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Abstract
In this paper, we show that many well-known chaotic maps can be generated by discretizing
the equations of memristor or nonlinear resistor circuits using the Euler method or the central
difference method. These examples show that the dynamics of a wide variety of nonlinear maps,
such as those found in engineering, physics, chemistry, biology, and ecological systems, are closely
related to the discretized memristor or nonlinear resistor circuit equations. Furthermore, the
discretized memristor circuit equations also propose the new modified or simplified version of
the well-known chaotic maps. We also propose the generalized extended memristor with non-
volatility property. To satisfy the non-volatility property, the v−i characteristic of the generalized
extended memristor is defined by two bounded functions, namely the resistive-fuse function and
the saturation function. Using this element, the discretized two-element memristor circuits can
generate any two-dimensional chaotic map. The computer simulations in this paper show that the
discretization of the memristor or nonlinear resistor circuit equations is one of the most promising
methods to find interesting chaotic maps. Furthermore, some of the discretized three-dimensional
circuit equations clearly show the topological structure of the chaotic attractors.
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1 Introduction

It is well known that discretization of the logistic differential equation using the central difference method
produces chaotic behavior for large time steps [1].

In this paper, we first show that many well-known two-dimensional chaotic maps can be obtained by
applying the Euler method to discretize the equation of certain types of memristor circuits. We then
show that any two-dimensional map can be related to the equation of the two-element memristor circuit
with a generalized extended memristor circuit. That is, any two-dimensional map can be transformed into
the equation of the memristor circuit using the Euler method. Furthermore, we show that in order for the

1He continues his research on the nonlinear dynamics of memristors, although he has no affiliation since his retirement.
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generalized extended memristor circuits associated with the chaotic maps to have the non-volatility property,
their v− i characteristic curve must be defined by two bounded functions, namely the resistive-fuse function
and the saturation function.

We also show that the discretized memristor circuit equations suggest the new modified or simplified
version of the well-known chaotic maps. Furthermore, some other interesting two-dimensional chaotic maps
can also be obtained by applying the Euler method to discretize the equations of the Hamiltonian circuits
and the controlled circuits.

Many examples in this paper show that the dynamics of a wide variety of nonlinear maps, such as
those found in engineering, physics, chemistry, biology, and ecological systems, are closely related to the
discretized memristor or nonlinear resistor circuit equations. For example, the following maps are relate
to the circuit equations: Hénon map, 2-D Lorenz map, predator-prey model, two-dimensional logistic map
Chossat-Golubitsky symmetry map, fold map, Lozi map, Tinkerbell map, three-dimensional Hénon map
Gumowski-Mira map, Ikeda map, Peter de Jong map, Kawakami map, logistic map, doubling map, Bernoulli
shift map, Hopalong Map, Helleman map, Gingerbreadman Map, Yamaguti-Ushiki map, and their simplified
or modified maps.

In addition, the memristor and nonlinear resistor circuits, whose discretized equations exhibit chaotic
behavior, usually contain at least one active element. The computer simulations in this paper show that the
discretization of the memristor or nonlinear resistor circuit equations is one of the most promising methods to
find interesting chaotic maps. Furthermore, the chaotic maps of the discretized three-dimensional equations,
such as the discretized Rikitake dynamo system, the discretized Lorenz equation, the discretized Rössler
equation, and the discretized Chua circuit equation, clearly show the topological structures (paper-sheet
models) of the chaotic attractors. That is, they give a different perspective from the one that can be
obtained from the continuous-time trajectories.

Finally, we show that the well-known chaotic maps, such as the two-dimensional Yamaguti-Ushiki map,
modified Chirikov standard map, and four kinds of Kawakami maps, can be obtained from the discretized
Hamiltonian circuit equations. In particular, the discretized Hénon-Heiles equation exhibits very interesting
chaotic behavior.

2 Memristors

The Memristor is a 2-terminal electronic device, which was postulated by Chua [2, 3, 4] and found by Strukov
et al. [5]. An ideal memristor can be described by a constitutive relation between the charge q and the flux
φ,

q = g(φ) or φ = f(q), (1)

where g(·) and f(·) are differentiable scalar-valued functions. Its terminal voltage v and terminal current i
are described by (see Fig. 1)

i = G(φ)v or v = R(q)i, (2)

where

v =
dφ

dt
and i =

dq

dt
, (3)

which represent Faraday’s law of induction and its dual law, respectively. Note that the flux φ(t), the voltage
v(t), the charge q(t), and the current i(t) satisfy the following universal relationships:

φ(t) =

∫ t

−∞
v(τ)dτ and q(t) =

∫ t

−∞
i(τ)dτ. (4)
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The nonlinear functions G(φ) and R(φ), called memductance and memristance, respectively, are defined by

G(φ) ≜
dg(φ)

dφ
, and R(q) ≜

df(q)

dq
. (5)

They represent the slope of the scalar function q = g(φ) and φ = f(q), respectively (called the memristor
constitutive relation).

Thus, the voltage-controlled ideal memristor is defined by Eq. (1) or the state-dependent Ohm’s law and
its associated state equation given by (see Fig. 1)

voltage-controlled ideal memristor

i = G(φ)v,

dφ

dt
= v.

 (6)

Similarly, those for the current-controlled ideal memristor are given by

current-controlled ideal memristor

v = R(q)i,

dq

dt
= i.

 (7)

The classification of the more generalized memristors is shown in Appendix (see also [6, 7]).

Figure 1: Flux-controlled memristor with the terminal current i = G(φ) v (left). Charge-controlled memris-
tor with the terminal voltage v = R(q) i (right). Here v and i are the voltage across and the current through
the ideal memristors, respectively, φ and q are the flux and the charge of the ideal memristors, respectively,
and G(φ) and R(φ) are called the memductance and the memristance, respectively.
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Figure 2: Voltage controlled ideal memristor driven by a voltage source vs(t), where v and i are the voltage
across and the current through the voltage-controlled ideal memristor, respectively.

Let us apply the voltage source vs(t) to the voltage controlled ideal memristor (6) as shown in Fig. 2.
Assume that the output of the voltage source vs(t) is set to zero for t ≥ t0

2, that is,

vs(t) = v(t) = 0 for t ≥ t0. (8)

Then we obtain
φ(t) = φ(t0) for t ≥ t0, (9)

since the flux φ(t) satisfies
dφ

dt
= v = 0 for t ≥ t0. Thus, if there is a real number M > 0 such that

| G(φ(t0)) |≤ M, (10)

then we obtain

i(t) = G(φ(t0)) v(t) = 0 for t ≥ t0, (11)

since v(t) = 0 for t ≥ t0.

The charge q(t) also holds the value q(t0) = g(φ(t0)) for t ≥ t0, since
dq

dt
= i = 0 for t ≥ t0. Thus the

voltage-controlled ideal memristor (6) exhibits the following non-volatile state:

non-volatile state

v(t) =
dφ(t)

dt
= 0,

i(t) =
q(t)

dt
= 0,

φ(t) = φ(t0),

q(t) = q(t0),


( for t ≥ t0). (12)

That is, all state variables do not evolve for t ≥ t0, and the voltage-controlled ideal memristor (6) has the
non-volatility property.

Similarly, if there is a real number M > 0 such that

2Equivalently, we can assume that the memristor is short-circuited for t ≥ t0, that is, v(t) = 0 for t ≥ t0 [8]).
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| R(q(t0)) |≤ M, (13)

then the current-controlled ideal memristor (7) driven by the current source is(t) has the non-volatility
property, where we set is(t) = 0 for t ≥ t0.

3 Memristor Circuits

It is well known that discretization of the logistic equation using the central difference method produces
chaotic behavior for large time steps. In this section, we show that many well-known two-dimensional
chaotic maps can be obtained by applying the Euler method to discretize the two-element memristor circuit
equations.

3.1 Two-element extended memristor circuits

In this subsection, we use the voltage-controlled extended memristor defined in Appendix (see also [6, 7]).
This element is an extended version of the ideal memristor shown in Sec. 2. That is, the v− i characteristic
of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = Ĝ(x, v)v,

dx

dt
= g̃(x, v),

 (14)

where i, v, and x denote the terminal current, the terminal voltage, and the state variable of the voltage-
controlled memristor, respectively, Ĝ(x, v), and ĝ(x, v) are continuous scalar-valued functions of the state
variables x and v. Thus, Eq. (14) is more complex than Eq. (6).

To study the non-volatility property of the memristors, we apply the voltage source vs(t) to the voltage
controlled extended memristor (14). Assume that the output of the voltage source vs(t) is set to zero for
t ≥ t0. Furthermore, we assume that there is a real number M such that

| Ĝ(x, 0) |≤ M. (15)

Then i(t) = Ĝ(x(t), v(t))v(t) = 0 for t ≥ t0 where we set vs(t) = v(t) = 0 for t ≥ t0. We also assume that
g̃(x, v) satisfies

g̃(x, 0) = 0. (16)

Then we obtain
x(t) = x(t0) for t ≥ t0, (17)

since the state x(t) satisfies
dx

dt
= g̃(x, 0) = 0 for t ≥ t0. That is, v(t) = i(t) = 0 and x(t) = x(t0) for t ≥ t0

where we assumed that vs(t) = v(t) = 0 for t ≥ t0. In this case, the voltage-controlled extended memristor
has the non-volatility property. However, if the condition (16) is not satisfied, then the state x(t) may evolve
with time even when the drive signal is set to zero.
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Consider next the two-element memristor circuit in Fig. 3, where the v − i characteristic of the voltage-
controlled extended memristor (right) is given by Eq. (14). The dynamics of this circuit is given by

Dynamics of the extended memristor circuit

C
dv

dt
= −Ĝ(x, v)v,

dx

dt
= g̃(x, v),

 (18)

where C is the capacitance of the capacitor, and i, v, and x denote the terminal current, the terminal voltage,
and the state variable of the voltage-controlled extended memristor, respectively. For the sake of simplicity,
let us set C = 1. That is, we get

dv

dt
= −Ĝ(x, v)v,

dx

dt
= g̃(x, v).

 (19)

Figure 3: Two-element memristor circuit consisting of a capacitor (left) and a voltage-controlled extended
memristor (right), where C is the capacitance of the capacitor and v and i are the voltage across and the
current through the voltage-controlled extended memristor, respectively.

Since Eq. (19) is a two-dimensional autonomous system, we cannot expect any chaotic behavior of
this system. However, as in the case of the logistic equation, we can expect the chaotic behavior by the
discretizing the differential equation (19). So we discretize it using the Euler method defined by

Euler method

dv

dt
≈ v(t+∆t)− v(t)

∆t
,

dx

dt
≈ x(t+∆t)− x(t)

∆t
,

 (20)

where ∆t is the time step size. Then, we can approximate Eq. (19) by

v(t+∆t)− v(t)

∆t
= −Ĝ

(
x(t), v(t)

)
v(t),

x(t+∆t)− x(t)

∆t
= g

(
x(t), v(t)

)
.

 (21)
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If we set ∆t = 1, vn ≜ v(t+ n∆t), and xn ≜ x(t+ n∆t) (where n is an integer), then we obtain

v1 − v0 = −Ĝ
(
x0, v0

)
v0,

x1 − x0 = g
(
x0, v0

)
,

}
v2 − v1 = −Ĝ

(
x1, v1

)
v1,

x2 − x1 = g
(
x1, v1

)
,

}
...

...

vn+1 − vn = −Ĝ
(
xn, vn

)
vn,

xn+1 − xn = g
(
xn, vn

)
.

}
(22)

We can simply write

Discretized equation

vn+1 − vn = −Ĝ
(
xn, vn

)
vn,

xn+1 − xn = g
(
xn, vn

)
,

}
(23)

where n = 0, 1, 2, · · · . We can rewrite Eq. (23) in the following form

Two-dimensional map

vn+1 =
{
−Ĝ
(
xn, vn

)
+ 1
}
vn,

xn+1 = g
(
xn, vn

)
+ xn.

 (24)

Note that if ∆t is sufficiently small, then chaotic behavior is unlikely to be observed in a discretized two-
dimensional autonomous system. Thus, we set ∆t = 1.

3.2 Examples of the two-element memristor circuits generating chaotic maps

In this section we show some examples of two-element memristor circuits, which can be transformed into the
two-dimensional chaotic maps. In this section, we show some examples of two-element memristor circuits
that can be transformed into the two-dimensional chaotic maps. We also investigate whether the memristor
circuits have at least one active element. We also study the non-volatility property of memristors.

3.2.1 2-D Lorenz map

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = Ĝ(x, v)v ≜ (bx− ab)v,

dx

dt
= g̃(x, v) ≜ −bx+ bv2,

 (25)

that is, the two scaler functions Ĝ(x, v) and g̃(x, v) are given by

Ĝ(x, v) = bx− ab,

g̃(x, v) = −bx+ bv2,

}
(26)
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where a and b are constants. The voltage-controlled extended memristor defined by Eq. (25) is an active
element, since the instantaneous power consumed by the memristor satisfies

P (t) ≜ v(t) i(t) = (bx(t)− ab)v(t)
2
< 0, (27)

when x(t) satisfies bx(t)− ab < 0.
To study the non-volatility property, we drive the voltage-controlled extended memristor (25) by the

voltage source vs(t) where we set vs(t) = v(t) = 0 for t ≥ t0 (as shown in Fig. 2). Then we obtain

dx

dt
= g̃(x, 0) = −bx, (28)

where t ≥ t0. If b > 0, then the origin, i.e. x = 0, becomes the asymptotically stable equilibrium point and
x(t) → 0. That is, if the initial condition x(t0) takes a finite value, then x(t) also takes a finite value for
t ≥ t0, and there is a real number M such that

| Ĝ(x(t), 0) |=| bx(t)− ab |≤ M, (29)

for t ≥ t0. Furthermore, we obtain from Eq. (25)

v(t) = i(t) = 0 and x(t) → 0 for t ≥ t0. (30)

Note that if x(t0) ̸= 0, then x(t) changes with time. Thus, the voltage-controlled extended memristor (25)
does not exhibit the non-volatility property, that is, it is the volatile memristor [9, 10].

The dynamics of the circuit in Fig. 3 is given by

Dynamics of the memristor circuit

C
dv

dt
= −(bx− ab)v,

dx

dt
= −bx+ bv2.

 (31)

Assume that C = 1. Then from Eq. (23) we obtain

vn+1 − vn = −(bxn − ab)vn,

xn+1 − xn = −bxn + bvn
2.

}
(32)

It can be recast into the 2-D Lorenz map [11, 12]

2-D Lorenz map

vn+1 = (1 + ab)vn − bvnxn,

xn+1 = (1− b)xn + bvn
2.

}
(33)

Thus, we conclude that the 2-D Lorenz map (33) can be generated by discretizing the extended memristor
circuit equation (31) using the Euler method. The chaotic behavior of the 2-D Lorenz map (33) is shown in
Fig. 4.
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(a) (b)

Figure 4: Chaotic behavior of the 2-D Lorenz map (33) for two different parameters. (a) Parameters:
a = 1.05, b = 0.75. Initial conditions: v0 = 0.1, x0 = 0.1. (b) Parameters: a = 1.25, b = 0.75. Initial
conditions: v0 = 0.1, x0 = 0.1.

3.2.2 Predator-prey model A

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = Ĝ(x, v)v ≜ {1− a(1− v − x)} v,
dx

dt
= g̃(x, v) ≜ {b(1 + cv)− 1}x,

 (34)

that is, the two scaler functions Ĝ(x, v) and g̃(x, v) are given

Ĝ(x, v) = {1− a(1− v − z)} ,
g̃(x, v) = {b(1 + cv)− 1}x,

}
(35)

where a, b, and c are constants. The voltage-controlled extended memristor defined by Eq. (34) is an active
element, since the instantaneous power consumed by the memristor satisfies

P (t) ≜ v(t) i(t) =
{
1− a (1− v(t)− x(t))

}
v(t)

2
, (36)

when x(t) and v(t) satisfy a (1− v(t)− x(t)) > 1.
To study the non-volatility property, we drive the voltage-controlled extended memristor (34) by the

voltage source vs(t) where we set vs(t) = v(t) = 0 for t ≥ t0. Then we obtain

dx

dt
= g̃(x, 0) = (b− 1)x, (37)

where t ≥ t0. If b < 1, then the origin becomes the asymptotically stable equilibrium point and x(t) → 0.
That is, if the initial condition x(t0) takes a finite value, then x(t) also takes a finite value for t ≥ t0, and
there is a real number M such that

| Ĝ(x(t), 0) |=| bx(t)− ab |≤ M, (38)

for t ≥ t0. Furthermore, we obtain from Eq. (34)
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v(t) = i(t) = 0 and x(t) → 0 for t ≥ t0. (39)

If x(t0) ̸= 0, then x(t) changes with time. Thus, the voltage-controlled extended memristor (34) does not
exhibit the non-volatility property, that is, it is the volatile memristor [9, 10].

The dynamics of the circuit in Fig. 3 is given by

Dynamics of the memristor circuit

C
dv

dt
= {a(1− v − x)− 1} v,

dx

dt
= {b(1 + cv)− 1}x,

 (40)

where we assume that C = 1. From Eq. (24), we obtain

vn+1 − vn = {a(1− vn − xn)− 1} vn,

xn+1 − xn = {b(1 + cvn)− 1}xn.

}
(41)

It can be recast into the predator-prey model A [13, 14, 15]

Predator-prey model A

vn+1 = avn(1− vn − xn),

xn+1 = bxn(1 + cvn).

}
(42)

The chaotic behavior of the Predator-prey model A (42) is shown in Fig. 5.

(a) (b)

Figure 5: Chaotic behavior of the predator-prey model A (42) for two different parameters. (a) Parameters:
a = 3.6, b = 0.55, c = 5.0. Initial conditions: v0 = 0.1, x0 = 0.1. (b) Parameters: a = 4, b = 0.55, c = 5.0.
Initial conditions: v0 = 0.1, x0 = 0.1.
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3.2.3 Predator-prey model B

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = Ĝ(x, v)v ≜ (1− bx)v,

dx

dt
= g̃(x, v) ≜ a(1− x)(1− v)− x,

 (43)

that is, the two scaler functions Ĝ(x, v) and g̃(x, v) are given

Ĝ(x, v) = 1− bx,

g̃(x, v) = a(1− x)(1− v)− x,

}
(44)

where a and b are constants. The voltage-controlled extended memristor defined by Eq. (43) is an active
element, since the instantaneous power consumed by the memristor satisfies

P (t) ≜ v(t) i(t) = (1− bx(t))v(t)
2
< 0, (45)

when x(t) satisfies bx(t) > 1.
To study the non-volatility property, we drive the voltage-controlled extended memristor (43) by the

voltage source vs(t) where we set vs(t) = v(t) = 0 for t ≥ t0. Then we obtain

dx

dt
= g̃(x, 0) = a(1− x)− x

= −(a+ 1)

(
x− a

a+ 1

)
,

(46)

where t ≥ t0. If a > 0, then x(t) tends to the asymptotically stable equilibrium point
a

a+ 1
, and there is a

real number M such that
| Ĝ(x(t), 0) |=| bx(t)− ab |≤ M, (47)

for t ≥ t0. Therefore, we obtain from Eq. (43)

v(t) = i(t) = 0 and x(t) → a

a+ 1
for t ≥ t0. (48)

If x(t0) ̸=
a

a+ 1
, then x(t) changes with time. Thus, the voltage-controlled extended memristor (43) does

not exhibit the non-volatility property. that is, it is the volatile memristor [9, 10].
The dynamics of the circuit in Fig. 3 is given by

Dynamics of the memristor circuit

C
dv

dt
= −(1− bx)v,

dx

dt
= a(1− x)(1− v),

 (49)

where we assume that C = 1.
From Eq. (24), we obtain

vn+1 − vn = −(1− bxn)vn,

xn+1 − xn = a(1− xn)(1− vn)− xn.

}
(50)

It can be transformed into another kind of predator-prey model B [13]:
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Predator-prey model B

vn+1 = bvnxn,

xn+1 = a(1− xn)(1 + vn).

}
(51)

The chaotic behavior of the Predator-prey model B (51) is shown in Fig. 6.

(a) (b)

Figure 6: Chaotic behavior of the predator-prey model B (51) for two different parameters. (a) Parameters:
a = 0.86, b = 4.28. Initial conditions: v0 = 0.1, x0 = 0.1. (b) Parameters: a = 0.86, b = 4.42. Initial
conditions: v0 = 0.1, x0 = 0.1.

3.2.4 Two-dimensional logistic map

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = Ĝ(x, v)v ≜ −r(3x+ 1)(1− v)v − v,

dx

dt
= g̃(x, v) ≜ r

[
3r(3x+ 1)v(1− v) + 1

]
(1− x)x− x,

 (52)

that is, the two scaler functions Ĝ(x, v) and g̃(x, v) are given

Ĝ(x, v) = −r(3x+ 1)(1− v)− 1,

g̃(x, v) = r
[
3r(3x+ 1)(1− v)v + 1

]
(1− x)x− x,

 (53)

where r = 1.19.
The voltage-controlled extended memristor defined by Eq. (52) is an active element, since the instanta-

neous power consumed by the memristor satisfies

P (t) ≜ v(t) i(t) = −
{
r(3x(t) + 1)(1− v(t)) + 1

}
v(t)

2
< 0, (54)

when x(t) and v(t) satisfy
{
r(3x(t) + 1)(1− v(t)) + 1

}
> 0.

To study the non-volatility property, we drive the voltage-controlled extended memristor (52) by the
voltage source vs(t) where we set vs(t) = v(t) = 0 for t ≥ t0. Then we obtain

dx

dt
= g̃(x, 0) = r(1− x)x− x = −rx

(
x− r − 1

r

)
. (55)
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It has two equilibrium points p1 = 0 and p2 =
r − 1

r
≈ 0.159664. The equilibrium point p1, that is, the

origin is unstable and the equilibrium point p2 is asymptotically stable. Therefore, we obtain

if x(t0) < 0 x(t) → −∞,

if x(t0) = 0 x(t) = 0,

if x(t0) > 0 x(t) → r − 1

r
> 0.

 (56)

That is, if x(t0) > 0, then x(t) is bounded for t ≥ t0, and there is a real number M such that

| Ĝ(x(t), 0) |=| r(3x(t) + 1) + 1 |≤ M, (57)

for t ≥ t0. Thus, we obtain from Eq. (52)

v(t) = i(t) = 0 and x(t) → r − 1

r
for t ≥ t0, (58)

where vs(t) = v(t) = 0 for t ≥ t0.
If x(t0) is not at the equilibrium point, then x(t) changes with time. However, since x(t) satisfies Eq.(56),

the sign of x(t) remains unchanged, that is,

sgn(x(t)) =


1 if x(t0) > 0,

0 if x(t0) = 0,

−1 if x(t0) < 0,

(59)

even if vs(t) = v(t) = 0 for t ≥ t0, where sgn(·) denotes a sign function. Thus, the voltage-controlled
extended memristor (52) exhibits the discrete non-volatility (see [7, 17] for more details).

The dynamics of the circuit in Fig. 3 is given by

Dynamics of the memristor circuit

C
dv

dt
= r(3x+ 1)(1− v)v − v,

dx

dt
= r

[
3r(3x+ 1)(1− v)v + 1

]
(1− x)x− x,

 (60)

where we assume that C = 1. From Eq. (24), we obtain

vn+1 − vn = r(3xn + 1)(1− vn)vn − vn,

xn+1 − xn = r
[
3r(3xn + 1)(1− vn)vn + 1

]
(1− xn)xn − xn.

 (61)

It can be written as
vn+1 = r(3xn + 1)(1− vn)vn,

xn+1 = r
[
3r(3xn + 1)(1− vn)vn + 1

]
(1− xn)xn.

 (62)

If we replace the term 3r(3xn + 1)(1 − vn)vn by 3vn+1 in the right-hand side of the second equation, we
obtain the two-dimensional logistic map [16]

Two-dimensional logistic map

vn+1 = r(3xn + 1)(1− vn)vn,

xn+1 = r(3vn+1 + 1)(1− xn)xn.

}
(63)

Note that we can obtain 3vn+1 = 3r(3xn + 1)(1− vn)vn from the first equation of Eqs. (62) and (63). The
chaotic behavior of the two-dimensional logistic map (63) is shown in Fig. 7.
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(a) (b)

Figure 7: Chaotic behavior of the two-dimensional logistic map (63) for two different parameters.
(a) Parameter: r = 1.1523. Initial conditions: v0 = 0.8909, x0 = 0.3342. (b) Parameter: r = 1.19. Initial
conditions: v0 = 0.8909, x0 = 0.3342.

3.2.5 Chossat-Golubitsky symmetry map

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = Ĝ(x, v)v ≜ −
{
(A− 1)− 2dx

}
v,

dx

dt
= g̃(x, v) ≜ (A− 1)x+ d

(
x2 − v2

)
,

 (64)

where
A = a

(
x2 + v2

)
+ bx

(
x2 − 3v2

)
+ c, (65)

and a, b, c and d are constants. The two scaler functions Ĝ(x, v) and g̃(x, v) are given by

Ĝ(x, v) = (A− 1)− 2dx,

g̃(x, v) = (A− 1)x+ d
(
x2 − v2

)
.

}
(66)

The voltage-controlled extended memristor defined by Eq. (64) is an active element, since the instantaneous
power consumed by the memristor satisfies

P (t) ≜ v(t) i(t) = −
{
(A− 1)− 2dx(t)

}
v(t)

2
< 0, (67)

when x(t) satisfies
{
(A− 1)− 2dx(t)

}
> 0.

To study the non-volatility property, we drive the voltage-controlled extended memristor (64) by the
voltage source vs(t) where we set vs(t) = v(t) = 0 for t ≥ t0. Then we obtain

dx

dt
= g̃(x, 0) = (A− 1)x+ d

(
x2 − v2

)∣∣∣
v=0

=
[{

ax2 + bx3 + c
}
− 1
]
x+ dx2

= bx4 + ax3 + dx2 + (c− 1)x,

(68)

where t ≥ t0.
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(1) Volatility property

Assume that the parameters are given by

a = 1, b = 0, c = −1.9, d = 0.4. (69)

Then Eq. (68) has the two unstable equilibrium points p1 ≈ −1.91 and p2 ≈ 1.51, and it has also the
asymptotically stable equilibrium point p0 = 0. Thus, if the initial condition x(t0) satisfies p1 < x(t0) < p2,
then x(t) → 0, that is, x(t) is bounded for t ≥ t0. Since the function Ĝ(x, 0) is given by

Ĝ(x, 0) =
{
a
(
x2 + v2

)
+ bx

(
x2 − 3v2

)
+ c− 1

}
− 2dx

∣∣∣
v=0

= −2dx,
(70)

there exists a real number M such that

| Ĝ(x(t), 0) |=| −2dx(t) |≤ M, (71)

where p1 < x(t0) < p2 and t ≥ t0.
Considering that vs(t) = v(t) = 0 for t ≥ t0, we obtain

i(t) = Ĝ(x(t), v(t)) v(t) = 0 for t ≥ t0. (72)

Thus, we conclude

v(t) = i(t) = 0 and x(t) → 0 for t ≥ t0. (73)

If we take into account that the state x(t) changes with time, the voltage-controlled extended memristor
(64) does not possess the non-volatile property, making it a volatile memristor [9, 10].

(2) Discrete non-volatility property

Assume next that the parameters are given by

a = −1, b = 0.1, c = 1.6, d = −0.8. (74)

Then Eq. (68) has the two asymptotically stable equilibrium points p1 ≈ −1.74 and p2 ≈ 0.478. It has also
the two unstable equilibrium points p0 = 0 and p3 ≈ 10.7. Therefore, if x(t0) < 0, then x(t) → p1 < 0, and
if 0 < x(t0) < p3, then x(t) → p2 > 0. If the initial condition x(t0) satisfies 0 < x(t0) < p3, then x(t) takes
a finite value, and there exists a real number M such that

| Ĝ(x(t), 0) |=| −2dx(t) |≤ M, (75)

for t ≥ t0. Thus, from Eq. (64), we obtain

if x(t0) < 0, then v(t) = i(t) = 0 and x(t) → p1 < 0, (76)

and

if 0 < x(t0) < p3, then v(t) = i(t) = 0 and x(t) → p2 > 0, (77)
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where t ≥ t0. That is, if x(t0) < p3, then the sign of x(t) remains unchanged for t ≥ t0, even if vs(t) =
v(t) = 0 for t ≥ t0. It is shown that the voltage-controlled extended memristor (64) can exhibit the discrete
non-volatility (see [17, 7] for more details).

The dynamics of the circuit in Fig. 3 is given by

Dynamics of the memristor circuit

C
dv

dt
=

{
(A− 1)− 2dx

}
v,

dx

dt
= (A− 1)x+ d

(
x2 − v2

)
,

 (78)

where we assume that C = 1 and A is given by Eq. (65).
From Eq. (24), we obtain

vn+1 − vn =
{
(A− 1)− 2dxn

}
vn,

xn+1 − xn = (A− 1)xn + d
(
xn

2 − vn
2
)
.

}
(79)

It can be transformed into the Chossat-Golubitsky symmetry map [18]

Chossat-Golubitsky symmetry map

vn+1 = Avn − 2dxnvn,

xn+1 = Axn + d
(
xn

2 − vn
2
)
.

}
(80)

The chaotic behavior of the Chossat-Golubitsky symmetry map (80) for two different parameters is shown
in Fig. 8.

(a) (b)

Figure 8: Chaotic behavior of the Chossat-Golubitsky symmetry map (80) for two different parameters.
(a) Parameters: a = 1, b = 0, c = −1.9, d = 0.4. Initial conditions: v0 = 0.1, x0 = 0.1. (b) Parameters:
a = −1, b = 0.1, c = 1.6, d = −0.8. Initial conditions: v0 = 0.1, x0 = 0.1.

3.2.6 Memristor Hénon map

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by
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v − i characteristic of the extended memristor

i = Ĝ(x, v)v ≜ (av2 − x)v,

dx

dt
= g̃(x, v), ≜ bv2 − x,

 (81)

that is, the two scaler functions Ĝ(x, v) and g̃(x, v) are given

Ĝ(x, v) = av2 − x,

g̃(x, v) = bv2 − x,

}
(82)

where a and b are constants. The voltage-controlled extended memristor defined by Eq. (81) is an active
element, since the instantaneous power consumed by the memristor satisfies

P (t) ≜ v(t) i(t) =
(
av(t)

2 − x(t)
)
v(t)

2
< 0, (83)

when x(t) and v(t) satisfy av(t)
2 − x(t) < 0.

To study the non-volatility property, we drive the voltage-controlled extended memristor (81) by the
voltage source vs(t) where we set vs(t) = v(t) = 0 for t ≥ t0. Then we obtain

dx

dt
= g̃(x, 0) = −x, (84)

where t ≥ t0. The origin becomes the asymptotically stable equilibrium point and x(t) → 0. That is, if the
initial condition x(t0) takes a finite value, then x(t) also takes a finite value for t ≥ t0, and there is a real
number M such that

| Ĝ(x(t), 0) |=| −x(t) |≤ M, (85)

for t ≥ t0. Furthermore, we obtain from Eq. (81)

v(t) = i(t) = 0 and x(t) → 0 for t ≥ t0. (86)

If x(t0) ̸= 0, then x(t) changes with time. Thus, the voltage-controlled extended memristor (81) does not
exhibit the non-volatility property, that is, it is the volatile memristor [9, 10].

The dynamics of the circuit in Fig. 3 is given by

Dynamics of the memristor circuit

C
dv

dt
= −(av2 − x)v,

dx

dt
= bv2 − x,

 (87)

where we assume that C = 1.
From Eq. (23), we obtain

vn+1 − vn = −(avn
2 − xn)vn,

xn+1 − xn = bvn
2 − xn.

}
(88)

It can be recast into the form

Memristor Hénon map

vn+1 = (1− avn
2 + xn)vn,

xn+1 = bvn
2.

}
(89)
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This equation is similar to the Hénon map [19], which is defined by

Hénon map

vn+1 = 1− avn
2 + xn,

xn+1 = bvn.

}
(90)

If we multiply vn on the right side of Eq. (90), we obtain Eq. (89). We study the original Hénon map in Sec.
4.1.2. The chaotic behavior of the memristor Hénon map (89) and the original Hénon map (90) is shown in
Fig. 9.

(a) (b)

Figure 9: (a) Chaotic behavior of the memristor Hénon map (89). (b) Chaotic behavior of the original Hénon
map (90). Parameters for these two maps: a = 1.42, b = 0.3. Initial conditions: v0 = 0.2, x0 = 0.2.

3.2.7 Memristor Peter de Jong map

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = Ĝ(x, v)v ≜ −
[
{sin(aπx)− cos(bπv)} − 1

]
v,

dx

dt
= g̃(x, v), ≜ {sin(cπv)− cos(dπx)} − x,

 (91)

that is, the two scaler functions Ĝ(x, v) and g̃(x, v) are given by

Ĝ(x, v) = −{sin(aπx)− cos(bπv)} − 1,

g̃(x, v) = {sin(cπv)− cos(dπx)} − x,

}
(92)

where a, b, c and d are constants. The voltage-controlled extended memristor is an active element, since
the instantaneous power consumed by the memristor satisfies

P (t) ≜ v(t) i(t) = −
[
{sin(aπx(t))− cos(bπv(t))} − 1

]
v(t)

2
< 0, (93)

when x(t) and v(t) satisfy {sin(aπx(t))− cos(bπv(t))} − 1 > 0.
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To study the non-volatility property, we drive the voltage-controlled extended memristor (91) by the
voltage source vs(t) where we set vs(t) = v(t) = 0 for t ≥ t0. Then we obtain

dx

dt
= g̃(x, 0) = − cos(dπx)− x = −

{
1 + cos(dπx)

}
x, (94)

where t ≥ t0. This equation has the equilibrium points at x = 2m+1
d (m = 0, ±1, ±2, · · · ) and x = 0. The

origin x = 0 is an asymptotically stable equilibrium poit. The other equilibrium points are not stable, since

d

dt

(
x2
)
= −2

{
1 + cos(dπx)

}
x2 ≤ 0, (95)

for t ≥ t0, that is, x(t)
2 (or equivalently, | x(t) |) does not increase. Thus, if the initial condition satisfies

−1

d
< x(0) <

1

d
, (96)

that is, x(0) is situated between the two equilibrium points ± 1
d , then x(t) → 0. Thus, there is a real number

M such that
| Ĝ(x(t), 0) |=| bx(t)− ab |≤ M, (97)

for t ≥ t0. Furthermore, we obtain from Eq. (91)

v(t) = i(t) = 0 and x(t) → 0 for t ≥ t0. (98)

If x(t0) is not situated at the equilibrium point, then x(t) changes with time. Thus, the voltage-controlled
extended memristor (91) does not exhibit the non-volatility property, that is, it is the volatile memristor
[9, 10].

The dynamics of the circuit in Fig. 3 is given by

Dynamics of the memristor circuit

C
dv

dt
=

[
{sin(aπx)− cos(bπv)} − 1

]
v,

dx

dt
= {sin(cπv)− cos(dπx)} − x,

 (99)

where we assume that C = 1.
From Eq. (23), we obtain

vn+1 − vn =
[
{sin(aπxn)− cos(bπvn)} − 1

]
vn,

xn+1 − xn = {sin(cπvn)− cos(dπxn)} − xn.

 (100)

It can be recast into the form

Memristor Peter de Jong map

vn+1 = {sin(aπxn)− cos(bπvn)} vn,

xn+1 = sin(cπvn)− cos(dπxn).

}
(101)

This equation is similar to the Peter de Jong map [20], which is defined by
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Peter de Jong map

vn+1 = sin(aπxn)− cos(bπvn),

xn+1 = sin(cπvn)− cos(dπxn).

}
(102)

Multiplying vn on the right side of the first equation of Eq. (102), we obtain Eq. (101). We study the
original Peter de Jong map in Sec. 4.1.8. The chaotic behavior of the memristor Peter de Jong map (101)
and the original Peter de Jong map (102) is shown in Fig. 10.

(a) (b)

Figure 10: (a) Chaotic behavior of the memristor Peter de Jong map (101). Parameters: a = 0.43, b =
0.53, c = −0.274, d = 0.67. Initial conditions: v0 = 1, x0 = 1. (b) Chaotic behavior of the original Peter de
Jong map (102). Parameters: a = 0.44, b = 0.53, c = −0.274, d = 0.67. Initial conditions: v0 = 1, x0 = 1.

3.2.8 Memristor Rikitake dynamo system

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = Ĝ(y, z, v) v ≜ −(1− yz) v,

dy

dt
= g̃1(y, z, v) ≜ −by + zv,

dz

dt
= g̃2(y, z, v) ≜ −bz + yv − ay,


(103)

that is, the scaler functions Ĝ(y, z, v) is given by

Ĝ(y, z, v) = −(1− yz), (104)

where a and b are positive constants. The voltage-controlled extended memristor is an active element, since
the instantaneous power consumed by the memristor satisfies

P (t) ≜ v(t) i(t) = −
(
1− y(t)z(t)

)
v(t)

2
< 0, (105)

when y(t) and z(t) satisfy y(t)z(t) < 1.
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To study the non-volatility property, we drive the voltage-controlled extended memristor (91) by the
voltage source vs(t) where we set vs(t) = v(t) = 0 for t ≥ t0. Then we obtain

dy

dt
= g̃1(y, z, v) = −by,

dz

dt
= g̃2(y, z, v) = −bz − ay,

(106)

where t ≥ t0. This equation has the asymptotically stable equilibrium points at the origin, and therefore
y(t) → 0 and z(t) → 0. Thus, there is a real number M such that

| Ĝ(y(t), z(t), 0) |=
∣∣−(1− y(t)z(t))

∣∣ ≤ M, (107)

for t ≥ t0. Furthermore, we obtain from Eq. (103)

v(t) = i(t) = 0 and y(t), z(t) → 0 for t ≥ t0. (108)

If y(t0) and z(t0)is not situated at the origin, then y(t) and z(t) change with time. Thus, the voltage-
controlled extended memristor (91) does not exhibit the non-volatility property, that is, it is the volatile
memristor [9, 10].

The dynamics of the circuit in Fig. 3 is given by

Dynamics of the memristor Rikitake circuit

C
dv

dt
= (1− yz) v,

dy

dt
= −by + zv,

dz

dt
= −bz + yv − ay,


(109)

where we assume that C = 1. Note that the Rikitake dynamo system is given by

Dynamics of the Rikitake dynamo system

dv

dt
= 1− yz,

dy

dt
= −by + zv,

dz

dt
= −bz + yv − ay.


(110)

Multiplying v on the right side of the first equation of Eq. (110), we obtain Eq. (109).
Using the Euler method, we obtain from Eq. (109)

vn+1 − vn = {(1− ynzn) vn}∆t,

yn+1 − yn = (−byn + znvn)∆t,

zn+1 − zn = (−bzn + ynvn − ayn)∆t.

 (111)

It can be recast into the form
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Discretized memristor Rikitake dynamo equation

vn+1 =
{
(1− ynzn) vn

}
∆t+ vn,

yn+1 = (−byn + znvn)∆t+ yn,

zn+1 = (−bzn + ynvn − ayn)∆t+ zn.

 (112)

We show the chaotic behavior of the discretized memristor Rikitake dynamo equation (112) in Fig. 11, which
clearly shows the topological structure (see the paper-sheet model of Ref. [24]) of the chaotic behavior. We
show the chaotic behavior of the discretized Rikitake dynamo equation in Fig. 12, which is given by

Discretized Rikitake dynamo equation

vn+1 = (1− ynzn)∆t+ vn,

yn+1 = (−byn + znvn)∆t+ yn,

zn+1 = (−bzn + ynvn − ayn)∆t+ zn.

 (113)

The topological structure of the chaotic attractor (see the paper-sheet model of Ref. [24]) is clearly observed
in Figure 12(a).

(a) (b)

Figure 11: Chaotic behavior of the discretized memristor Rikitake dynamo equation (112) for two different
parameters. (a) Parameters: a = 10, b = 2, ∆t = 0.019. Initial conditions: v0 = 3, y0 = 1, z(0) = 6. (b)
Parameters: a = 10, b = 2, ∆t = 0.018. Initial conditions: v0 = 3, y0 = 1, z(0) = 6.
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(a) (b)

Figure 12: Chaotic behavior of the discretized Rikitake dynamo equation (113) for two different parameters.
(a) Parameters: a = 10, b = 2.52, ∆t = 0.02. Initial conditions: v0 = 3, y0 = 1, z(0) = 6. (b) Parameters:
a = 10, b = 2.5, ∆t = 0.02. Initial conditions: v0 = 3, y0 = 1, z(0) = 6.

3.2.9 Memristor Lorenz equation

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the two-terminal element

i = Ĝ(x, y, v)v ≜ −(xy − βv)v,

dx

dt
= g̃1(x, y, v) ≜ σ(y − x) v,

dy

dt
= g̃1(x, y, v) ≜ {x(ρ− v)− y} v,


(114)

that is, the scaler functions Ĝ(y, z, v) is given by

Ĝ(y, z, v) = xy − βv, (115)

where σ, ρ and β are positive constants. The two-terminal element (114) is an active element, since the
instantaneous power consumed by this element satisfies

P (t) ≜ v(t) i(t) = −{x(t)y(t)− βv(t)} v(t)2 < 0, (116)

when x(t)y(t) > βv(t).
Let us drive the two-terminal element (114) by the voltage source vs(t) where we set vs(t) = v(t) = 0 for

t ≥ t0. Then we obtain
dx

dt
= 0,

dy

dt
= 0,

 (117)

where t ≥ t0. Thus, x(t) = x(t0) and y(t) = y(t0) for t ≥ t0, that is, x(t) and y(t) holds the values x(t0) and
y(t0), respectively. The current i(t) is given by

i(t)
∣∣∣
v(t)=0

= −
{
x(t)y(t)− βv(t)

}
v(t)

∣∣∣
v(t)=0

= 0, (118)
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for t ≥ t0 since x(t) and y(t) is bounded for t ≥ t0. Therefore, the voltage-controlled extended memristor
(114) has the non-volatility property.

The dynamics of the circuit in Fig. 3 is given by

Dynamics of the memristor Lorenz circuit

dv

dt
= (xy − βv) v,

dx

dt
= σ(y − x) v,

dy

dt
= {x(ρ− v)− y} v,


(119)

where we assume that C = 1. Note that the original Lorenz equation is given by

Dynamics of the memristor Lorenz circuit

dv

dt
= xy − βv,

dx

dt
= σ(y − x),

dy

dt
= x(ρ− v)− y.


(120)

Multiplying v on the right side of Eq. (120), we obtain Eq. (119).
Using the Euler method, we obtain from Eq. (119):

vn+1 − vn = (xnyn − βvn)vn∆t,

xn+1 − yn = σ(yn − xn)vn∆t,

yn+1 − zn = {xn(ρ− vn)− yn} vn∆t.

 (121)

It can be recast into the form

Discretized memristor Lorenz equation

vn+1 = (xnyn − βvn)vn∆t+ vn,

xn+1 = σ(yn − xn)vn∆t+ yn,

yn+1 = {xn(ρ− vn)− yn} vn∆t+ zn.

 (122)

The chaotic behavior of the discretized Lorenz equation (121) is shown in Fig. 13, which clearly shows the
topological structure of the chaotic behavior (see the paper-sheet model of Ref. [24]). We also show the
chaotic behavior of the discretized Lorenz equation in Fig. 14, which is given by

Discretized Lorenz equation

vn+1 = (xnyn − βvn)∆t+ vn,

xn+1 = σ(yn − xn)∆t+ yn,

yn+1 = {xn(ρ− vn)− yn}∆t+ zn.

 (123)

We can also clearly observe the topological structure of the chaotic attractor (see the paper-sheet model of
Ref. [24]).
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(a) (b)

Figure 13: Chaotic behavior of the discretized memristor Lorenz equation (122) for two different parameters.
(a) Parameters: σ = 13, ρ = 15, β = 1.5, ∆t = 0.002. Initial conditions: v0 = 10, x0 = 10, y0 = 10.
(b) Parameters: σ = 13, ρ = 15, β = 1.56, ∆t = 0.002. Initial conditions: v0 = 10, x0 = 10, y0 = 10.

(a) (b)

Figure 14: Chaotic behavior of the discretized Lorenz equation (123) for two different parameters.

(a) Parameters: σ = 13, ρ = 10, β =
8

3
, ∆t = 0.075. Initial conditions: v0 = 0.1, x0 = 0.1, y0 = 0.1.

(b) Parameters: σ = 13, ρ = 10, β =
8

3
, ∆t = 0.068. Initial conditions: v0 = 0.1, x0 = 0.1, y0 = 0.1.
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3.3 Three-element extended memristor circuit

In this section, the three-element memristor circuit in Fig. 15 is considered by adding a current source to
the circuit in Fig. 3. We show two examples of the three-element memristor circuits that can be transformed
into the two-dimensional chaotic maps.

Figure 15: Three-element memristor circuit, which consists of a capacitor, a voltage-controlled extended
memristor, and a current source, where v is the voltage across the capacitor with the capacitance C, i is the
current through voltage-controlled extended memristor, and J is the output current of the current source.

3.3.1 Simplified Ikeda map

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = Ĝ(x, v)v ≜ −
{
b cos(ξ)− 1

}
v,

dx

dt
= g̃(x, v) ≜ b

{
v sin(ξ) + x cos(ξ)

}
− x,

 (124)

where

ξ = c− d

1 + v2 + x2
, (125)

and b, c and d are constants. The two scaler functions Ĝ(x, v) and g̃(x, v) are given by

Ĝ(x, v) = −
{
b cos(ξ)− 1

}
,

g̃(x, v) = b
{
v sin(ξ) + x cos(ξ)

}
− x.

}
(126)

The voltage-controlled extended memristor is an passive element, since the instantaneous power consumed
by the memristor satisfies

P (t) ≜ v(t) i(t) = −
{
b cos(ξ)− 1

}
v(t)

2 ≥ 0, (127)

since x(t) satisfies b cos(ξ)− 1 < 0 where we assume that 0 < b < 1. Note that the current source in Fig. 15
is the active element.

To study the non-volatility property, we drive the voltage-controlled extended memristor (124) by the
voltage source vs(t) where we set vs(t) = v(t) = 0 for t ≥ t0. Then we obtain

dx

dt
= g̃(x, 0) = b

{
x cos

(
c− d

1 + x2

)}
− x

= −x

{
1− b cos

(
c− d

1 + x2

)}
,

 (128)
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where t ≥ t0. If 0 < b < 1, then the origin is the asymptotically stable equilibrium point. That is, if the
initial condition x(t0) takes a finite value, then x(t) also takes a finite value for t ≥ t0, and there is a real
number M such that ∣∣∣Ĝ(x, 0)

∣∣∣ = ∣∣∣∣∣−
{
b cos

(
c− d

1 + x2

)
− 1

}∣∣∣∣∣ ≤ M, (129)

for t ≥ t0. Furthermore, we obtain from Eq. (124)

v(t) = i(t) = 0 and x(t) → 0 for t ≥ t0. (130)

If x(t0) ̸= 0, then x(t) changes with time. Thus, the voltage-controlled extended memristor (124) does not
exhibit the non-volatility property, that is, it is the volatile memristor [9, 10].

The dynamics of the circuit in Fig. 15 is given by

Dynamics of the memristor circuit

C
dv

dt
= J +

{
b cos(ξ)− 1

}
v,

dx

dt
= b

{
v sin(ξ) + x cos(ξ)

}
− x,

 (131)

where we assume that C = 1 and J = a. From Eq. (24), we obtain

vn+1 − vn = a+
{
b cos(ξn)− 1

}
vn,

xn+1 − xn = b
{
vn sin(ξn) + xn cos(ξn)

}
− xn,

}
(132)

where

ξ = c− d

1 + vn2 + vxn
2
. (133)

It can be recast into the form

Simplified Ikeda map

vn+1 = a+ b cos(ξn)vn,

xn+1 = b
{
vn sin(ξn) + xn cos(ξn)

}
.

}
(134)

This equation is the simplified version of the Ikeda map [22, 23]. It is defined by

Ikeda map

vn+1 = a+ b
{
cos(ξn)vn − xn cos(ξn)

}
,

xn+1 = b
{
vn sin(ξn) + xn cos(ξn)

}
.

}
(135)

Compare the first equation of Eq. (134) and Eq. (135). That is, Eq. (134) does not have the term
−bxn cos(ξn). We study the original Ikeda map in Sec. 4.1.7. The chaotic behavior of the simplified Ikeda
map (134) and the original Ikeda map (135) is shown in Fig. 16.
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(a) (b)

Figure 16: (a) Chaotic behavior of the simplified Ikeda map (134). (b) Chaotic behavior of the original
Ikeda map (135). Parameters for these two maps: a = 6.41, b = 0.9, c = 3.02, d = 47.74. Initial conditions:
v0 = 0, x0 = 0.

3.3.2 Discretized Rössler equation

Assume that the v − i characteristic of the voltage-controlled extended memristor (left) is given by

v − i characteristic of the extended memristor

i = Ĝ(x, v)v ≜ −(x− c)v,

dx

dt
= g̃1(x, v) ≜ −y − v,

dy

dt
= g̃1(x, v) ≜ x+ ay,

 (136)

where a, b, and c are constants (0 < a < 2). The voltage-controlled extended memristor is an active element,
since the instantaneous power consumed by the memristor satisfies

P (t) ≜ v(t) i(t) = −(x(t)− c)v(t)
2
< 0, (137)

when x(t) > c.
To study the non-volatility property, we drive the voltage-controlled extended memristor (124) by the

voltage source vs(t) where we set vs(t) = v(t) = 0 for t ≥ t0. Then we obtain

dx

dt
= −y,

dy

dt
= x+ ay,

 (138)

where t ≥ t0. The origin is the unstable equilibrium point with an outward spiral on the (x, y)-plane, and
therefore x(t) and y(t) change with time if the initial values for x(t) and y(t) are not at the origin. Thus the
voltage-controlled extended memristor (124) does not exhibit the non-volatility property, that is, it is the
volatile memristor [9, 10], although v(t) and i(t) satisfy

v(t) = i(t) = 0 for t ≥ t0, (139)

if | x(t) | is finite. This is because from Eq. (136), i(t) can be written as

i(t) = Ĝ(x(t), v(t))v(t) = −(x(t)− c)v(t). (140)
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Thus, if | x(t) | is finite, then i(t) = 0 for v(t) = 0 where vs(t) = v(t) = 0 for t ≥ t0.
The dynamics of the circuit in Fig. 15 is given by

Dynamics of the memristor circuit

C
dv

dt
= J + (x− c)v,

dx

dt
= −y − v,

dy

dt
= x+ ay.


(141)

If we assume that C = 1 and J = b, then Eq. (141) can be written as

Rössler equation

dv

dt
= b+ (x− c)v,

dx

dt
= −y − v,

dy

dt
= x+ ay,


(142)

which is equivalent to the Rössler equation [24].
From Eq. (142), we obtain

vn+1 − vn = {b+ (xn − c)vn}∆t,

xn+1 − xn = (−yn − vn)∆t,

yn+1 − yn = (xn + ayn)∆t.

 (143)

It can be recast into the form

Discretized Rössler equation

vn+1 = {b+ (xn − c)vn}∆t+ vn,

xn+1 = (−yn − vn)∆t+ xn,

yn+1 = (xn + ayn)∆t+ yn.

 (144)

We show the chaotic behavior of the discretized Rr̈ossler equation (144) in Fig. 17, which clearly shows
the topological structure of the chaotic attractor (see the paper-sheet model of Ref. [24]). Note that in the
computer simulations, Eq. (142) has no chaotic attractor, but has a limit cycle when we use the parameter
values shown in Fig. 17.
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(a) (b)

Figure 17: Chaotic behavior of the discretized Rössler equation (144) for two different parameters.
(a) Parameters: a = 0.398, b = 3.8, c = 4.5, ∆t = 0.11. Initial conditions: v0 = 0.01, x0 = 0.01, y(0) = 0.01.
(b) Parameters: a = 0.4, b = 3.8, c = 5.0, ∆t = 0.147. Initial conditions: v0 = 0.01, x0 = 0.01, y(0) = 0.01.

4 Generalized Extended Memristor Circuits

Consider the two-element circuit in Fig. 18. The v− i characteristic of the two-terminal device (left) is given
by

v − i characteristic of the two-terminal device

i = Ĝ(x, v)v ≜ −
{
h
(
x, ln | v |

)
− ln | v |

}
v,

dx

dt
= g̃(x, v) ≜ g

(
x, ln | v |

)
− x,

 (145)

where i, v and y are the terminal current, the terminal voltage, and the state variable, respectively, and
h(x, ln | v |) and g(x, ln | v |) are scalar-valued functions of x and ln | v |.

The dynamics of the circuit in Fig. 18 is given b y

Dynamics of the two-element circuit

C
dv

dt
=

{
h
(
x, ln | v |

)
− ln | v |

}
v,

dx

dt
= g

(
x, ln | v |

)
− x,

 (146)

where C is the capacitance of the capacitor. If C = 1, then Eq. (146) can be recast into the form

d(ln | v |)
dt

=
{
h
(
x, ln | v |

)
− ln | v |

}
v,

dy

dt
= g

(
x, ln | v |

)
− x.

 (147)
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Figure 18: Two-element circuit, which consists of a capacitor and a two-terminal device, where v is the
voltage of the capacitor with the capacitance C and i is the current through the two-terminal device.

Setting y ≜ ln | v |, we obtain
dy

dt
= h

(
x, y

)
− y,

dx

dt
= g

(
x, y

)
− x.

 (148)

Applying the Euler method:

Euler method

dy

dt
≈ y(t+∆t)− y(t)

∆t
,

dx

dt
≈ x(t+∆t)− x(t)

∆t
,

 (149)

we obtain the approximate equation from Eq. (148)

y(t+∆t)− y(t)

∆t
= h

(
x(t), y(t)

)
− y(t),

x(t+∆t)− x(t)

∆t
= g

(
x(t), y(t))− x(t),

 (150)

where the time step size ∆t is usually set sufficiently small. In this paper, we set ∆t = 1 and define
yn ≜ y(t+ n∆t) and xn ≜ x(t+ n∆t). Then we obtain

yn+1 − yn = h
(
xn, yn

)
− yn,

xn+1 − xn = g
(
xn, yn

)
− xn,

}
(151)

where n = 0, 1, 2, · · · . It can be transformed into the two-dimensional map

Two-dimensional map

yn+1 = h
(
xn, yn

)
,

xn+1 = g
(
xn, yn

)
.

}
(152)
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Note that Eq. (145 may not necessarily satisfy the conditions (15) and (16), since lim
v→0

ln | v |→ −∞.

Let us modify v − i characteristic of the two-terminal device in Fig. 18 as follows:

v − i characteristic of the two-terminal device

i = Ĝ(x, v)v ≜ −ρ
(
h
(
x, ln | v |

)
− ln | v |

)
v,

dx

dt
= g̃(x, v) ≜ µ

(
g
(
x, ln | v |

)
− x
)
,

 (153)

where the saturation function ρ(s) and the resistive-fuse function µ(s)3 are the bounded functions defined
by

ρ(s) ≜

 M s > M,
s | s |≤ M,

−M s < −M,
(154)

and

µ(s) ≜

 0 s > L,
s | s |≤ L,
0 s < −L,

(155)

respectively, where M and L are sufficiently large positive constants.
Let us drive the voltage-controlled extended memristor (153) by the voltage source vs(t) where we set

vs(t) = v(t) → 0 for t ≥ t0. Since | Ĝ(x, v) | is bounded, that is,

| Ĝ(x, v) |= ρ
(
h
(
x, ln | v |

)
− ln | v |

)
|≤ M, (156)

we obtain
lim
v→0

i = lim
v→0

Ĝ(x, v) v → 0. (157)

Thus, we can define without loss of generality

i
∣∣∣
v=0

= Ĝ(x, v) v
∣∣∣
v=0

= 0. (158)

It follows that the two-terminal device defined by Eq. (153) is considered to be an extended memristor [25].
Note that if the function g̃(x, v) is not specified, then the non-volatility property cannot be examined. That
is, the two-terminal device (153) may not necessarily satisfy the condition (16).

The dynamics of the circuit in Fig. 18 is given by

Dynamics of the two-element circuit

C
dv

dt
= ρ

(
h
(
x, ln | v |

)
− ln | v |

)
v,

dx

dt
= µ

(
g
(
x, ln | v |

)
− x
)
,

 (159)

where C = 1. Note that in the region satisfying the inequalities:

−M ≤ h
(
x, ln | v |

)
− ln | v | ≤ M,

−L ≤ g
(
x, ln | v |

)
− x ≤ L,

}
(160)

3The nonlinear element is called a resistive-fuse if its v − i characteristic is defined by i = µ(v).
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Eq. (159) can be written as

C
dv

dt
=

{
h
(
x, ln | v |

)
− ln | v |

}
v,

dx

dt
= g

(
x, ln | v |

)
− x,

 (161)

which is identical to Eq. (146). Similarly, using the Euler method and setting y ≜ ln | v |, Eq. (161) can be
transformed into the two-dimensional map:

Two-dimensional map

yn+1 = h
(
xn, yn

)
,

xn+1 = g
(
xn, yn

)
,

}
(162)

where we assumed that C = 1. Equation (162) is identical to Eq.(152).
Conversely, if the two-dimensional map (162) is given, then we can reconstruct the v − i characteristic

of the two-terminal device (145) or the extended memristor (153), and its corresponding two-element circuit
equation (146) or (159). We conclude as follows:

Any two-dimensional map can be obtained by applying the Euler method to discretize the equation
of certain types of two-element memristor circuits. Conversely, any two-dimensional map can be
associated with the two-element memristor circuit equation.

4.1 Examples of the generalized extended memristor circuits generating chaotic
maps

In this section we show some examples of generalized extended memristor circuits. They can be transformed
into two-dimensional chaotic maps.

4.1.1 Fold map

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = −ρ
(
h
(
x, ln | v |

)
− ln | v |

)
v,

dx

dt
= µ

(
g
(
x, ln | v |

)
− x
)
,

 (163)

where
h(x, ln | v |) = x+ a ln | v |,
g(x, ln | v |) = ln | v |2 + b,

}
(164)

and a and b are constants. Substituting Eq. (164) into Eq. (163), we obtain

i = −ρ
(
x+ a ln | v | − ln | v |

)
v,

dx

dt
= µ

(
(ln | v |)2 + b− x

)
.

 (165)
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The voltage-controlled extended memristor (165) is an active element, since the instantaneous power con-
sumed by the memristor satisfies

P (t) ≜ v(t) i(t) = −ρ
(
x(t) + a ln | v(t) | − ln | v(t) |

)
v(t)

2
< 0, (166)

if x(t) + a ln | v(t) | − ln | v(t) |> M . This is because from Eq. (154) we obtain

ρ
(
x(t) + a ln | v(t) | − ln | v(t) |

)
= M > 0. (167)

To study the non-volatility property, we drive the voltage-controlled extended memristor (165) by the
voltage source vs(t) where we set vs(t) = v(t) → 0 for t ≥ t0. If 0 <| v |≪ 1, then (ln | v |)2 is sufficiently

large. Thus, from Eq. (155), we obtain µ
(
(ln | v |)2 + b− x

)
= 0, and therefore

dx

dt
= µ

(
(ln | v |)2 + b− x

)
= 0. (168)

Thus, Eq. (168) has the solution x(t) = c, where c is a constant. Similarly, we get

lim
v→0

i = lim
v→0

−ρ
(
x+ a ln | v | − ln | v |

)
v → 0. (169)

Therefore, without loss of generality, we can define

i
∣∣∣
v=0

= 0. (170)

Considering that the state x(t) is a constant when | v | is sufficiently small, the behavior of the two-terminal
device (163) is similar to that of non-volatile memristors.

The dynamics of the circuit in Fig. 18 is given by

The dynamics of the circuit

C
dv

dt
= ρ

(
x+ a ln | v | − ln | v |

)
v,

dx

dt
= µ

(
ln | v |2 + b− x

)
,

 (171)

where C = 1. If | v | is not sufficiently small, then this equation is recast into the form

d ln | v |
dt

=
(
x+ a ln | v | − ln | v |

)
,

dx

dt
= ln | v |2 + b− x.

 (172)

Setting y ≜ ln | v |, we obtain
dy

dt
= x+ ay − y,

dx

dt
= y2 + b− x.

 (173)

Using Euler method, we obtain from Eq. (173)

yn+1 − yn = xn + ayn − yn,

xn+1 − xn = yn
2 + b− xn.

}
(174)
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It can be recast into the fold map [26]

Fold map
yn+1 = xn + ayn,

xn+1 = yn
2 + b.

}
(175)

The chaotic behavior of the fold map (175) is shown in Fig. 19.

(a) (b)

Figure 19: Chaotic behavior of the fold map (175) for two different parameters. (a) Parameters: a =
−0.1, b = −1.7. Initial conditions: y0 = 0, x0 = 0. (b) Parameters: a = 0.8, b = −0.8. Initial conditions:
y0 = 0, x0 = 0.

4.1.2 Hénon map

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = −ρ
(
h
(
x, ln | v |

)
− ln | v |

)
v,

dx

dt
= µ

(
g
(
x, ln | v |

)
− x
)
,

 (176)

where
h(x, ln | v |) = bx,

g(x, ln | v |) = 1− ax2 + ln | v |,

}
(177)

and a and b are constants. Substituting Eq. (177) into Eq. (176), we obtain

i = −ρ
(
bx− ln | v |

)
v,

dx

dt
= µ

(
1− ax2 + ln | v | −x

)
.

 (178)

The voltage-controlled extended memristor (178) is an active element, since the instantaneous power con-
sumed by the memristor satisfies

P (t) ≜ v(t) i(t) = −ρ
(
bx(t)− ln | v(t) |

)
v(t)

2
< 0, (179)
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when bx(t)− ln | v(t) | is sufficiently large, and therefore ρ
(
bx(t)− ln | v(t) |

)
= M > 0.

To study the non-volatility property, we drive the voltage-controlled extended memristor (178) by the
voltage source vs(t) where we set vs(t) = v(t) → 0 for t ≥ t0. If 0 <| v |≪ 1, then

∣∣ln | v |
∣∣ is sufficiently

large. Furthermore, considering that the resistive-fuse function µ(s) satisfies Eq. (155), we obtain

dx

dt
= µ

(
1− ax2 + ln | v | −x

)
= 0. (180)

Equation (180) has the solution x(t) = c, where c is a constant. Similarly, we get

lim
v→0

i = lim
v→0

−ρ
(
x+ a ln | v | − ln | v |

)
v → 0, (181)

for the solution x(t) = c and 0 <| v |≪ 1. Thus, without loss of generality, we can define

i
∣∣∣
v=0

= 0. (182)

Considering that the state x(t) is a constant in the neighborhood of v = 0, the behavior of the two-terminal
device (176) is similar to that of non-volatile memristors.

The dynamics of the circuit in Fig. 18 is given by

The dynamics of the circuit

C
dv

dt
= ρ

(
bx− ln | v |

)
v,

dx

dt
= µ

(
1− ax2 + ln | v | −x

)
,

 (183)

where C = 1. If | v | is not sufficiently small, this equation is recast into the form

d ln | v |
dt

= bx− ln | v |,

dx

dt
= 1− ax2 + ln | v | −x.

 (184)

Setting y ≜ ln | v |, we obtain
dy

dt
= bx− y,

dx

dt
= 1− ax2 + y − x.

 (185)

Using Euler method, we obtain from Eq. (185):

yn+1 − yn
∆t

= bxn − yn,

xn+1 − xn

∆t
= 1− axn

2 + yn − xn.

 (186)

It can be written as

yn+1 = (bxn − yn)∆t+ yn,

xn+1 = (1− axn
2 + yn − xn)∆t+ xn.

}
(187)

If ∆t = 1, then Eq. (187) can be recast into the Hénon map [19]
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Hénon map

yn+1 = bxn,

xn+1 = 1− axn
2 + yn.

}
(188)

The chaotic behavior of the discretized equation (187) and the Hénon map (188) is shown in Fig. 20. Note
that the chaotic attractors of Eqs. (187) and (188) are quite different, even though the parameter value of
a is different.

(a) (b)

Figure 20: (a) Chaotic behavior of the Hénon map (188). Parameters: a = 1.42, b = 0.3. Initial conditions:
y0 = 0.2, x0 = 0.2. (b) Chaotic behavior of the discretized equation (187). Parameters: a = 7, b = 0.3, ∆t =
0.5. Initial conditions: y0 = 0.2, x0 = 0.2.

4.1.3 Lozi map

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = −ρ
(
h
(
x, ln | v |

)
− ln | v |

)
v,

dx

dt
= µ

(
g
(
x, ln | v |

)
− x
)
,

 (189)

where
h(x, ln | v |) = 1− a

∣∣ ln | v |
∣∣+x,

g(x, ln | v |) = b ln | v |,

}
(190)

and a ̸= ±1 and b ̸= 0 are constants. Substituting Eq. (190) into Eq. (189), we obtain

i = −ρ
(
1− a

∣∣ ln | v |
∣∣+x− ln | v |

)
v,

dx

dt
= µ

(
b ln | v | −x

)
.

 (191)

The voltage-controlled extended memristor (191) is an active element, since the instantaneous power con-
sumed by the memristor satisfies

P (t) ≜ v(t) i(t) = −ρ
(
1− a

∣∣ ln | v(t) |
∣∣+x(t)− ln | v(t) |

)
v(t)

2
< 0, (192)
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when 1− a
∣∣ ln | v(t) |

∣∣+x(t)− ln | v(t) | is sufficiently large.
To study the non-volatility property, we drive the voltage-controlled extended memristor (191) by the

voltage source vs(t) where we set vs(t) = v(t) → 0 for t ≥ t0. If 0 <| v |≪ 1, then
∣∣ln | v |

∣∣ is sufficiently
large. Furthermore, considering that the resistive-fuse function µ(s) satisfies Eq. (155), we obtain

dx

dt
= 0, (193)

where t ≥ t0 and b ̸= 0. Equation (193) has the solution x(t) = c, where c is a constant. Similarly, we get

lim
v→0

i = lim
v→0

−ρ
(
1− a

∣∣ ln | v |
∣∣+x− ln | v |

)
v → 0, (194)

for x(t) = c and 0 <| v |≪ 1, where we assume that a ̸= ±1. Thus, without loss of generality, we can define

i
∣∣∣
v=0

= 0. (195)

Considering that the state x(t) is a constant in the neighborhood of v = 0, the behavior of the two-terminal
device (189) is similar to that of non-volatile memristors.

The dynamics of the circuit in Fig. 18 is given by

The dynamics of the circuit

C
dv

dt
= ρ

(
1− a

∣∣ ln | v |
∣∣+x− ln | v |

)
v,

dx

dt
= µ

(
b ln | v | −x

)
,


(196)

where C = 1. If | v | is not sufficiently small, this equation is recast into the form

d ln | v |
dt

= 1− a
∣∣ ln | v |

∣∣+x− ln | v |,

dx

dt
= b ln | v | −x.

 (197)

Setting y ≜ ln | v |, we obtain
dy

dt
= 1− a | y | +x− y,

dx

dt
= by − x.

 (198)

Using Euler method, we obtain from Eq. (198)

yn+1 − yn
∆t

= 1− a | yn | +xn − yn,

xn+1 − xn

∆t
= byn − xn.

 (199)

It can be written as

yn+1 = (1− a | yn | +xn − yn)∆t+ yn,

xn+1 = (byn − xn)∆t+ xn.

}
(200)

If ∆t = 1, then Eq. (200) can be recast into the Lozi map [27]
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Lozi map

yn+1 = 1− a | yn | +xn,

xn+1 = byn.

}
(201)

The chaotic behavior of the discretized equation (200) and the Lozi map(201) is shown in Fig. 21. Note
that the chaotic attractors of Eqs. (200) and (201) are quite different, even though the parameter value of
a is different.

(a) (b)

Figure 21: (a) Chaotic behavior of the Lozi map (201). Parameters: a = 1.4, b = 0.3. Initial conditions:
y0 = 0.2, x0 = 0.2. (b) Chaotic behavior of the discretized equation (200). Parameters: a = 4, b = 0.3, ∆t =
0.5. Initial conditions: y0 = 0.2, x0 = 0.2.

4.1.4 Tinkerbell map

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = −ρ
(
h
(
x, ln | v |

)
− ln | v |

)
v,

dx

dt
= µ

(
g
(
x, ln | v |

)
− x
)
,

 (202)

where
h
(
x, ln | v |

)
= 2x ln | v | +cx+ d ln | v |,

g
(
x, ln | v |

)
= x2 − (ln | v |)2 + ax+ b ln | v |,

}
(203)

and a, b, c and d are positive constants. Substituting Eq. (203) into Eq. (202), we obtain

i = −ρ
(
2x ln | v | +cx+ d ln | v | − ln | v |

)
v,

dx

dt
= µ

(
x2 − (ln | v |)2 + ax+ b ln | v | −x

)
.

 (204)

The voltage-controlled extended memristor (204) is an active element, since the instantaneous power con-
sumed by the memristor satisfies

P (t) ≜ v(t) i(t) = −ρ
(
2x(t) ln | v(t) | +cx(t) + d ln | v(t) | − ln | v(t) |

)
v(t)

2
< 0, (205)
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when x(t) = 0 and 0 <| v(t) |≪ 1, where we assumed that 0 < d < 1.
To study the non-volatility property, we drive the voltage-controlled extended memristor (204) by the

voltage source vs(t) where we set vs(t) = v(t) → 0 for t ≥ t0. If 0 <| v |≪ 1, then
∣∣ln | v |

∣∣ is sufficiently
large. Furthermore, considering that the resistive-fuse function µ(s) satisfies Eq. (155), we obtain

dx

dt
= µ

(
x2 − (ln | v |)2 + ax+ b ln | v | −x

)
= 0. (206)

It has the solution x(t) = c, where c is a constant. Similarly, we get

lim
v→0

i = lim
v→0

−ρ
(
2x ln | v | +cx+ d ln | v | − ln | v |

)
v → 0, (207)

since
∣∣ln | v |

∣∣ is sufficiently large. Thus, without loss of generality, we can define

i
∣∣∣
v=0

= 0. (208)

Considering that the state x(t) is a constant in the neighborhood of v = 0, the behavior of the two-terminal
device (202) is similar to that of non-volatile memristors.

The dynamics of the circuit in Fig. 18is given by

The dynamics of the circuit

C
dv

dt
= ρ

(
2x ln | v | +cx+ d ln | v | − ln | v |

)
v,

dx

dt
= µ

(
x2 − (ln | v |)2 + ax+ b ln | v | −x

)
,

 (209)

where C = 1.
If | v | is not sufficiently small, this equation is recast into the form

d ln | v |
dt

= 2x ln | v | +cx+ d ln | v | − ln | v |,

dx

dt
= x2 − (ln | v |)2 + ax+ b ln | v | −x.

 (210)

Setting y ≜ ln | v |, we obtain
dy

dt
= 2xy + cx+ dy − y,

dx

dt
= x2 − y2 + ax+ by − x.

 (211)

Using Euler method, we obtain from Eq. (211)

yn+1 − yn = 2xnyn + cxn + dyn − yn,

xn+1 − xn = xn
2 − yn

2 + axn + byn − xn.

}
(212)

It can be recast into the Tinkerbell map [28]

Tinkerbell map

yn+1 = 2xnyn + cxn + dyn,

xn+1 = zn
2 − yn

2 + axn + byn.

}
(213)

The chaotic behavior of the Tinkerbell map (213) is shown in Fig. 22.
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(a) (b)

Figure 22: Chaotic behavior of the Tinkerbell map (213) for two different parameters. (a) Parameters:
a = 0.3, b = 0.6845, c = 2.0, d = 0.27. Initial conditions: y0 = 0.1, x0 = 0.1. (b) Parameters: a = 0.9, b =
−0.6013, c = 2.0, d = 0.5. Initial conditions: y0 = 0.1, x0 = 0.1.

4.1.5 Three-dimensional Hénon map

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = −ρ
(
h
(
y, z, ln | v |

)
− ln | v |

)
v,

dy

dt
= g

(
y, z, ln | v |

)
− y,

dz

dt
= µ

(
f
(
y, z, ln | v |

)
− z
)
,

 (214)

where
h
(
y, z, ln | v |

)
= y,

g
(
y, z, ln | v |

)
= z,

f
(
y, z, ln | v |

)
= a+ b ln | v | +cy + dy2 − z2,

 (215)

and a, b, c, and d are constants. Substituting Eq. (215) into Eq. (214), we obtain

i = −ρ
(
y − ln | v |

)
v,

dy

dt
= z − y,

dz

dt
= µ

(
a+ b ln | v | +cy + dy2 − z2 − z

)
.

 (216)

The voltage-controlled extended memristor (216) is an active element, since the instantaneous power con-
sumed by the memristor satisfies

P (t) ≜ v(t) i(t) = −ρ
(
y(t)− ln | v(t) |

)
v(t)

2
< 0, (217)

when y(t)− ln | v(t) | is sufficiently large.
To study the non-volatility property, we drive the voltage-controlled extended memristor (216) by the

voltage source vs(t) where we set vs(t) = v(t) → 0 for t ≥ t0. If 0 <| v |≪ 1, then
∣∣ln | v |

∣∣ is sufficiently
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large. Furthermore, the resistive-fuse function µ(s) satisfies Eq. (155). Thus we obtain from Eq. (216)

dy

dt
= z − y,

dz

dt
= µ

(
a+ b ln | v | +cy + dy2 − z2 − z

)
= 0.

 (218)

It has the solution z(t) = c, and y(t) → c, where c is a constant. Similarly, we get

lim
v→0

i = lim
v→0

−ρ
(
y − ln | v |

)
v → 0, (219)

since
∣∣ln | v |

∣∣ is sufficiently large. Thus, without loss of generality, we can define

i
∣∣∣
v=0

= 0. (220)

Considering that the state x(t) is a constant and y(t) → c in the neighborhood of v = 0, the behavior of the
two-terminal device (214) is similar to that of non-volatile memristors.

The dynamics of the circuit in Fig. 18 is given by

The dynamics of the circuit

C
dv

dt
= ρ

(
y − ln | v |

)
v,

dz

dt
= z − y,

dz

dt
= µ

(
a+ b ln | v | +cy + dy2 − ez2 − z

)
,


(221)

where C = 1. If | v | is not sufficiently small, this equation is recast into the form

The dynamics of the circuit

d ln | v |
dt

=
(
y − ln | v |

)
v,

dz

dt
= z − y,

dz

dt
= a+ b ln | v | +cy + dy2 − ez2 − z.


(222)

Setting x ≜ ln | v |, we obtain

The dynamics of the circuit

dx

dt
= y − x,

dz

dt
= z − y,

dz

dt
= a+ bx+ cy + dy2 − ez2 − z.


(223)

Using Euler method, we obtain from Eq. (223)
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xn+1 − xn = yn − xn,

yn+1 − yn = zn − yn,

zn+1 − zn = a+ bxn + cyn + dyn
2 − ezn

2 − zn.

 (224)

It can be recast into the form:

Three-dimensional Hénon map

xn+1 = yn,

yn+1 = zn,

zn+1 = a+ bxn + cyn + dyn
2 − ezn

2.

 (225)

When c = d = 0 and e = 1, it is equivalent to the generalized Hénon map, which is shown in [29]:

Generalized Hénon map

xn+1 = yn,

yn+1 = zn,

zn+1 = a+ bxn − zn
2.

 (226)

The chaotic behavior of the three-dimensional Hénon map (225) is shown in Fig. 23.

(a) (b)

Figure 23: Chaotic behavior of the three-dimensional Hénon map (225) for two different parameters.
(a) Parameters: a = 0.7281, b = 0.5, c = 0, d = 0, e = 1. Initial conditions: x0 = 0, y0 = 0, z0 = 1.
(b) Parameters: a = 0.002, b = 0.7, c = 0.87, d = 1, e = 0. Initial conditions: x0 = 1, y0 = 0, z0 = 0.
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4.1.6 Gumowski-Mira map

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = −ρ
(
h
(
x, ln | v |

)
− ln | v |

)
v,

dx

dt
= µ

(
g
(
x, ln | v |

)
− x
)
,

 (227)

where
h(x, ln | v |) = x+ b(1− 0.05x2)x+ F

(
ln | v |

)
,

g(x, ln | v |) = − ln | v | +F
(
h(x, ln | v |)

)
,

F (y) = ay +
2(1− a)y2

1 + y2
,

 (228)

and a and b are constants. Substituting Eq. (228) into Eq. (227), we obtain

i = −ρ
(
x+ b(1− 0.05x2)x+ F (ln | v |)− ln | v |

)
v,

dx

dt
= µ

(
− ln | v | +F

(
h(x, ln | v | )

)
− x
)
.

 (229)

The voltage-controlled extended memristor (229) is an active element, since the instantaneous power con-
sumed by the memristor satisfies

P (t) ≜ v(t) i(t) = −ρ
(
x(t) + b(1− 0.05x(t)

2
)x+ F (ln | v(t) |)− ln | v(t) |

)
v(t)

2
< 0, (230)

since we can choose x(t) and v(t) such that x(t) + b(1− 0.05x(t)
2
)x+F (ln | v(t) |)− ln | v(t) | is sufficiently

large.
To study the non-volatility property, we drive the voltage-controlled extended memristor (229) by the

voltage source vs(t) where we set vs(t) = v(t) → 0 for t ≥ t0. If 0 <| v |≪ 1, then
∣∣ln | v |

∣∣ is sufficiently
large. Furthermore, the resistive-fuse function µ(s) satisfies Eq. (155). Thus, without loss of generality, we
can define

dx

dt
= 0. (231)

It has the solution x(t) = c, where c is a constant. Similarly, we get

lim
v→0

i = lim
v→0

−ρ
(
x+ b(1− 0.05x2)x+ F (ln | v |)− ln | v |

)
v → 0. (232)

Thus we can define
i
∣∣∣
v=0

= 0. (233)

Considering that the state x(t) is a constant in the neighborhood of v = 0, the behavior of the two-terminal
device (227) is similar to that of non-volatile memristors.

The dynamics of the circuit in Fig. 18 is given by

The dynamics of the circuit

C
dv

dt
= ρ

(
x+ b(1− 0.05x2)x+ F (ln | v |)− ln | v |

)
v,

dx

dt
= µ

(
− ln | v | +F

(
h(x, ln | v | )

)
− x
)
,

 (234)
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where C = 1. If | v | is not sufficiently small, this equation is recast into the form

d ln | v |
dt

= x+ b(1− 0.05x2)x+ F (ln | v |)− ln | v |,

dx

dt
= − ln | v | +F

(
h(x, ln | v | )

)
− x.

 (235)

Setting y ≜ ln | v |, we obtain

dy

dt
= x+ b(1− 0.05x2)x+ F (y)− y,

dx

dt
= −y + F

(
h(x, y )

)
− x.

 (236)

Using Euler method, we obtain from Eq. (236)

yn+1 − yn = xn + b(1− 0.05xn
2)x+ F (yn)− yn,

xn+1 − xn = −yn + F
(
h(xn, yn )

)
− xn.

}
(237)

It is written as

yn+1 = xn + b(1− 0.05xn
2)x+ F (yn),

xn+1 = −yn + F
(
h(xn, yn )

)
.

}
(238)

From Eqs. (228) and (238), h(xn, yn ) satisfies the following relation

h(xn, yn) = xn + b(1− 0.05xn
2)xn + F (yn) = yn+1. (239)

Thus, Eq. (237) can be recast into the Gumowski-Mira Map [30]

Gumowski-Mira map

yn+1 = xn + b(1− 0.05xn
2)xn + F (yn),

xn+1 = −yn + F (yn+1).

}
(240)

The chaotic behavior of the Gumowski-Mira Map (240) is shown in Fig. 24.
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(a) (b)

Figure 24: Chaotic behavior of the Gumowski-Mira map (240) for two different parameters. (a) Parameters:
a = −0.8, b = 0.008. Initial conditions: y0 = 0.1, x0 = 0.1. (b) Parameters: a = −0.495, b = 0.005. Initial
conditions: y0 = 0.1, x0 = 0.1

(1) Simplified Gumowski-Mira map A

Let us obtain a somewhat simplified version of the equation (238). If we replace g(x, ln | v |) in Eq.
(228) with

g(x, ln | v |) = − ln | v |, (241)

then the dynamics of the circuit is given by

C
dv

dt
= ρ

(
x+ b(1− 0.05x2)x+ F (ln | v |)− ln | v |

)
v,

dx

dt
= µ

(
− ln | v | −x

)
,

 (242)

where C = 1. Suppose that v is not sufficiently small and set y ≜ ln | v |. Then we obtain from Eq. (242)

dy

dt
= x+ b(1− 0.05x2)x+ F (y)− y,

dx

dt
= −y − x.

 (243)

Its discretized equation is given by the simplified Gumowski-Mira map A:

Simplified Gumowski-Mira map A

yn+1 = xn + b(1− 0.05xn
2)xn + F (yn),

xn+1 = −yn.

}
(244)

The chaotic behavior of the simplified Gumowski-Mira Map A (244) is shown in Fig. 25(a).
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(2) Simplified Gumowski-Mira map B

Similarly, if we replace h(x, ln | v |) and g(x, ln | v |) in Eq. (228) with

h(x, ln | v |) = x,

g(x, ln | v |) = − ln | v | +F
(
h(x, ln | v |)

)
,

}
(245)

then the dynamics of the circuit is given by

C
dv

dt
= ρ

(
x− ln | v |

)
v,

dx

dt
= µ

(
− ln | v | +F

(
h(x, ln | v | )

)
− x
)
,

 (246)

where C = 1. Suppose that v is not sufficiently small and set y ≜ ln | v |. Then we obtain from Eq. (246)

dy

dt
= x,

dx

dt
= −y + F

(
h(x, y )

)
− x.

 (247)

Its discretized equation is given by the simplified Gumowski-Mira map B:

Simplified Gumowski-Mira map B

yn+1 = xn,

xn+1 = −yn + F (yn+1).

}
(248)

The chaotic behavior of the simplified Gumowski-Mira map B (248 is shown in Fig. 25(b).

(a) (b)

Figure 25: (a) Chaotic behavior of the simplified Gumowski-Mira map A (244). Parameters: a = −0.8, b =
0.1. Initial conditions: y0 = 0.1, x0 = 0.1. (b) Chaotic behavior of the simplified Gumowski-Mira map B
(248). Parameters: a = −0.99, b = 0.008. Initial conditions: y0 = 0.1, x0 = 0.5.
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4.1.7 Ikeda map

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = −ρ
(
h
(
x, ln | v |

)
− ln | v |

)
v,

dx

dt
= µ

(
g
(
x, ln | v |

)
− x
)
,

 (249)

where
h(x, ln | v |) = a+ b

{
ln | v | cos(ξ)− x sin(ξ)

}
,

g(x, ln | v |) = b
{
ln | v | sin(ξ) + x cos(ξ)

}
,

}
(250)

and

ξ = c− d

1 + ln | v |2 + x2
, (251)

and a, b, c and d are constants. Substituting Eq. (250) into Eq. (249), we obtain

i = −ρ
(
a+ b

{
ln | v | cos(ξ)− x sin(ξ)

}
− ln | v |

)
v,

dx

dt
= µ

(
b
{
ln | v | sin(ξ) + x cos(ξ)

}
− x

)
.

 (252)

The voltage-controlled extended memristor (252) is an active element, since the instantaneous power con-
sumed by the memristor satisfies

P (t) ≜ v(t) i(t) = −ρ
(
a+ b

{
ln | v | cos(ξ)− x sin(ξ)

}
− ln | v |

)
v(t)

2
< 0, (253)

since we can choose x(t) and v(t) such that a+ b
{
ln | v | cos(ξ)− x sin(ξ)

}
− ln | v | is sufficiently large.

To study the non-volatility property, we drive the voltage-controlled extended memristor (252) by the
voltage source vs(t) where we set vs(t) = v(t) → 0 for t ≥ t0. If 0 <| v |≪ 1, then

∣∣ln | v |
∣∣ is sufficiently

large and ξ ≈ c. Furthermore, the resistive-fuse function µ(s) satisfies Eq. (155). Thus, we obtain

dx

dt
= µ

(
b
{
ln | v | sin(ξ) + x cos(ξ)

}
− x

)
= 0. (254)

It has the solution x(t) = r, where r is a constant.
Similarly, considering that the saturation function ρ(s) satisfies Eq. (154), we get

lim
v→0

i = lim
v→0

−ρ
(
a+ b

{
ln | v | cos(ξ)− x sin(ξ)

}
− ln | v |

)
v → 0. (255)

Thus, without loss of generality, we can define

i
∣∣∣
v=0

= 0. (256)

Since the state x(t) is a constant in the neighborhood of v = 0, the behavior of the two-terminal device (249)
is similar to that of non-volatile memristors.

The dynamics of the circuit in Fig. 18 is given by

The dynamics of the circuit

C
dv

dt
= ρ

(
a+ b

{
ln | v | cos(ξ)− x sin(ξ)

}
− ln | v |

)
v,

dx

dt
= µ

(
b
{
ln | v | sin(ξ) + x cos(ξ)

}
− x

)
,

 (257)
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where C = 1. If | v | is not sufficiently small and if | x | is not sufficiently large, then this equation is recast
into the form

d ln | v |
dt

= a+ b
{
ln | v | cos(ξ)− x sin(ξ)

}
− ln | v |,

dx

dt
= b

{
ln | v | sin(ξ) + x cos(ξ)

}
− x.

 (258)

Setting y ≜ ln | v |, we obtain

dy

dt
= a+ b

{
y cos(ξ)− x sin(ξ)

}
− y,

dx

dt
= b

{
y sin(ξ) + x cos(ξ)

}
− x,

 (259)

ξ = c− d

1 + y2 + x2
. (260)

Using Euler method, we obtain from Eq. (259)

yn+1 − yn = a+ b
{
yn cos(ξn)− xn sin(ξn)

}
− yn,

xn+1 − xn = b
{
yn sin(ξ) + xn cos(ξn)

}
− xn,

}
(261)

where

ξn = c− d

1 + yn2 + xn
2
. (262)

It can be recast into the Ikeda map [22, 23]

Ikeda map

yn+1 = a+ b
{
yn cos(ξn)− xn sin(ξn)

}
,

xn+1 = b
{
yn sin(ξn) + xn cos(ξn)

}
.

 (263)

The chaotic behavior of the Ikeda map (263) is shown in Fig. 26.

(a) (b)

Figure 26: Chaotic behavior of the Ikeda map (263) for two different parameters. (a) Parameters: a = 1, b =
0.8, c = 0.4, d = 6. Initial conditions: y0 = 0, x0 = 0. (b) Parameters: a = 0.84, b = 0.95, c = 0.4, d = 6.
Initial conditions: y0 = 0, x0 = 0.

49



4.1.8 Peter de Jong map

Assume that the v − i characteristic of the voltage-controlled extended memristor is given by

v − i characteristic of the extended memristor

i = −ρ
(
h
(
x, ln | v |

)
− ln | v |

)
v,

dx

dt
= µ

(
g
(
x, ln | v |

)
− x
)
,

 (264)

where
h
(
x, ln | v |

)
= sin(aπx)− cos(bπ ln | v |),

g
(
x, ln | v |

)
= sin(cπ ln | v |)− cos(dπx),

}
(265)

and a, b, c and d are constants. Substituting Eq. (265) into Eq. (264), we obtain

i = −ρ
(
sin(aπx)− cos(bπ ln | v |)− ln | v |

)
v,

dx

dt
= µ

(
sin(cπ ln | v |)− cos(dπx)− x

)
.

 (266)

The voltage-controlled extended memristor (266) is an active element, since the instantaneous power con-
sumed by the memristor satisfies

P (t) ≜ v(t) i(t) = −ρ
(
sin(aπx(t))− cos(bπ ln | v(t) |)− ln | v(t) |

)
v(t)

2
< 0, (267)

when − ln | v(t) | is sufficiently large.
To study the non-volatility property, we drive the voltage-controlled extended memristor (266) by the

voltage source vs(t) where we set vs(t) = v(t) → 0 for t ≥ t0. If | x | becomes sufficiently large, then

dx

dt
= 0, (268)

since the resistive-fuse function µ(s) satisfies Eq. (155). Thus x(t) remains in finite region.
Similarly, in the neighborhood of v = 0, we obtain

lim
v→0

i = lim
v→0

−ρ
(
sin(aπx)− cos(bπ ln | v |)− ln | v |

)
v → 0, (269)

since | ln | v || is sufficiently large and the saturation function ρ(s) satisfies Eq. (154). Thus, without loss of
generality, we can define

i
∣∣∣
v=0

= 0. (270)

Assume that x(t) is not large and therefore
dx

dt
̸= 0. Then the state x(t) changes with time even if Eq. (270)

is satisfied. Thus the behavior of the two-terminal device (266) is a volatile memristor.
The dynamics of the circuit in Fig. 18 is given by

The dynamics of the circuit

C
dv

dt
= ρ

(
sin(aπx)− cos(bπ ln | v |)− ln | v |

)
v,

dx

dt
= µ

(
sin(cπ ln | v |)− cos(dπx)− x

)
,

 (271)
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where C = 1.
If | v | is not sufficiently small and if | x | is not sufficiently large, then this equation is rewritten in the

form
d ln | v |

dt
=

(
sin(aπx)− cos(bπ ln | v |)− ln | v |

)
,

dx

dt
=

(
sin(cπ ln | v |)− cos(dπx)− x

)
.

 (272)

Setting y ≜ ln | v |, we obtain
dy

dt
= sin(aπx)− cos(bπy)− y,

dx

dt
= sin(cπy)− cos(dπx)− x.

 (273)

Using Euler method, we obtain from Eq. (273)

yn+1 − yn = sin(aπxn)− cos(bπyn)− yn,

xn+1 − xn = sin(cπyn)− cos(dπxn)− xn.

}
(274)

It can be recast into the Peter de Jong map [20]

Peter de Jong map

yn+1 = sin(aπxn)− cos(bπyn),

xn+1 = sin(cπyn)− cos(dπxn).

}
(275)

The chaotic behavior of the Peter de Jong map (275) is shown in Fig. 27.

(a) (b)

Figure 27: Chaotic behavior of the Peter de Jong map (275) for two different parameters. (a) Parameters:
a = 0.854, b = 0.404, c = 0.742. d = 0.51. Initial conditions: v0 = 1, x0 = 1. (b) Parameters: a = 0.56, b =
0.54, c = −0.29. d = 0.54. Initial conditions: v0 = 1, x0 = 1.
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5 Two Element Nonlinear Resistor Circuits

Consider the two-element circuit in Fig. 28, which consists of a linear capacitor C and a nonlinear resistor
with a characteristic curve defined by

iR = f(vR), (276)

where iR and vR are the current through and voltage across the nonlinear resistor, respectively. The dynamics
of the circuit in Fig. 28 is given by

Dynamics of the nonlinear resistor circuit

C
dv

dt
= −f(v), (277)

where v is the voltage across the capacitor with the capacitance C.

Figure 28: Two-element nonlinear resistor circuit consisting of a capacitor and a nonlinear resistor with the
characteristic curve iR = f(vR), where iR and vR are the current through and voltage across the nonlinear
resistor, respectively, and v is the voltage across the capacitor with the capacitance C.

We discretize Eq. (277) using the Euler method defined by

Euler method

dv

dt
≈ v(t+∆t)− v(t)

∆t
, (278)

where ∆t is the time step size. Then we can approximate Eq. (277) by

C
v(t+∆t)− v(t)

∆t
= −f

(
v(t)

)
. (279)

If we set vn ≜ v(t+ n∆t) (where n is an integer), then we obtain

v1 − v0 = −∆t

C
f(v0),

v2 − v1 = −∆t

C
f(v1),

...

vn+1 − vn = −∆t

C
f(vn).


(280)
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We can simply write

vn+1 − vn = −∆t

C
f(vn), (281)

where n = 0, 1, 2, · · · . Furthermore, it can be written as

vn+1 = −∆t

C
f(vn) + vn. (282)

If we set ∆t = 1 and C = 1, we obtain from Eq. (282)

vn+1 = −f(vn) + vn. (283)

5.1 Examples of the two-element nonlinear resistor circuit generating chaotic
behavior

In this section we show the examples of the nonlinear resistor circuits, which can be transformed into the
one-dimensional chaotic maps.

5.1.1 Quadratic polynomial nonlinearity

Let us first consider the nonlinear resistor with a quadratic polynomial nonlinearity, that is, the characteristic
curve of the nonlinear resistor is given by

iR = f(vR) = αv2R + βvR + γ, (284)

where α, β, and γ are constants.

(1) Logistic map

Assume that the v − i characteristic of the nonlinear resistor is given by

iR = f(vR) = −a vR(1− vR) + vR, (285)

where a > 0. Then the nonlinear resistor is an active element, since the instantaneous power consumed by
the nonlinear resistor satisfies

PR(t) ≜ vR(t) iR(t) = −a vR(t)
2

(
1− 1

a
− vR(t)

)
< 0, (286)

when vR(t) < 1− 1

a
.

The dynamics of the nonlinear resistor circuit shown in Fig. 28 is given by

Dynamics of the nonlinear resistor circuit

dv

dt
= −f(v) = av(1− v)− v = −av

(
v − 1 +

1

a

)
, (287)

where C = 1 and f(v) = −av(1− v) + v. Assume that a > 1. Then Eq. (287) has the unstable equilibrium

point at origin and the asymptotically stable point at v = 1− 1

a
> 0. If the initial condition v(0) is positive,

then v(t) → 1− 1

a
for t > 0 and if the initial condition v(0) is negative, then v(t) → −∞ for t > 0.

From Eq. (283), we obtain the discretized equation for Eq. (287)
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Logistic map
vn+1 = a vn(1− vn), (288)

where ∆t = 1. Thus we obtain the well-known logistic map [14]. The chaotic behavior of the logistic map
(288) is shown in Fig. 29. The correlation between vn and vn+20 is very weak as shown in Fig. 29(b).

(a) Time series plot of vn vs. n. (b) Plot for vn vs. vn+20.

Figure 29: Chaotic behavior of the logistic map (288). Parameter: a = 3.8. Initial condition: v0 = 0.1.

(2) Kawakami one-dimensional map

Assume that the v − i characteristic of the nonlinear resistor is given by

iR = f(vR) = a− vR
2 + vR, (289)

where a > 0. The nonlinear resistor is an active element, since the instantaneous power consumed by the
nonlinear resistor satisfies

PR(t) ≜ vR(t) iR(t) = (a− vR(t)
2
+ vR(t))vR(t) < 0, (290)

when vR(t) is sufficiently large.
The dynamics of the nonlinear resistor circuit shown in Fig. 28 is given by

Dynamics of the nonlinear resistor circuit

dv

dt
= −f(v) = v2 − v − a, (291)

where C = 1 and f(v) = −v2+v+a. It has the stable equilibrium point p1 =
1−

√
1 + 4a

2
and the unstable

equilibrium point p2 =
1 +

√
1 + 4a

2
, where p1 < p2. Thus, if the initial condition v(0) < p2, then v(t) → p1

for t > 0, and if the initial condition v(0) > p2, then v(t) → ∞ for t > 0.
From Eq. (283), we obtain the discretized equation for Eq. (291)

Kawakami one-dimensional map

vn+1 = vn
2 − a, (292)
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where ∆t = 1. Thus we obtain the Kawakami one-dimensional map [33]. The chaotic behavior of the
Kawakami one-dimensional map (292) is shown in Fig. 30. The correlation between vn and vn+20 is very
weak as shown in Fig. 30(b).

(a) Time series plot of vn vs. n. (b) Plot for vn vs. vn+20.

Figure 30: Chaotic behavior of the Kawakami one-dimensional map (292). Parameter: a = 1.7. Initial
condition: v0 = 0.1.

(3) One-dimensional map

Assume that the v − i characteristic of the nonlinear resistor is given by

iR = f(vR) = (vR − a)(vR − b), (293)

where a and b are constants which satisfy a < 0 < b. The nonlinear resistor is an active element, since the
instantaneous power consumed by the nonlinear resistor satisfies

PR(t) ≜ vR(t) iR(t) = (vR(t)− a)(vR(t)− b)vR(t) < 0, (294)

when a < vR(t) < b.
The dynamics of the nonlinear resistor circuit shown in Fig. 28 is given by

Dynamics of the nonlinear resistor circuit

dv

dt
= −(v − a)(v − b), (295)

where C = 1 and f(v) = (v − a)(v − b). This equation has the unstable equilibrium point pa at v = a and
the asymptotically stable equilibrium point pb at v = b. Thus, if the initial condition v(0) > a, then v(t) → b
and if the initial condition v(0) < a, then v(t) → −∞.

The discretized equation for Eq. (295) is given by

One-dimensional map A

vn+1 = −(vn − a)(vn − b) + vn, (296)

where ∆t = 1. In our computer simulations, Eq. (296) exhibits chaotic behavior for a = −1 and b = 1.8 as
shown in Fig. 31. The correlation between vn and vn+20 is very weak as shown in Fig. 31(b).
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(a) Time series plot of vn vs. n. (b) Plot for vn vs. vn+20.

Figure 31: Chaotic behavior of the one-dimensional map A (296). Parameters: a = −1, b = 1.8. Initial
condition: v0 = 0.1.

5.1.2 Piecewise-linear nonlinearity

Consider the nonlinear resistors with piecewise-linear nonlinearity composed of straight-line segments.

(1) Piecewise-linear map A

Assume that the v − i characteristic of the nonlinear resistor is given by

iR = f(vR) = −a | vR | +b+ vR, (297)

where a > 0 and b > 0 are constants. The nonlinear resistor is an active, since the instantaneous power
consumed by the nonlinear resistor satisfies

PR(t) ≜ vR(t) iR(t) =
(
−a | vR(t) | +b+ vR(t)

)
vR(t) < 0, (298)

when vR(t) < 0 and | vR(t) |≪ 1. The dynamics of the circuit is given by

Dynamics of the nonlinear resistor circuit

dv

dt
= a | v | −b− v. (299)

If a > 1, then it has a stable equilibrium point p1 = − b

a+ 1
and an unstable equilibrium point p2 =

b

a− 1
,

where p1 < p2. Thus, if the initial condition x(0) < p2, then x(t) → p1 for t > 0, and if the initial condition
x(0) > p2, then x(t) → ∞ for t > 0.

The discretized equation for Eq. (299) is given by

Piecewise-linear map A

vn+1 = a | vn | −b, (300)

where ∆t = 1. This is the piesewise-linear version of the Kawakami one-dimensional map (292).
In our computer simulations, Eq. (300) exhibits chaotic behavior for a = 1.5 and b = 0.5 as shown in

Fig. 32. The correlation between vn and vn+20 is very weak as shown in Fig. 32(b).
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(a) Time series plot of vn vs. n. (b) Plot for vn vs. vn+20.

Figure 32: Chaotic behavior of the piecewise-linear map A (296). Parameters: a = 1.5, b = 0.5. Initial
condition: v0 = 0.1.

(1) Piecewise-linear map B

Assume that the v − i characteristic of the nonlinear resistor is given by

iR = f(vR) = −avR − 0.5(b− a)
(
| vR + 0.5 | − | vR − 0.5 |

)
+ vR, (301)

where a and b are constants. Assume that a = −1.98 and b = 1.98. The nonlinear resistor is an active, since
the instantaneous power consumed by the nonlinear resistor satisfies

PR(t) ≜ vR(t) iR(t) =
[
−avR(t)− 0.5(b− a)

(
| vR(t) + 0.5 | − | vR(t)− 0.5 |

)
+ vr(t)

]
vR(t) ≤ 0, (302)

when | vR(t) |≪ 1. The dynamics of the circuit is given by

Dynamics of the nonlinear resistor circuit

dv

dt
= av + 0.5(b− a)

(
| v + 0.5 | − | v − 0.5 |

)
− v. (303)

The origin is the unstable equilibrium point, and the points p1 ≈ −0.664 and p2 ≈ 0.664 are the asymptot-
ically stable equilibrium points. Thus, if the initial condition v(t0) is positive, then v(t) → p2, and if the
initial condition v(t0) is negative, then v(t) → p1.

The discretized equation for Eq. (299) is given by

Piecewise-linear map B

vn+1 = avn + 0.5(b− a)
(
| vn + 0.5 | − | vn − 0.5 |

)
, (304)

where ∆t = 1. If Eq. (304) is defined on the interval 0 ≤ vn ≤ 1, then it is equivalent to the tent map (tent
transformation) [13, 27].

In our computer simulations, Eq. (304) exhibits chaotic behavior for a = −1.98 and b = 1.98 as shown
in Fig. 334. The correlation between vn and vn+20 is much more weaker than in other examples (see Fig.
33(b)).

4Note that if for a = −2 and b = 2, then we cannot get the expected result in our computer simulations. In floating point
calculations, the errors will accumulate and the calculation will not be able to be performed correctly.
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(a) Time series plot of vn vs. n. (b) Plot for vn vs. vn+20.

Figure 33: Chaotic behavior of the piecewise-linear map B (tent map) (296). Parameters: a = −1.98, b =
1.98. Initial condition: v0 = 0.15.

(1) Piecewise-linear map C

Define the function g(x) by

g(x) =

{
ax if x ≤ 0.5,
a(x− 0.5) if x > 0.5,

(305)

where a > 1 is a positive constant. Assume that the v − i characteristic of the nonlinear resistor is given by

iR = f(vR) = −g(vR) + vR. (306)

Since a > 1, the nonlinear resistor is an active, since the instantaneous power consumed by the nonlinear
resistor satisfies

PR(t) ≜ vR(t) iR(t) =
[
−g(vR(t)) + vR(t)

]
vR(t) ≤ 0, (307)

when vR(t) ≤ 0.5.
The dynamics of the circuit is given by

Dynamics of the nonlinear resistor circuit

dv

dt
= g(v)− v. (308)

It has the two unstable equilibrium points, p1 = 0 and p2 =
a

2(a− 1)
.

The discretized equation for Eq. (299) is given by

Piecewise-linear map C

vn+1 = g(vn), (309)

where ∆t = 1. If a = 2 and Eq. (309) is defined on the interval 0 ≤ vn ≤ 1, then it is equivalent to the
doubling map (also known as the doubling transformation, Bernoulli shift map, or sawtooth map) [27].

In our computer simulations, Eq. (304) exhibits chaotic behavior for a = 1.99, as shown in Fig. 335.
The correlation between vn and vn+20 is very weak as shown in Fig. 34(b), which is similar to that in Fig.
33(b).

5Note that if for a = 2, then we cannot get the expected result in our computer simulations. In floating point calculations,
the errors will accumulate and the calculation will not be able to be performed correctly.
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(a) Time series plot of vn vs. n. (b) Plot for vn vs. vn+20.

Figure 34: Chaotic behavior of the piecewise-linear map C (309). Parameter: a = 1.99. Initial condition:
v0 = 0.1.

6 Five Element Nonlinear Resistor Circuits

Consider the five-element circuit in Fig. 35, which consists of five elements, i.e., a linear inductor L, a linear
capacitor C, a DC voltage source E, a linear resistor r, and a nonlinear resistor with the characteristic curve

iR = f(vR), (310)

where f(vR) is a scaler function of vR. The dynamics of the circuit is given by

Dynamics of the nonlinear resistor circuit

C
dv

dt
= i− f(v),

L
di

dt
= −v − ri− E,

 (311)

where v and i denote the voltage of the capacitor and the current of the inductor, respectively.
We discretize it using the Euler method defined by

Euler method

dv

dt
≈ v(t+∆t)− v(t)

∆t
,

di

dt
≈ i(t+∆t)− i(t)

∆t
,

 (312)

where ∆t is the time step size. Then we can approximate Eq. (311) by

C
v(t+∆t)− v(t)

∆t
= i(t)− f

(
v(t)

)
,

L
x(t+∆t)− x(t)

∆t
= −v(t)− ri(t)− E.

 (313)
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Figure 35: Five-element circuit, which consists of a linear inductor L, a linear capacitor C, a DC voltage
source E, a linear resistor r, and a nonlinear resistor with the characteristic curve iR = f(vR), where iR and
vR are the current through and voltage across the nonlinear resistor, respectively, v is the voltage across the
capacitor with the capacitance C, and i is the current through the inductor with the inductance L.

If we set vn ≜ v(t+ n∆t), and in ≜ i(t+ n∆t), then we get from Eq. (313)

vn+1 − vn =
∆t

C

{
in − f(vn)

}
,

in+1 − in =
∆t

L

{
−vn − rin − E

}
,

 (314)

where n = 0, 1, 2, · · · . We can rewrite Eq. (314) in the following form

Two-dimensional map

vn+1 =
∆t

C

{
in − f(vn)

}
+ vn,

in+1 =
∆t

L

{
−vn − r in − E

}
+ in.

 (315)

6.1 Examples of the nonlinear resistor circuits generating chaotic maps

In this section we show some examples of the nonlinear resistor circuits. They can be transformed into the
two-dimensional chaotic maps.

6.1.1 Van der Pol chaotic map

Assume that the parameters of Eq. (311) are given by

C = 1, L = 1, r = 0, E = 0, (316)

and v − i characteristic of the nonlinear resistor is given by

iR = f(vR) =
vR

3

3
− vR. (317)
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The nonlinear resistor defined by Eq. (317) is eventually passive, meaning that for a large enough | vR(t) |,
the instantaneous power

PR(t) ≜ vR(t) iR(t) =

(
vR(t)

2

3
− 1

)
vR(t)

2
, (318)

is positive, which is consumed by the nonlinear resistor. From Eq. (311), we obtain the following Van der
Pol equation

Dynamics of the nonlinear resistor circuit

dv

dt
= i− v3

3
+ v,

di

dt
= −v.

 (319)

Thus, from Eq.(315), we can obtain the discretized equation for Eq. (319)

Discretized Van der Pol equation

vn+1 = ∆t

(
in − v3n

3
+ vn

)
+ vn,

in+1 = −∆t vn + in.

 (320)

The chaotic behavior of the discretized Van der Pol equation is shown in Fig. 36.

(a) (b)

Figure 36: Chaotic behavior of the discretized Van der Pol equation (320) for two different parameters.
(a) Parameter: ∆t = 0.52. Initial conditions: v0 = 0.01, i0 = 0.02. (b) Parameter: ∆t = 0.64. Initial
conditions: v0 = 0.01, i0 = 0.02.

6.1.2 Hopalong Map

Assume next that the parameters in Eq. (311) are given by

C = 1, L = 1, r = 1, E = −a, (321)

and v − i characteristic of the nonlinear resistor is defined by
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f(vR) = vR + sgn(vR)
√
| bvR − c |, (322)

where c is a constant. The nonlinear resistor defined by Eq. (322) is passive, since the instantaneous power
PR(t) consumed by the nonlinear resistor is given by

PR(t) ≜ vR(t) iR(t) = vR
2 + vR sgn(vR(t))

√
| bvR(t)− c | ≥ 0. (323)

However, the DC voltage source E (which is an active element) powers the nonlinear circuit.
From Eq. (311), we obtain

Dynamics of the nonlinear resistor circuit

dv

dt
= i− v − sgn(v)

√
| bv − c |,

di

dt
= −v − i+ a.

 (324)

Similarly, from Eq.(315), we obtain its discretized equation

Hopalong Map

vn+1 = in − sgn(vn)
√

| bvn − c |,

in+1 = −vn + a,

}
(325)

where ∆t = 1. Thus we obtain the Hopalong map [31]. The chaotic behavior of the Hopalong map is shown
in Fig. 37.

(a) (b)

Figure 37: Chaotic behavior of the Hopalong map (325) for two different parameters. (a) Parameters:
a = −0.1, b = 0.3, c = 0.3. Initial conditions: v0 = 0, i0 = 0. (b) Parameters: a = 0.4, b = 1, c = −0.01.
Initial conditions: v0 = 0, i0 = 0.

6.1.3 Gingerbreadman Map

Assume next that the parameters in Eq. (311) are given by

C = 1, L = 1, r = 1, E = 0, (326)

and the v − i characteristic of the nonlinear resistor is defined by
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f(vR) = vR − a | vR | −1, (327)

where a > 0 is constant. The nonlinear resistor defined by Eq. (327) is active, since the instantaneous power
PR(t) for a ̸= 1 satisfies

PR(t) ≜ vR(t) iR(t) = vR (vR(t)− a | vR(t) | −1) < 0, (328)

when 0 < vR(t) <
1

1− a
. If a = 1, then PR(t) < 0 when vR(t) > 0.

From Eq. (311), we obtain

Dynamics of the nonlinear resistor circuit

dv

dt
= i− v + a | v | +1,

di

dt
= −v − i.

 (329)

If we replace the variable i with −j, we get

dv

dt
= −j − v + a | v | +1,

dj

dt
= v − j.

 (330)

From Eq.(315), the discretized equation for Eq. (330) is given by

Modified Gingerbreadman Map

vn+1 = 1− jn + a | vn |,
jn+1 = vn,

}
(331)

where ∆t = 1. If a = 1, then Eq. (331) is equivalent to the Gingerbreadman map (see [32]). The chaotic
behavior of Eq. (331) is shown in Fig. 38.

(a) (b)

Figure 38: Chaotic behavior of the Modified Gingerbreadman map (331) for two different parameters.
(a) Parameter a = 0.5. Initial conditions: v0 = −0.1, j0 = 0. (b) Parameter a = 1. Initial conditions:
v0 = −0.1, j0 = 0.
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6.1.4 Lozi Map

Assume next that the parameters in Eq. (311) are given by

C = 1, L = −1

b
, r = −1

b
, E = 0, (332)

and v − i characteristic of the nonlinear resistor is defined by

f(vR) = vR − a | vR | −1, (333)

where a > 0 is a constant. The nonlinear resistor defined by Eq. (333) is active, since the instantaneous
power PR(t) consumed by the nonlinear resistor

PR(t) ≜ vR(t) iR(t) = vR(t) (vR − a | vR(t) | −1), (334)

becomes negative when vR(t) > 0. The linear resistor with the negative resistance r = −1

b
is also active.

From Eq. (311), we obtain

dv

dt
= i− v + a | v | +1,(

−1

b

)
di

dt
= −v +

i

b
.

 (335)

It can be written as

Dynamics of the nonlinear resistor circuit

dv

dt
= i− v + a | v | +1,

di

dt
= bv − i.

 (336)

From Eq.(315), the discretized equation for Eq. (336) is given by

Lozi Map

vn+1 = 1− a | vn | +in,

in+1 = bvn,

}
(337)

where ∆t = 1. Thus we obtain the Lozi map [27], which is also obtained from the generalized extended
memristor circuit (see Sec. 4.1.3). We have shown the chaotic behavior of the Lozi map(337) in Fig. 21 of
Sec. 4.1.3.

6.1.5 Hénon map

In this section, we derive the Hénon map from the different elements. Assume next that the parameters in
Eq. (311) are given by

C = −1

b
, L = 1, r = 1, E = 0, (338)

and v − i characteristic of the nonlinear resistor is defined by
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f(vR) = −vR
b

+
avR

2

b2
− 1, (339)

where a = 1.4 and b = 0.3. The nonlinear resistor defined by Eq. (339) is active, since the instantaneous
power PR(t) consumed by the nonlinear resistor

PR(t) ≜ vR(t) iR(t) = vR

(
−vR(t)

b
+

avR(t)
2

b2
− 1

)
, (340)

becomes negative when 0 < vR(t) <
b+ b

√
1 + 4a

2a
. Furthermore, the linear capacitor has a negative

capacitance, that is, C = −1

b
. In this case, the energy W (0, t) stored in the capacitor

W (0, t) =

∫ t

0

vC(τ) iC(τ)dτ =

∫ t

0

vC(τ)

{
C
dvC(τ)

dτ

}
dτ =

∫ t

0

d

dτ

{
C
vC(τ)

2

2

}
dτ = C

vC(τ)
2

2

∣∣∣t
0
= C

vC(t)
2

2
,

(341)
becomes negative, where vC(τ) and iC(τ) are the voltage and the current of the capacitor, respectively, and
we assumed that vC(0) = 0 for simplicity. Thus, it is an active element.

From Eq. (311), we obtain

Dynamics of the nonlinear resistor circuit

−dv

dt
= i+

v

b
− av2

b2
+ 1,

di

dt
= −v − i.

 (342)

If we replace the variable v with −bx, we get

dx

dt
= i− x− ax2 + 1,

di

dt
= bx− i.

 (343)

The discretized equation for Eq. (343) is given by

Hénon map

xn+1 = in − axn
2 + 1,

in+1 = bxn.

}
(344)

where ∆t = 1. Thus we obtain the Hénon map [19], which is also obtained from the generalized extended
memristor circuit (see Sec. 4.1.2). We have shown the chaotic behavior of the Hénon map (344) in Fig. 20
of Sec. 4.1.2.

6.1.6 Yamaguti-Ushiki map

In this section, we derive the Yamaguti-Ushiki map. Assume next that the parameters in Eq. (311) are
given by

C = −1, L = 1, r = 1, E = 0, (345)

and v − i characteristic of the nonlinear resistor is defined by
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f(vR) = (2h− 1) vR + 2h vR
2, (346)

where h > 0 is a constant. The nonlinear resistor defined by Eq. (346) is active, since the instantaneous
power PR(t) consumed by the nonlinear resistor

PR(t) ≜ vR(t) iR(t) = vR

{
(2h− 1) vR(t) + 2h vR(t)

2
}
, (347)

becomes negative when vR(t) ≪ 0, that is, when vR(t) is sufficiently small, and 0 < h < 0.5. Furthermore,
the linear capacitor has the negative capacitance, that is, C = −1.

From Eq. (311), we obtain

Dynamics of the nonlinear resistor circuit

−dv

dt
= i− (2h− 1)v − 2htv2,

di

dt
= −v − i.

 (348)

If we replace the variable v with −x, then we get from Eq. (348)

dx

dt
= i+ (2h− 1)x− 2htx2,

di

dt
= x− i.

 (349)

The discretized equation for Eq. (349) is given by

xn+1 = in + 2hxn − 2hxn
2,

in+1 = xn.

}
(350)

It can be written as

Yamaguti-Ushiki map

xn+1 = 2hxn(1− xn) + in,

in+1 = xn.

}
(351)

Thus, we obtain the Yamaguti-Ushiki map, which is obtained by the discretization of the logistic differential
equation using the central difference method [1]. Let us briefly explain the above. The logistic differential
equation is given by

dy

dt
= y(1− y). (352)

Using the central difference method for
dy

dt
, we obtain

yn+1 − yn−1

2∆t
= yn(1− yn), (353)

where yn = y(t + n∆t) and y1 = y0 + ∆ty0(1 − y0) and ∆t is the time step size. If we set zn+1 = yn, Eq.
(353) can be transformed into the form

yn+1 = 2∆t yn(1− yn) + zn,

zn+1 = yn.

}
(354)

Thus, Eq. (354) is equivalent to Eq. (351), if h = ∆t. The chaotic behavior of Yamaguti-Ushiki map (351)
is shown in Fig. 39. Note that if the initial condition is given by x0 = 0.525 and i0 = 0.0, then the overflow
occurred in computation when n exceeds 4080.
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(a) (b)

Figure 39: Behavior of the Yamaguti-Ushiki map (351) for different initial conditions. (a) Parameter:
h = 0.402. Initial conditions: x0 = 0.5, i0 = 0.0. (b) Parameter: h = 0.402. Initial conditions: x0 =
0.5, i0 = 0.525.

6.1.7 Helleman map

Assume next that the parameters in Eq. (311) are given by

C =
1

b
, L = 1, r = 1, E = 0, (355)

and v − i characteristic of the nonlinear resistor is defined by

f(vR) = − (2a− 1)vR
b

− 2avR
2

b2
, (356)

where a = 1.64 and b = −0.21. The nonlinear resistor defined by Eq. (356) is active, since the instantaneous
power PR(t) consumed by the nonlinear resistor

PR(t) ≜ vR(t) iR(t) = vR(t)

(
− (2a− 1)vR(t)

b
− 2avR(t)

2

b2

)
, (357)

becomes negative when vR(t) is sufficiently large. Furthermore, the linear capacitor C has a negative
capacitance, i.e.,

C =
1

b
= − 1

0.21
. (358)

From Eq. (311), we obtain

Dynamics of the nonlinear resistor circuit(
1

b

)
dv

dt
= i+

(2a− 1)v

b
+

2av2

b2
,

di

dt
= −v − i.

 (359)

If we replace the variable v with bx, we get

dx

dt
= i+ (2a− 1)x+ 2ax2,

di

dt
= −bx− i.

 (360)
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Furthermore, if we replace the variable i with −j, we get

dx

dt
= −j + (2a− 1)x+ 2ax2,

dj

dt
= bx− j.

 (361)

The discretized equation for Eq. (361) is given by

xn+1 =
{
−jn + (2a− 1)xn + 2axn

2
}
∆t+ xn,

jn+1 = (bxn − jn)∆t+ jn,

}
(362)

where ∆t is the time step size. If ∆t = 1, then Eq. (362) can be recast into the Helleman map [34]:

Helleman Map

xn+1 = −jn + 2axn + 2axn
2,

jn+1 = bxn.

}
(363)

The chaotic behavior of the Helleman map (363) is shown in Fig. 40. Its attractor is very similar to that
of the Hénon map (188). Note that the chaotic attractors of Eqs. (362) and (363) are quite different, even
though the parameter value of a is different.

(a) (b)

Figure 40: (a) Chaotic behavior of the Helleman map (363). Parameters: a = 1.64, b = −0.21. Initial
conditions: x0 = −0.5, j0 = 0.1. (b) Chaotic behavior of the discretized equation (362). Parameters:
a = 3.2, b = −0.21. Initial conditions: x0 = −0.5, j0 = 0.1, ∆t = 0.5.
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6.1.8 Kawakami Maps

Many interesting examples of two-dimensional chaotic maps are given by Kawakami [33]. In this section we
derive some of their examples using Eq. (311). In these examples, the v − i characteristics of the nonlinear
resistors are quite similar, but the associated chaotic maps are quite different.

Example 1.

Assume next that the parameters in Eq. (311) are given by

C = 1, L = 1, r = 1, E = 0, (364)

and v − i characteristic of the nonlinear resistor is defined by

f(vR) = (1− a)vR − 5

1 + vR2
, (365)

where a is a constant. The nonlinear resistor defined by Eq. (365) is active, since the instantaneous power
PR(t) consumed by the nonlinear resistor satisfies

PR(t) ≜ vR(t) iR(t) = vR

{
(1− a)vR(t)−

5

1 + vR(t)
2

}
< 0, (366)

for some vR(t), which depends on the parameter a. Suppose a = −1.03. Then PR(t) < 0 when vR(t) = 0.5.
From Eq. (311), we obtain

Dynamics of the nonlinear resistor circuit

dv

dt
= i− (1− a)v +

5

1 + v2
,

di

dt
= −v − i.

 (367)

From Eq.(315), the discretized equation for Eq. (367) is given by

Kawakami Map A

vn+1 = in + avn +
5

1 + vn2
,

in+1 = −vn,

 (368)

where ∆t = 1. Thus, we get the chaotic map of Kawakami [33]. The chaotic behavior of the Kawakami Map
A (368) is shown in Fig. 41.
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(a) (b)

Figure 41: Chaotic behavior of the Kawakami Map A (368) for two different parameters. (a) Parameter:
a = −1.03. Initial conditions: v0 = 4.0, i0 = 0. (b) Parameter: a = 0.46. Initial conditions: v0 = 4.0, i0 = 0.

Example 2.

Assume next that the parameters in Eq. (311) are given by

C = 1, L = 1, r = 1, E = 0, (369)

and v − i characteristic of the nonlinear resistor is defined by

f(vR) = (1− a)vR − 5vR
1 + vR2

, (370)

where a is a constant.
If a < 1, then the nonlinear resistor defined by Eq. (370) is eventually passive, since for a large enough

| vR |, the instantaneous power PR(t) satisfies

PR(t) ≜ vR(t) iR(t) = vR

{
(1− a)vR − 5vR(t)

1 + vR(t)
2

}
= (1− a)vR(t)

2 − 5vR(t)
2

1 + vR(t)
2 > 0, (371)

and PR(t) < 0 for 0 <| vR |≪ 1 and for some parameter a (for example, a > −1.5).
If a > 1, then the nonlinear resistor defined by Eq. (370) is active, since the instantaneous power PR(t)

consumed by the nonlinear resistor satisfies

PR(t) ≜ vR(t) iR(t) = (1− a)vR(t)
2 − 5vR(t)

2

1 + vR(t)
2 ≤ 0. (372)

From Eq. (311), we obtain

Dynamics of the nonlinear resistor circuit

dv

dt
= i− (1− a)v +

5v

1 + v2
,

di

dt
= −v − i.

 (373)

From Eq.(315), the discretized equation for Eq. (373) is given by
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Kawakami Map B

vn+1 = in + avn +
5vn

1 + vn2
,

in+1 = −vn.

 (374)

where ∆t = 1. Thus, we get the chaotic map of Kawakami [33]. The chaotic behavior of the Kawakami Map
B (374) is shown in Fig. 42.

(a) (b)

Figure 42: Chaotic behavior of the Kawakami Map B (374) for two different parameters. (a) Parameter:
a = 0.2. Initial conditions: v0 = 0.1, i0 = 0. (b) Parameter: a = −1.0. Initial conditions: v0 = 0.1, i0 = 0.

Example 3.

Assume next that the parameters in Eq. (311) are given by

C = 1, L = 1, r = 1, E = 0, (375)

and v − i characteristic of the nonlinear resistor is defined by

f(vR) = (1− a)vR +
5

1 + vR2
− 6, (376)

where a is a constant. The nonlinear resistor defined by Eq. (376) is active, since the instantaneous power
PR(t) consumed by the nonlinear resistor satisfies

PR(t) ≜ vR(t) iR(t) = vR

{
(1− a)vR(t) +

5

1 + vR(t)
2 − 6

}
< 0, (377)

for some vR(t), which depends on the parameter a. Suppose a = −1.32. Then PR(t) < 0 when vR(t) = 1.
From Eq. (311), we obtain

Dynamics of the nonlinear resistor circuit

dv

dt
= i− (1− a)v − 5

1 + v2
+ 6,

di

dt
= −v − i.

 (378)
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From Eq.(315), the discretized equation for Eq. (378) is given by

Kawakami Map C

vn+1 = in + avn − 5

1 + vn2
+ 6,

in+1 = −vn.

 (379)

where ∆t = 1. Thus, we get the chaotic map of Kawakami [33]. The chaotic behavior of the Kawakami Map
C (379) is shown in Fig. 43.

(a) (b)

Figure 43: Chaotic behavior of the Kawakami Map C (379) for two different parameters. (a) Parameter:
a = 1.25. Initial conditions: v0 = 30.0, i0 = 0. (b) Parameter: a = −0.8. Initial conditions: v0 = 26.0, i0 =
0.

Example 4.

Assume next that the parameters in Eq. (311) are given by

C = 1, L = 1, r = 1, E = 0, (380)

and v − i characteristic of the nonlinear resistor is defined by

f(vR) = (1− a)vR − 4 tan−1(vR)

1 + vR2
, (381)

where a = 0.55 or 0.95. The nonlinear resistor defined by Eq. (365) is eventually passive, since the
instantaneous power PR(t) ≤ 0 when vR(t) ≈ 0, however, when | vR(t) | is sufficiently large, the instantaneous
power PR(t) > 0. Here, PR(t) is defined by

PR(t) ≜ vR(t) iR(t) = vR

{
(1− a)vR(t)−

4 tan−1(vR(t))

1 + vR(t)
2

}
. (382)

From Eq. (311), we obtain
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Dynamics of the nonlinear resistor circuit

dv

dt
= i− (1− a)v +

4 tan−1(v)

1 + v2
,

di

dt
= −v − i.

 (383)

From Eq.(315), the discretized equation for Eq. (367) is given by

Kawakami Map D

vn+1 = in + avn +
4 tan−1(vn)

1 + vn2
,

in+1 = −vn,

 (384)

where ∆t = 1. Thus, we get the chaotic map of Kawakami [33]. The chaotic behavior of the Kawakami Map
D (384) is shown in Fig. 44.

(a) (b)

Figure 44: Chaotic behavior of the Kawakami Map D (384) for two different parameters. (a) Parameter:
a = 0.55. Initial conditions: v0 = 0.1, i0 = 0. (b) Parameter: a = 0.95. Initial conditions: v0 = 0.1, i0 = 0.

Example 5.

Assume next that the parameters in Eq. (311) are given by

C = 1, L =
1

0.995
, r =

1

0.995
, E = 0, (385)

and v − i characteristic of the nonlinear resistor is defined by

f(vR) = avR − 5

1 + vR2
+ 5. (386)

The nonlinear resistor defined by Eq. (386) is active, since the instantaneous power PR(t) consumed by the
nonlinear resistor satisfies

PR(t) ≜ vR(t) iR(t) = vR

{
avR(t)−

5

1 + vR(t)
2 + 5

}
< 0, (387)
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for some vR(t), which depends on the parameter a. Suppose a = 1.97 or a = 1.7. Then PR(t) < 0 when
vR(t) = −2.

From Eq. (311), we obtain

Dynamics of the nonlinear resistor circuit

dv

dt
= i− av +

5

1 + v2
− 5,

di

dt
= −0.995v + i.

 (388)

From Eq.(315), the discretized equation for Eq. (388) is given by

Kawakami Map E

vn+1 = in + (1− a)vn +
5

1 + vn2
− 5,

in+1 = −0.995vn,

 (389)

where ∆t = 1. Thus, we get the chaotic map of Kawakami [33]. The chaotic behavior of the Kawakami Map
E (389) is shown in Fig. 45.

(a) (b)

Figure 45: Chaotic behavior of the Kawakami Map E (389) for two different parameters. (a) Parameter:
a = 1.7. Initial conditions: v0 = 4, i0 = 0. (b) Parameter: a = 1.97. Initial conditions: v0 = 4, i0 = 0.

Example 6.

Assume next that the parameters in Eq. (311) are given by

C =
1

b
, L = 1, r = 1, E = 0, (390)

and v − i characteristic of the nonlinear resistor is defined by

f(vR) =

(
1

b

){
(1− a)vR − 5

1 + vR2
− 1

}
, (391)
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where a < 0 and b > 0 are constants. The nonlinear resistor defined by Eq. (376) is active, since the
instantaneous power PR(t) consumed by the nonlinear resistor satisfies

PR(t) ≜ vR(t) iR(t) =

(
vR(t)

b

) {
(1− a)vR(t)−

5

1 + vR(t)
2 − 1

}
< 0, (392)

for some vR(t), which depends on the parameter a. Suppose a = −1.11. Then PR(t) < 0 when vR(t) = 0.5.
From Eq. (311), we obtain

Dynamics of the nonlinear resistor circuit(
1

b

)
dv

dt
= i−

(
1

b

){
(1− a)v − 5

1 + v2
− 1

}
,

di

dt
= −v − i.

 (393)

It can be recast into the form

Dynamics of the nonlinear resistor circuit

dv

dt
= bi− (1− a)v +

5

1 + v2
+ 1,

di

dt
= −v − i.

 (394)

From Eq.(315), the discretized equation for Eq. (394) is given by

Kawakami Map F

vn+1 = bin + avn +
5

1 + vn2
+ 1,

in+1 = −vn,

 (395)

where ∆t = 1. Thus, we get the chaotic map of Kawakami [33]. The chaotic behavior of the Kawakami Map
F (395) is shown in Fig. 46.

(a) (b)

Figure 46: Chaotic behavior of the Kawakami Map F (395) for two different parameters. (a) Parameters:
a = −1.11, b = 0.95. Initial conditions: v0 = 0.1, i0 = 0. (b) Parameters: a = −0.7, b = 0.95. Initial
conditions: v0 = 0.1, i0 = 0.
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6.2 Chua circuit

Consider the Chua circuit in Fig. 47 which exhibits chaotic behavior (see [35] for moredetails). It contains
the five circuit elements: two linear capacitors C1 and C2, one linear inductor L, one linear resistor R, and
one nonlinear resistor. The dynamics of this circuit is given by

C1
dv1
dt

=
v2 − v1

R
− f(v1),

C2
dv2
dt

= y − v2 − v1
R

,

L
di

dt
= −v2,


(396)

where the symbols v1, v2, and i denote the voltage across the capacitor C1, the voltage across the capacitor
C2, and the current through the inductor L, respectively. The v − i characteristic of the nonlinear resistor
is given by

iR = f(vR) =
1

16
vR

3 − 7

6
vR, (397)

where iR and vR are the current through and voltage across the nonlinear resistor.

Figure 47: Chua circuit, which contains five circuit elements: two linear capacitors C1 and C2, one linear
inductor L, one linear resistor R, and one nonlinear resistor, where v1, v2, and i denote the voltage across
the capacitor C1, the voltage across the capacitor C2, and the current through the inductor L, respectively.

The v − i characteristic of the nonlinear resistor is given by iR = f(vR) =
1

16
vR

3 − 7

6
vR, where iR and vR

are the current through and voltage across the nonlinear resistor.

The nonlinear resistor defined by Eq. (397) is active, since the instantaneous power PR(t) consumed by
the nonlinear resistor satisfies

PR(t) ≜ vR(t) iR(t) = vR(t)

(
1

16
vR(t)

3 − 7

6
vR(t)

)
< 0, (398)

when 0 <| vR(t) |<
√

112
6 ≈ 4.32.

If we set

C1 =
1

α
, C2 = 1, L =

1

β
, R = 1,

x = v1, y = v2, i = z,

 (399)
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then the dynamics of the Chua circuit is defined by [35, 36]

dx

dt
= α

(
y − x− f(x)

)
,

dy

dt
= x− y + z,

dz

dt
= −βy,


(400)

where f(x) is given by

f(x) =
1

16
x3 − 7

6
x. (401)

Equation (400) exhibits chaotic behavior and many well-known bifurcation phenomena (see [35, 36] for more
details). We discretize Eq. (400) using the Euler method. Then we obtain the following equation:

Discretized Chua circuit equation

xn+1 = α
(
yn − xn − f(xn)

)
∆t+ xn,

yn+1 =
(
xn − yn + zn

)
∆t+ yn,

zn+1 = −βyn∆t+ zn,

 (402)

where ∆t is the time step size, xn ≜ x(t+ n∆t), yn ≜ y(t+ n∆t), and zn ≜ z(t+ n∆t) (n = 0, 1, 2, · · · ).
We show the chaotic behavior of Eq. (402) in Fig. 48, which clearly shows the topological structure

(see the paper-sheet model of Ref. [24]) of the chaotic behavior. We have observed the similar topological
structure in Figs. 11, 12, 13, 14, and 17. Note that in the computer simulations, Eq. (400) has no chaotic
attractor when we use the parameter values shown in Fig. 48.

(a) (b)

Figure 48: Chaotic behavior of the discretized Chua circuit equation (402) for two different parameters.
(a) Parameters: α = 3, β = 5, ∆t = 0.226. Initial conditions: x0 = 0.1, y0 = 0.1, z0 = 0.1. (b) Parameters:
α = 3, β = 5, ∆t = 0.25. Initial conditions: x0 = 0.1, y0 = 0.1, z0 = 0.1.
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7 Controlled Source Circuits

Consider the controlled source circuit in Fig. 49, which consists of a linear inductor L, a linear capacitor
C, a linear resistor r, a controlled current source, and an independent voltage source e(t). The controlled
current source is define by

ic = fc(v, i), (403)

where v and i are the voltage across the capacitor and the current through the inductor, respectively and ic
is the output current of the controlled current source. The controlled current source and the independent
voltage source are usually active elements.

Figure 49: Controlled Source Circuit, which consists of a linear inductor L, a linear capacitor C, a linear
resistor r, a controlled current source defined by ic = fc(v, i), and an independent voltage source e(t), where
v is the voltage across the capacitor with the capacitance C and i is the current through the inductor with
the inductance L, and ic is the output current of the controlled current source.

The dynamics of this circuit is given by

Dynamics of the controlled circuit

C
dv

dt
= i− fc(v, i),

L
di

dt
= −v − ri− e(t),

 (404)

where v and i are the voltage of the capacitor and the current of the inductor. We discretize it using the
Euler method defined by

Euler method

dv

dt
≈ v(t+∆t)− v(t)

∆t
,

di

dt
≈ i(t+∆t)− i(t)

∆t
,

 (405)
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where ∆t is the time step size. Then we can approximate Eq. (404) by

C
v(t+∆t)− v(t)

∆t
= i(t)− fc

(
v(t), i(t)

)
,

L
x(t+∆t)− x(t)

∆t
= −v(t)− ri(t)− e(t).

 (406)

If we set vn ≜ v(t+ n∆t), and in ≜ i(t+ n∆t), then we get from Eq. (406)

vn+1 − vn =
∆t

C

{
in − fc(vn, in)

}
,

in+1 − in =
∆t

L

{
−vn − rin − e(t+ n∆t)

}
,

 (407)

where n = 0, 1, 2, · · · . We can rewrite Eq. (407) in the following form

Two-dimensional map

vn+1 =
∆t

C

{
in − fc(vn, in)

}
+ vn,

in+1 =
∆t

L

{
−vn − r in − e(n∆t)

}
+ in.

 (408)

Example 1.

Assume next that the parameters in Eq. (311) are given by

C =
1

b
, L = 1, r = 1, e(t) = 0, (409)

and the controlled current source fc(v, i) is defined by

fc(v, i) = (1− a)
(v
b

)
+

5

1 +
(v
b

)2 − 6− 0.2 e−i2 , (410)

where a is a constant.
Substituting Eqs. (409) and (410) into Eq. (404), we obtain

Dynamics of the controlled source circuit(
1

b

)
dv

dt
= i− (1− a)

(v
b

)
− 5

1 +
(v
b

)2 + 6 + 0.2 e−i2 ,

di

dt
= −v − i.

 (411)

If we set v = bx, we obtain

dx

dt
= i− (1− a)x− 5

1 + x2
+ 6 + 0.2 e−i2 ,

di

dt
= −bx− i.

 (412)
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Using the Euler method, the discretized equation for Eq. (412) is given by

Kawakami Map G

xn+1 = in + axn − 5

1 + xn
2
+ 6 + 0.2 e−in

2

,

in+1 = −bxn,

 (413)

where ∆t = 1. Thus, we get the chaotic map of Kawakami shown in [33]. The chaotic behavior of the
Kawakami Map G (413) is shown in Fig. 50.

(a) (b)

Figure 50: Chaotic behavior of the Kawakami Map G (413) for two different parameters. (a) Parameters:
a = −0.96, b = 0.97. Initial conditions: x0 = 0.1, i0 = 0. (b) Parameters: a = −0.55, b = 0.97. Initial
conditions: x0 = 0.1, i0 = 0.

Example 2.

Assume that the parameters in Eq. (311) are given by

C =
1

b
, L = 1, r = 1, e(t) = 0, (414)

and the controlled current source fc(v, i) is defined by

fc(v, i) = (1− a)
(v
b

)
−

5

{(v
b

)2
− 1

}
(v
b

)2
+ 1

− tan−1
(v
b
+ i
)
, (415)

where a is a constant.
Substituting Eqs. (414) and (415) into Eq. (404), we obtain
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Dynamics of the controlled source circuit

(
1

b

)
dv

dt
= i− (1− a)

(v
b

)
+

5

{(v
b

)2
− 1

}
(v
b

)2
+ 1

+ tan−1
(v
b
+ i
)
,

di

dt
= −v − i.


(416)

If we set v = bx, we obtain

dx

dt
= i− (1− a)x+

5(x2 − 1)

x2 + 1
+ tan−1(x+ i),

di

dt
= −bx− i.

 (417)

Using the Euler method, the discretized equation for Eq. (417) is given by

Kawakami map H

xn+1 = in + axn +
5(xn

2 − 1)

xn
2 + 1

+ tan−1(xn + in),

in+1 = −bxn,

 (418)

where ∆t = 1. Thus, we get the chaotic map of Kawakami shown in [33]. The chaotic behavior of the
Kawakami Map H (418) is shown in Fig. 51.

(a) (b)

Figure 51: Chaotic behavior of the Kawakami Map H (418) for two different parameters. (a) Parameters:
a = 0.5, b = 0.93. Initial conditions: x0 = 0.1, i0 = 0. (b) Parameters: a = −1.2, b = 0.94. Initial
conditions: x0 = 0.1, i0 = 0.

Example 3.

Assume next that the parameters in Eq. (311) are given by

C =
1

b
, L = 1, r = 1, e(t) = d cos(πt), (419)

and the controlled current source fc(v, i) is defined by
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fc(v, i) = (1− a)
(v
b

)
−

5
(v
b

)2
1 +

(v
b

)2 − 1 + 0.2 e−y2

, (420)

where a and b are constants.
Substituting Eqs. (419) and (420) into Eq. (404), we obtain

Dynamics of the controlled source circuit

(
1

b

)
dv

dt
= i− (1− a)

(v
b

)
+

5
(v
b

)2
1 +

(v
b

)2 + 1− 0.2 e−y2

,

di

dt
= −v − i− e(t).


(421)

If we set v = bx and e(t) = −c cos(πt), we obtain

dx

dt
= i− (1− a)x+

5x2

1 + x2
+ 1− 0.2 e−y2

,

di

dt
= −bx− i+ c cos(πt).

 (422)

Using the Euler method, the discretized equation for Eq. (422) is given by

Kawakami Map I

xn+1 = in + axn +
5xn

2

1 + xn
2
+ 1− 0.2 e−yn

2

,

in+1 = −bxn + c cos(nπ) = −bxn + c(−1)n,

 (423)

where ∆t = 1. Thus, we get the chaotic map of Kawakami shown in [33]. The chaotic behavior of the
Kawakami Map I (423) is shown in Fig. 52 (Note that a different plotting method is used in [33]).

(a) (b)

Figure 52: Chaotic behavior of the Kawakami Map I (423) for two different parameters. (a) Parameters:
a = 0.01, b = 0.97, c = 4. Initial conditions: x0 = 0.1, i0 = 0. (b) Parameters: a = 0.18, b = 0.96, c = 5.
Initial conditions: x0 = 0.1, i0 = 0.
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Example 4.

Assume that the parameters in Eq. (311) are given by

C = −1

b
, L = 1, r = 1, e(t) = 0, (424)

and the controlled current source fc(v, i) is defined by

fc(v, i) = −
(v
b

)
+ a

∣∣∣ v
b

∣∣∣− 1, (425)

where a and b are constants. Note that the capacitor has a negative capacitance C = −1

b
.

Substituting Eqs. (424) and (425) into Eq. (404), we obtain

Dynamics of the controlled source circuit

−
(
1

b

)
dv

dt
= i+

(v
b

)
− a

∣∣∣ v
b

∣∣∣+ 1,

di

dt
= −v − i.

 (426)

If we set v = −bx, we obtain

dx

dt
= i− x− a | x | +1,

di

dt
= bx− i.

 (427)

Using the Euler method, the discretized equation for Eq. (427) is given by

Lozi Map

xn+1 = 1− a | xn | +in,

in+1 = bxn,

}
(428)

where ∆t = 1. That is, we get the Lozi Map [27], which is also obtained from the generalized extended
memristor circuit (see Sec. 4.1.3) and the nonlinear resistor circuit (see Sec. 6.1.4). We have shown the
chaotic behavior of the Lozi map in Fig. 21 of Sec. 4.1.3.

Example 5.

Assume next that the parameters in Eq. (311) are given by

C = −1

b
, L = 1, r = 1, e(t) = 0, (429)

and the controlled current source fc(v, i) is defined by

fc(v, i) = −
(v
b

)
+ a

(v
b

)2
− 1, (430)
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where a and b are constants. Note that the capacitor has a negative capacitance C = −1

b
.

Substituting Eqs. (429) and (430) into Eq. (404), we obtain

Dynamics of the controlled source circuit

−
(
1

b

)
dv

dt
= i+

(v
b

)
− a

(v
b

)2
+ 1,

di

dt
= −v − i.

 (431)

If we set v = −bx, we obtain

dx

dt
= i− x− ax2 + 1,

di

dt
= bx− i.

 (432)

Using the Euler method, the discretized equation for Eq. (432) is given by

Hénon Map

xn+1 = 1− axn
2 + in,

in+1 = bxn,

}
(433)

where ∆t = 1. That is, we get the Hénon Map [19], which is also obtained from the generalized extended
memristor circuit (see Sec. 4.1.2) and the nonlinear resistor circuit (see Sec. 6.1.5). We have shown the
chaotic behavior of the Hénon map in Fig. 20 of Sec. 4.1.2.

Example 6.

Assume next that the parameters in Eq. (311) are given by

C = 1, L = 1, r = 1, e(t) = 0, (434)

and the controlled current source fc(v, i) is defined by

fc(v, i) = −b(1− 0.05i2) i− F (v) + v, (435)

where F (v) is given by

F (v) = av +
2(1− a)v2

1 + v2
, (436)

and a and b are constants.
Substituting Eqs. (434) and (435) into Eq. (404), we obtain

Dynamics of the controlled source circuit

dv

dt
= i+ b(1− 0.05i2) i+ F (v)− v,

di

dt
= −v − i.

 (437)
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Using the Euler method, the discretized equation for Eq. (438) is given by

Simplified Gumowski-Mira map B

vn+1 = in + b(1− 0.05in
2)in + F (vn),

in+1 = −vn,

}
(438)

where ∆t = 1. We get the simplified Gumowski-Mira map B, which is also obtained from the generalized
extended memristor circuit (see Sec. 4.1.6). We have shown the chaotic behavior of the simplified Gumowski-
Mira map B in Fig. 25(b) of Sec. 4.1.6.

8 Hamiltonian Circuits

Consider the circuit in Fig. 53, which consists of a frequency-dependent negative resistor (FNDR) and a
nonlinear resistor. The FNDR is a two-terminal linear element defined by

i = G

(
d2v

dt2

)
, (439)

where G is the conductance, and i and v are the current through and the voltage across the FNDR. It is a
higher-order circuit element. The v − i characteristic of the nonlinear resistor is given by

iR = f(vR), (440)

where iR and vR are the current through and voltage across the nonlinear resistor, respectively, and f(vR)
is a scaler function of vR.

Figure 53: Hamiltonian circuit, which consists of a frequency-dependent negative resistor (FNDR) defined by

i = G

(
d2v

dt2

)
and a nonlinear resistor with the characteristic curve iR = f(vR). Here, G is the conductance,

i and v are the current through and the voltage across the FNDR, respectively, and iR and vR are the current
through and the voltage across the nonlinear resistor, respectively.
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We next examine whether the FNDR is active or passive. Let us drive the FNDR by the voltage source
vs(t) where we set vs(t) = v(t) = sin(t) for t ≥ t0. The instantaneous power of the FNDR is given by

P (t) ≜ v(t) i(t) = v(t)

(
G
d2v

dt2

)
= sin(t)

(
G

d2

dt2
sin(t)

)
= −G (sin(t))2 < 0. (441)

Thus, the FNDR is an active element. In the case of the non-linear resistor, the v−i characteristic determines
whether it is active or passive.

The dynamics of this circuit is given by

Dynamics of the Hamiltonian circuit

d2v

dt2
= −f(v), (442)

where v denotes the voltage across the FNDR and we assumed that G = 1.

If we set p =
dv

dt
, Eq. (442) can be rewritten as Hamilton’s equation:

Hamilton’s equation

dx

dt
=

∂H(x, p)

∂p
= p,

dp

dt
= −∂H(x, p)

∂x
= −f(x),

 (443)

where the Hamiltonian H(x, p) is given by

Hamiltonian

H(x, p) =
p2

2
+

∫
f(x)dx. (444)

Next we obtain the discretized equation of (442). Using a second-order central difference for the time
derivatives, we obtain:

Second-order central difference

d2v

dt2
≈ v(t+∆t)− 2v(t) + v(t−∆t)

(∆t)2
, (445)

where ∆t is the time step size. Then Eq. (442) can be approximated by

v(t+∆t)− 2v(t) + v(t−∆t)

(∆t)2
= −f(v(t)). (446)

If we set ∆t = 1 and vn ≜ v(t+ n∆t), then we obtain from Eq. (457)

Discretized equation for the Hamiltonian circuit equation (442)

vn+1 − 2vn + vn−1 + f(vn) = 0. (447)

If we set yn = −vn−1, then Eq. (447) can be written as
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Two-dimensional map A

vn+1 = yn + 2vn − f(vn),

yn+1 = −vn.

}
(448)

Furthermore, if we define F (vn) ≜ f(vn)− 2vn, then Eq. (448) can be recast int the form

Two-dimensional map B

vn+1 = yn − F (vn),

yn+1 = −vn.

}
(449)

8.1 Kawakami maps

Consider the two-dimensional map B (449). If we replace the variable yn by in in Eq. (449), then the
following four types of Kawakami maps are described by using the form of Eq. (449). That is, they can be
obtained from the discretized Hamiltonian circuit equations.

Kawakami Map A

vn+1 = in + avn +
5

1 + vn2
,

in+1 = −vn.

 (450)

Kawakami Map B

vn+1 = in + avn +
5vn

1 + vn2
,

in+1 = −vn.

 (451)

Kawakami Map C

vn+1 = in + avn − 5

1 + vn2
+ 6,

in+1 = −vn.

 (452)

Kawakami Map D

vn+1 = in + avn +
4 tan−1(vn)

1 + vn2
,

in+1 = −vn.

 (453)

Note that these four Kawakami maps (450)-(450) are also obtained from the nonlinear resistor circuit equa-
tions (see Sec. 6.1.8 for more details).

87



8.2 Yamaguti-Ushiki map

Consider the Hamiltonian circuit in Fig. 53, where the v − i characteristic of the nonlinear resistor is given
by

iR = f(vR) = bvR
3 − avR, (454)

where a ≥ 0 and b > 0. If a > 0, the nonlinear resistor is eventually passive since the instantaneous power
PR(t) consumed by the nonlinear resistor satisfies

PR(t) ≜ vR(t) iR(t) = vR(t)
{
bvR(t)

3 − avR(t)
}
= b vR(t)

2
{
vR(t)

2 − a

b

}
≤ 0, (455)

for | vR(t) |<
√

a
b . However, if | vR(t) |> 0, then PR(t) > 0. In the case where a = 0, the nonlinear resistor

is passive since the instantaneous power PR(t) satisfies

PR(t) ≜ vR(t) iR(t) = bvR(t)
4 ≥ 0. (456)

The dynamics of this circuit is given by

Dynamiccs of the Hamiltonian circuit

d2v

dt2
+ bv3 − av = 0, (457)

where v denotes the voltage across the FNDR and we assume that G = 1. By setting p =
dv

dt
, Eq. (457) can

be transformed into the form

Hamilton’s equation

dx

dt
=

∂H(x, p)

∂p
= p,

dp

dt
= −∂H(x, p)

∂x
= −f(x) = −bx3 − ax,

 (458)

where the Hamiltonian H(x, p) is given by

Hamiltonian

H(x, p) =
p2

2
+

∫
f(x)dx =

p2

2
+

bx4

4
− ax2

2
, (459)

where f(x) is given by
f(x) = bx3 − ax. (460)

Note that if a > 0, the Hamiltonian H(x, p) has a saddle point at (x, p) = (0, 0).

Assume that ∆t = 1 and define vn ≜ v(t+ n∆t). Then we obtain from Eqs. (447) and (457

Discretized equation for the Hamiltonian circuit equation (457)

vn+1 − 2vn + vn−1 + bvn
3 − avn = 0. (461)

By setting yn = −vn−1, Eq. (461) can be written as
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Two-dimensional map

vn+1 = yn + 2vn − bvn
3 + avn,

yn+1 = −vn.

}
(462)

If we set a = 0, b = 1, and yn = vn−1, then Eq. (461) is transformed into the two-dimensional Yamaguti-
Ushiki map [1]

Two-dimensional Yamaguti-Ushiki map

vn+1 = −yn + 2vn − vn
3,

yn+1 = vn.

}
(463)

The chaotic behavior of Eqs. (462) and (463) is shown in Fig. 54.

(a) (b)

Figure 54: (a) Chaotic behavior of the two-dimensional map (462). Parameters: a = 0.34, b = 0.2. Initial
conditions: v0 = 0.01, y0 = 0.01. (b) Chaotic behavior of the two-dimensional Yamaguti-Ushiki map (463).
Initial conditions: v0 = 0.3105, y0 = −0.3105. Note that when n exceeds 34770, the overflow occurred in the
calculation of Eq. (463).

8.3 Chirikov standard map

Consider the Hamiltonian circuit in Fig. 53, where the v − i characteristic of the nonlinear resistor is given
by

iR = f(vR) = k sin(vR), (464)

where k > 0 is a constant. The nonlinear resistor is active since the instantaneous power PR(t) consumed
by the nonlinear resistor satisfies

PR(t) ≜ vR(t) iR(t) = vR(t) {k sin(vR(t))} < 0, (465)

for π < vR(t) < 3π.
The dynamics of this circuit is given by
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Dynamiccs of the Hamiltonian circuit

d2v

dt2
− k sin(v) = 0, (466)

where v denotes the voltage across the FNDR and we assume that G = 1.

By setting p =
dv

dt
, Eq. (466) can be transformed into the form

Hamilton’s equation

dv

dt
=

∂H(x, p)

∂p
= p,

dp

dt
= −∂H(x, p)

∂v
= k sin(v).

 (467)

Using the Euler method, we can approximate Eq. (467) by

v(t+∆t)− v(t)

∆t
= p(t),

p(t+∆t)− p(t)

∆t
= k sin(v(t)).

 (468)

If we set ∆t = 1, vn ≜ v(t+ n∆t), and pn ≜ p(t+ n∆t), then we obtain from Eq. (468)

Discretized equation

vn+1 − vn = pn,

pn+1 − pn = k sin(vn),

}
(469)

where n = 0, 1, 2, · · · . We can rewrite Eq. (469) in the following form

Modified Chirikov standard map

vn+1 = vn + pn,

pn+1 = pn + k sin(vn),

}
(470)

where we take vn and pn modulo 2π. This equation is considered to be a modified version of the standard
Chirikov map. If we replace pn on the right hand side of the first equation with pn+1, then we obtain the
original Chirikov standard map [37], which is defined by

Chirikov standard map

vn+1 = vn + pn+1,

pn+1 = pn + k sin(vn),

}
(471)

where we also take vn and pn modulo 2π. Compare the the right-hand side of the first equation in Eqs.
(470) and (471). The chaotic behaviors of Eqs. (470) and (470) are shown in Figs. 55 and 56, respectively.
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(a) (b)

Figure 55: Chaotic behavior of the modified Chirikov standard map (470) for two different parameters.
(a) Parameter: k = 2. Initial conditions: v0 = 5, p0 = 3.65. (b) Parameter: k = 4. Initial conditions:
v0 = 5, p0 = 3.65.

(a) (b)

Figure 56: Chaotic behavior of the original Chirikov standard map (471) for two different parameters.
(a) Parameter: k = 1.5. Initial conditions: v0 = 5, y0 = 3.65. (b) Parameter: k = 2.5. Initial conditions:
v0 = 5, y0 = 3.65.
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8.4 Hénon-Heiles system.

Consider the circuit in Fig. 57, which consists of two frequency-dependent negative resistors (FNDRs) and
two controlled current sources. The dynamics of the circuit is given by

Dynamics of the controlled circuit

d2v1
dt2

+ f1(v1, v2) = 0,

d2v2
dt2

+ f2(v1, v2) = 0,

 (472)

where v1 and v2 are the voltages across the left FNDR and the right FNDR, respectively, and f1(v1, v2) and
f2(v1, v2) are scaler functions of v1 and v2.

Figure 57: Hamiltonian circuit, which consists of two frequency-dependent negative resistors (FNDRs) and
two controlled current sources, where v1 and v2 are the voltages across the left FNDR and the right FNDR,
respectively, and i1 and i2 are the output currents of the left controlled current source and the right controlled
current source which are defined by f1(v1, v2) and f2(v1, v2), respectively.

If we set p1 =
dv1
dt

and p2 =
dv2
dt

, then Eq. (472) can be written as

dv1
dt

= p1,

dp1
dt

= −f1(v1, v2),

dv2
dt

= p2,

dp2
dt

= −f2(v1, v2).


(473)

Assume that f1(v1, v2) and f2(v1, v2) satisfy the relation

f1(v1, v2) =
∂V (v1, v2)

∂v1
,

f2(v1, v2) =
∂V (v1, v2)

∂v2
,

 (474)

where V (v1, v2) is the scaler function of v1 and v2. Then, Eq, (473) becomes Hamilton’s equation
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Hamilton’s equation

dv1
dt

= p1

dp1
dt

= −∂V (v1, v2)

∂v1
,

dv2
dt

= p2

dp2
dt

= −∂V (v1, v2)

∂v2
,


(475)

where the Hamiltonian H(v1, v2, p1, p2) is given by

Hamiltonian

H(v1, v2, p1, p2) =
p21
2

+
p22
2

+ V (v1, v2). (476)

Assume that V (v1, v2) is given by

V (v1, v2) =
v1

2 + v2
2

2
+ v1

2v2 −
v2

3

3
. (477)

Then f1(v1, v2) and f2(v1, v2) are described by

f1(v1, v2) =
∂V (v1, v2)

∂v1
= v1 + 2v1v2,

f2(v1, v2) =
∂V (v1, v2)

∂v2
= v2 + v1

2 − v2
2,

 (478)

and Eq. (475) is equivalent to the Hénon-Heiles equation:

Hénon-Heiles equation

dv1
dt

= p1

dp1
dt

= −v1 − 2v1v2,

dv2
dt

= p2,

dp2
dt

= −v2 − v1
2 + v2

2.


(479)

Substituting Eq. (478) into Eq. (472), we obtain the dynamics of the circuit

Dynamics of the controlled circuit

d2x

dt2
+ x+ 2xy = 0,

d2y

dt2
+ y + x2 − y2 = 0,

 (480)

93



where we set x = v1 and y = v2.
In this paper, we descretize the above equation using a second-order central difference. That is, we obtain

the following discretized equation from Eq. (480)

x(t+∆t)− 2x(t) + x(t−∆t)

(∆t)2
+ x(t) + 2x(t)y(t) = 0,

y(t+∆t)− 2y(t) + y(t−∆t)

(∆t)2
+ y(t) + x(t)

2 − y(t)
2
= 0.

 (481)

If we set ∆t = 1, xn ≜ x(t+ n∆t), and yn ≜ y(t+ n∆t), then we obtain

xn+1 − 2xn + xn−1 + xn + 2xnyn = 0,

yn+1 − 2yn + yn−1 − 2yn + yn + xn
2 − yn

2 = 0.

}
(482)

Define wn+1 = xn and zn+1 = yn. Then we get the discretized Hënon-Heiles equation [38]:

Discretized Hénon-Heiles equation

wn+1 = xn,

xn+1 = xn − 2xnyn − wn,

zn+1 = yn,

yn+1 = yn − zn + yn − xn
2 + yn

2.


(483)

The chaotic behavior of the discretized Hénon-Heiles equation (483) is shown in Fig. 58.

(a) (wn, xn)-plane (b) (zn, yn)-plane (c) (wn, zn)-plane

Figure 58: Chaotic behavior of the discretized Hénon-Heiles equation (483). Initial conditions: w0 =
0.28, x0 = 0, y0 = 0, z0 = 0.28.

Consider next the function V (v1, v2) is given by

V (v1, v2) =
2v1

2 + v2
2

2
+ v1

2v2 −
v2

3

3
. (484)

Then the the discretized Hamilton’s equation is given by
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Discretized Hamiton’s equation

wn+1 = xn,

xn+1 = −2xnyn − wn,

zn+1 = yn,

yn+1 = yn − zn + yn − xn
2 + yn

2.


(485)

Note the difference between the second equation of (483) and (485). The chaotic behavior of the discretized
Hamilton’s equation (485) is shown in Fig. 59.

(a) (wn, xn)-plane (b) (zn, yn)-plane (c) (wn, zn)-plane

Figure 59: Chaotic behavior of the discretized Hamilton’s equation (485). Initial conditions: w0 = 0.2, x0 =
0.2, y0 = 0.2, z0 = 0.2.

9 Conclusion

We have shown that many well-known chaotic maps can be generated by discretizing the equations of
memristor or nonlinear resistor circuits using the Euler method or the central difference method. We have
also shown that a wide variety of nonlinear maps, such as those found in engineering, physics, chemistry,
biology, and ecological systems, are closely related to discretized memristor or nonlinear resistor circuit
equations. These circuits usually contain the active element. It seems that discretizing the memristor or
nonlinear resistor circuit equations is one of the most promising methods to find interesting chaotic maps.
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Appendix

Classification of Memristors

A voltage-controlled memristor can be classified into four classes [6, 7]:

• voltage-controlled ideal memristor

i = G(φ)v,

dφ

dt
= v.

 (486)

• voltage-controlled ideal generic memristor

i = G(x)v,

dx

dt
= ĝ(x)v.

 (487)

• voltage-controlled generic memristor

i = G̃(x)v,

dx

dt
= g̃(x, v).

 (488)

• voltage-controlled extended memristor

i = Ĝ(x, v)v,

| Ĝ(x, 0) |< ∞,

dx

dt
= g̃(x, v).

 (489)

Here, i, v, φ, and x indicate the terminal current, the terminal voltage, the flux, and the state variable
of the voltage-controlled memristor, respectively, G(·), G̃(·), Ĝ(·), and ĝ(·) are continuous scalar-valued
functions, x = (x1, x2, · · · , xn) ∈ Rn, and g̃ = (g̃1, g̃2, · · · , g̃n) : Rn → Rn.

Similarly, a current-controlled memristor can be classified into four classes [6]:

• current-controlled ideal memristor

v = R(q)i,

dq

dt
= i.

 (490)

• current-controlled ideal generic memristor
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v = R(x)i,

dx

dt
= f̂(x)i.

 (491)

• current-controlled generic memristor

v = R̃(x)i,

dx

dt
= f̃(x, i).

 (492)

• current-controlled extended memristor

v = R̂(x, i)i,

| R̂(x, 0) |< ∞,

dx

dt
= f̃(x, i).

 (493)

Here, R(·), R̃(·), R̂(·), and f̂(·) are continuous scalar-valued functions, x = (x1, x2, · · · , xn) ∈ Rn,
and f̃ = (f̃1, f̃2, · · · , f̃n) : Rn → Rn.
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