . . , d (2.5)

A factorization
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Ψλ(x
i, t) = Ψλx(x

i) Ψλt(t), λ = λx − λt (2.6)

yields the equations for the Euclidean harmonic oscillator in d dimensions and
1 dimension, respectively

1

2
(−∂i∂i + xix

i) Ψλx
(xi) = λx Ψλx

(xi),
1

2
(−∂2

t + t2) Ψλt
(t) = λt Ψλt

(t)

(2.7)
and whose solutions are well known. The possible eigenvalues for Euclidean
harmonic oscillator in d spatial dimensions and 1 temporal dimension are re-
spectively

λx = n1 + n2 + n3 + . . . + nd +
d

2
, λt = n0 +

1

2
, ⇒

λ = λx − λt = n1+n2+n3 + . . . +nd − n0 +
d− 1

2
= N +

d− 1

2
(2.8)

For any given eigenvalue λ = N + d−1
2 , with N = 0,±1,±2,±3, . . . there is an

infinite degeneracy of values n0, n1, n2, n3, . . . , nd

All solutions have the form Ψλ(x
µ) ∼ e−

1
2 (t

2+xix
i)× Hermite polynomials

in the variables xi, t. The wavefunction of an arbitrary excited state of the
d-dimensional Euclidean (isotropic) harmonic oscillator with eigenvalue n + d

2
and SO(d) orbital angular momentum quantum number l, has the form [8]

Ψnl
i1i2...il

(x⃗) = e−x⃗2/2 |x⃗|l Ll−1+d/2
n (x⃗2) Ti1i2...il(

xi

|x⃗|
) (2.9)

where Ti1i2...il(
xi

|x⃗| ) is the symmetric traceless tensor of rank l constructed from

the unit vector x̂i = xi

|x⃗| and which can also be recast in terms of the hyper-

spherical harmonic functions based on the d−1 angles associated with the hyper-

sphere Sd−1. The function L
l−1+d/2
n (x⃗2) is a generalized Laguerre polynomial.

The excitation level n is any positive integer n = 0, 1, 2, 3, . . . while at fixed n
the allowed values of l are l = n, (n− 2), (n− 4), . . . ... (1 or 0) .

The solutions associated with the Lorentz symmetric invariant vacuum |0⟩ ↔
e−

1
2xµx

µ

are of the form

Ψk ∼ e−
1
2x

2

L
d−1
2

k (x2), x2 = xµx
µ > 0 (2.10)

and whose eigenvalue λ is

λ = n1 + n2 + n3 + . . .+ nd − n0 +
d+ 1

2
= 2k +

d+ 1

2
(2.11)

The solutions for the other Lorentz invariant vacuum |0′⟩ are obtained by re-
placing x2 = xµx

µ → −x2 = −xµx
µ and λ → −λ [8].
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The U(1, 1) algebra generators associated to a 4-dim phase corresponding to
a 1+1-dim spacetime, can be realized in terms of the creation and annihilation
operators as follows

Jµν = āµ aν , µ, ν = 0, 1 (2.12)

However there is a subtlety in assigning the creation and annihilation op-
erator for the temporal components : a0 = x0 − ip0 = −x0 − ip0 = −x0 +
∂

∂x0 is an annihilation operator for the Lorentz invariant symmetric vacuum

e−
1
2 [−(x0)2+(xi)2], but it is a creation operator for the Lorentz non-invariant vac-

uum e−
1
2 [(x

0)2+(xi)2]. Consequently, the double creation and double annihilation
operators for the Lorentz non-invariant vacuum in D = 1 + 1 are respectively
given by [8]

J10 = ā1a0, J01 = ā0a1 (2.13)

and such that J01 ̸= J10.
In a D = d + 1 = 1 + 1 spacetime one has λ = n1 − n0 +

d−1
2 = n1 − n0.

In the particular case when n1 = n0 one has λ = 0 and the infinite tower
of states originating from |0̃⟩λ=0 is obtained by successive applications of the
double creation operator J10 = ā1a0 as follows

(Tower)λ=0 =

∞⊕
k=0

(āk1 ak0) |0̃⟩λ=0 (2.14)

There are an infinite number of towers, parametrized by the eigenvalue of λ =
n1 − n0, and with an infinite amount of degeneracy (an infinite number of
states within each tower). This result is consistent with the fact that unitary
irreducible representations of non-compact groups are infinite-dimensional.

Defining the state in the Fock space with n0 = n1 = k as

|k, k⟩ ≡ |n1 = k, n0 = k⟩ =
āk1√
k!

ak0√
k!

|0̃⟩λ=0 (2.15)

one has the following infinite superposition of states belonging to the infinite
tower

|Ψ⟩λ=0 = eθ10J10 |0̃⟩λ=0 = eθ10ā1a0 |0̃⟩λ=0 =

∞∑
k=0

θk10
āk1√
k!

ak0√
k!

|0̃⟩λ=0 =

∞∑
k=0

θk10 |k, k⟩ (2.16)

and which bears some analogy to the construction of coherent states by applying
the displacement operator to the ground state

|z⟩ = D(z)|0⟩ = eza
†−z̄a|0⟩ = e−|z|2/2

∞∑
n=0

zn (a†)n

n!
|0⟩ (2.17)
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with z = x + ip complex; |n⟩ = (a†)n√
n!

|0⟩, and â|z⟩ = z|z⟩. Consequently,

one could have rewritten in the above eq-(2.16) : |Ψ⟩λ=0 = |θ10⟩. Multimode
minimal uncertainty squeezed states based on the Quaplectic group, given by
the semi-direct product of U(1, 3) with the Weyl-Heisenberg group H(1, 3), were
constructed by [6] from the action of the exponential of the Quaplectic algebra
generators on the ground state, in the same vein as displayed in eq-(2.16), and
involving the judicious group parameters multiplying the generators.

The symmetric part M01 = 1
2 (J01 + J10) is the generator of force-boosts

transformations along the x1 direction, and the antisymmetric part L10 =
1
2 (J01 − J10) is the generator of Lorentz boost along x1. When θ10 is chosen
to be complex-valued (as it occurs in the construction of coherent states |z⟩)
then θ10J10 = θ(10)M10 + iθ[10]L10, where θ(10) = ξa is the force-boost parame-
ter, and θ[10] = ξv is the velocity boost parameter. This decomposition results
from breaking the complex-valued θ10 ≡ θ(10) + iθ[10] into a real-symmetric and
imaginary-antisymmetric piece. 2

If the relativistic oscillator is studied from two different frames of reference
(two different observers) given by a fixed frame of reference, and another frame
with a linear uniform acceleration with respect to the first one, the result found
in eq-(1.20)

tanh(ξa = θ(10)) =
F

b
=

m

mp

T

TP
⇒ T = TP

mP

m
tanh(ξa = θ(10)) (2.18)

combined with the fact that one had absorbed all the dimensionful parameters,
as well as the frequency of the oscillator, by rescaling the phase space coordinates
xµ, pµ,

pµ pµ ↔ pµ pµ

m
, xµ xµ ↔ (mω2)xµ xµ, λ ↔ λ ω (2.19)

allows us to identify the massm appearing in eq-(2.18) with the relativistic oscil-
lator proper mass appearing in eq-(2.19)3. One should note once more that the

action of eθ10J10 (with θ10 complex-valued) on |̃0⟩ is tantamount of a combined
velocity and force-boost transformation on the vacuum |0̃⟩λ=0 generating a su-
perposition of an infinite number of states |n1 = k, n0 = k⟩ in a Fock space,
with complex-valued coefficients.

This picture can be contrasted with a warm gas (thermal bath) of Rindler
scalar particles4 of mass m at an equilibrium temperature of
T = TP (

mP

m )tanh(ξa = ξ) and experienced by a uniformly accelerated observer
in Minkowski space whose acceleration is a = 2πT . A Planck relativistic oscil-
lator of mass m = mP yields a temperature of T = TP tanh(ξa = ξ) ≤ TP .
When the force-boost parameter is ξa = ξ = ∞, one ends up with T = TP

making contact with the Thermal Relativity proposal in [14] where the Planck
temperature is postulated as the maximal temperature.

2Velocity boosts with imaginary parameters are equivalent to ordinary rotations, and vice
versa, rotations with imaginary angles are equivalent to velocity boosts

3One may note that m ̸= λω
4Because in D = 1 + 1 the little group is trivial, all the particles are scalars
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More recently, Popov [9] has studied the relativistic oscillator from a Geo-
metric Quantization point of view. He showed that turning on the interaction of
relativistic spinless particles with the vacuum of relativistic quantum mechanics
leads to the replacement of the Klein-Gordon equation with the Klein-Gordon
oscillator equation. In this case, coordinate time becomes an operator and free
relativistic particles go into a virtual state. He also discussed the geometry as-
sociated with classical and quantum Klein-Gordon oscillators, and its relation
to the geometry underlying the description of free particles.

3 Concluding Remarks

A continuation of the Born Reciprocal Relativity Theory (BRRT) program in
phase space showed that a natural temperature-dependence of mass occurs after
recurring to the Fulling-Davies-Unruh effect [12]. The temperature dependence
of the mass m(T ) resemblances the energy-scale dependence of mass and other
physical parameters in the renormalization (group) program of QFT. It was
found in a special case that the effective photon mass is no longer zero, which
may have far reaching consequences in the resolution of the dark matter problem.

The Fulling-Davies-Unruh effect in a D = 1+1-dim spacetime was analyzed
entirely from the perspective of BRRT, and we explained how it may be inter-
preted in terms of a linear superposition of an infinite number of states resulting
from the action of the group U(1, 1) on the Lorentz non-invariant vacuum |0̃⟩
of the relativistic oscillator studied by [8].

It is worth mentioning that a granularity of spacetime within the context
of Born reciprocity and the Schrödinger-Robertson inequality for relativistic
position and momentum operators Xµ, P ν , µ, ν = 0, 1, 2, 3 has been proposed
by [6] and leading to the more generalized uncertainty relation

∆X0 ∆X1 ∆X2 ∆X3 ∆P0 ∆P1 ∆P2 ∆P3 ≥ (
h̄

2
)4 (3.1)

The authors [6], [7] studied the constraint quantization of a worldline system
invariant under Born Reciprocal Relativity. The reciprocal transformations are
not spin-conserving in general. The physical state space is vastly enriched as
compared with the covariant approach, and contains towers of integer spin mas-
sive states, as well as unconventional massless representations, with continuous
Euclidean momentum and arbitrary integer helicity.

The Dirac-Born oscillator as the “square-root” of the relativistic oscillator
for a spinless particle was studied by [10]. For some other aspects based on
maximal proper acceleration rather than maximal proper force see [2], [11]. The
role of quantum groups, non-commutative Lorentzian spacetimes and curved
momentum spaces see [13]. Curved phase space within the context of Finsler
Geometry was studied in [15] and allowed us to find novel avenues to tackle
the cosmological constant problem [15]. A study of Born’s deformed reciprocal
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complex gravitational theory and noncommutative gravity can be found in [17].
The role of maximal acceleration in strings with dynamical Tension and Rindler
worldsheets was analyzed in [16].

To finalize, the study of observers moving in uniform circular motion (be-
sides linear uniform acceleration) deserves careful consideration within the realm
of this work. The problem is more subtle since it requires instantaneous ref-
erence frames where the velocity-boost and force-boosts directions change at
every instant.
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