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Open Research Section

The Quantum-Classical Evolutionary Optimization [1] framework opens several exciting avenues for future
research in quantum computing. While this paper demonstrates the immediate advantages of QCEO in
improving circuit fidelity and noise resistance, several questions remain that are ripe for further exploration:

1. Scalability in High-Dimensional Quantum Systems: As quantum devices scale to larger qubit
counts [6], the scalability of QCEO needs to be explored in greater depth. Future research could focus on
how well QCEO can optimize circuits for complex algorithms, such as Shor’s algorithm or quantum phase
estimation, when deployed on more powerful quantum computers. One key area of investigation will be
determining how the mutation rate and evolutionary process behave as the quantum system grows and
whether classical optimizers can efficiently handle the expanded solution space.

2. Integration with Quantum Machine Learning: There is potential to combine QCEO with quantum
machine learning [7] techniques to further enhance its ability to adapt to noise. For instance, reinforcement
learning could be applied to guide the mutation process, learning which types of mutations are most effective
at improving circuit fidelity. Machine learning models could also help predict noise profiles based on previous
runs, allowing QCEO to proactively adjust circuits before noise becomes problematic.

3. Cross-Platform Optimization: One limitation identified is the dependency of QCEO on the specific
noise profile of the quantum hardware being used. Future work could focus on making QCEO more hardware-
agnostic, allowing it to evolve circuits that perform optimally across different quantum platforms [8]. By
training the QCEO framework on multiple hardware environments, it may be possible to generalize the
evolutionary optimization process to handle various noise models more effectively.

4. Applications in Quantum Chemistry and Finance: Beyond the technical improvements in circuit
fidelity, QCEO has significant potential in quantum chemistry, where high-fidelity quantum circuits are
essential for simulating molecular interactions and chemical reactions. Future research could test QCEO
on quantum simulation tasks in chemistry, such as electronic structure calculations. Similarly, in
quantum finance, where algorithms are used to optimize portfolios or model risk, QCEO could improve the
accuracy and reliability of quantum calculations in this domain. This opens new opportunities for applying
QCEO to real-world quantum applications.

5. Adapting QCEO for Fault-Tolerant Quantum Computing: As quantum error correction and
fault-tolerant quantum computing advance, another research direction would be to adapt QCEO for these
systems. By combining QCEO’s evolutionary approach with error-correcting codes, researchers can explore
whether the framework can be enhanced to optimize circuits in fully error-corrected quantum compu-
ters, where noise can be managed but is still present in certain forms.

6. Hybrid Classical-Quantum Workflows: QCEO presents an excellent opportunity for further rese-
arch into hybrid workflows, where quantum processors handle noise-prone but high-complexity tasks, and
classical systems optimize and manage these tasks. Future work could investigate the best methods for ba-
lancing the computational load between quantum and classical systems to achieve the most efficient results
in optimization problems.

In summary, QCEO offers a broad research agenda for further exploration. By investigating its scalability,
integration with machine learning, hardware-agnostic optimization, and applications in real-world problems
like quantum chemistry and finance, future research can expand the capabilities of this novel framework and
push the boundaries of quantum computing.
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Quantum computing faces significant challenges due to quantum noise and gate errors, particularly in noisy
intermediate-scale quantum [9] devices. Traditional error mitigation methods often fall short of achieving
high circuit fidelity due to inherent system imperfections. This paper introduces Quantum-Classical Evolu-
tionary Optimization [1], a novel hybrid framework that integrates quantum circuit mutation strategies with
classical optimization techniques. QCEO adapts quantum circuits in real-time by treating quantum gates
as evolutionary genes, iteratively optimizing them for improved noise resistance and fidelity. In experiments
on both simulated environments and IBM Quantum hardware, QCEO demonstrates a 10-15% improvement
in fidelity compared to traditional methods such as readout error correction and zero-noise extrapolation.
Beyond fidelity improvement, QCEO’s ability to dynamically adapt to different noise profiles positions it as a
versatile tool that can be integrated with emerging quantum algorithms like Variational Quantum Algorithms
[4] and Quantum Approximate Optimization Algorithms [10]. This framework opens up new possibilities for
advancing quantum computing in fields ranging from cryptography to quantum machine learning by ensuring
higher performance in noisy quantum systems.

Introduction:

Quantum computing holds immense promise for solving complex problems in fields such as cryptography,
optimization, and material science. However, current quantum systems, particularly noisy intermediate-scale
quantum [9] devices, are plagued by quantum noise, decoherence, and gate errors, limiting their computa-
tional potential. Quantum noise and errors during gate operations are major obstacles to executing reliable,
large-scale quantum algorithms.

Researchers have explored various techniques for noise mitigation, including readout error correction, zero-
noise extrapolation, and quantum error correction. These methods have proven effective to some extent but
often fail to achieve the high fidelity required for more complex algorithms due to hardware constraints.

Hybrid quantum-classical optimization methods, such as Variational Quantum Algorithms [4] and Quantum
Approximate Optimization Algorithm [10], combine classical optimization techniques with quantum circuits
to minimize cost functions. While these techniques have seen some success, they often fail to adapt dynami-
cally to noise during execution. This limitation inspired the development of Quantum-Classical Evolutionary
Optimization [1], a novel framework where quantum circuits evolve through iterative mutations and classical
feedback loops to improve noise resistance and fidelity in real time. This approach leverages the principles
of genetic algorithms, treating quantum gates as ”genes”that can be mutated and optimized, selecting the
best-performing circuits for further evolution.

The integration of quantum and classical optimization techniques has become increasingly prominent in
recent quantum research. Variational Quantum Algorithms [4], such as the Variational Quantum Eigensolver
[11] and Quantum Approximate Optimization Algorithm [10], have shown promise in solving optimization
problems by combining quantum processing power with classical optimization routines(
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). These hybrid approaches rely on classical algorithms to iteratively update quantum circuit parameters,
searching for an optimal configuration that minimizes a cost function. However, these methods remain largely
static in their design, as they optimize a fixed quantum circuit structure without adjusting to the dynamic
noise characteristics of quantum hardware.

In noisy intermediate-scale quantum [9] devices, noise and gate errors significantly degrade the performance
of quantum circuits, and this is where traditional approaches like QAOA fall short. QAOA and other static
hybrid methods optimize gate parameters but do not account for evolving noise profiles in real-time. As
a result, while these methods improve the performance of quantum algorithms under idealized conditions,
their effectiveness is greatly reduced when exposed to practical noise(

ar5iv

). This failure stems from the fact that QAOA circuits are pre-defined and do not evolve in response
to the hardware noise landscape.

How QCEO Addresses These Gaps: Quantum-Classical Evolutionary Optimization [1] directly ad-
dresses these shortcomings by introducing a dynamic and adaptive approach. Instead of optimizing a fixed
circuit, QCEO treats quantum gates as evolutionary genes, which are mutated across successive generations
of quantum circuits. This allows the system to adapt to the specific noise characteristics of the hardware
in real-time, continuously refining circuit performance to counteract noise. Unlike QAOA and similar static
methods, QCEO does not assume an optimal circuit configuration from the start. Instead, it evolves the
circuit, making it robust against the type of noise that degrades static circuit performance.

Moreover, while readout error correction and zero-noise extrapolation have shown incremental im-
provements in fidelity by reducing the effects of noise after computation, these methods fail to proactively
adapt the circuit itself. They also often require multiple runs of the same circuit at varying noise levels, in-
creasing computational costs. In contrast, QCEO’s mutation-based approach adapts the circuit’s structure
and configuration during execution, producing circuits that are inherently resistant to noise and require
fewer computational resources to achieve high fidelity(
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).

In addition, recent research efforts such as quantum machine learning and quantum error correc-
tion have explored noise reduction techniques, but these remain highly specific to the type of error being
mitigated and lack the general adaptability found in QCEO. By combining the evolutionary nature of genetic
algorithms with quantum circuit optimization, QCEO positions itself as a versatile framework capable of
adapting to various types of noise and enhancing circuit performance across different quantum hardware
platforms.

Methodology:

The Quantum-Classical Evolutionary Optimization [1] framework introduces a novel approach for impro-
ving quantum circuit fidelity by combining quantum circuit mutation, classical optimization, and real-time
feedback. The core methodology can be broken down into several key steps:
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1. Initial Quantum Circuit Generation:

A baseline quantum circuit is first selected for a given problem [12]. This circuit serves as the initial ”DNA”for
optimization. Each gate, such as Hadamard [13], CNOT, and rotation gates [14], is treated as a ”gene”that
can be mutated in subsequent iterations.

2. Mutation Process:

At each iteration, quantum circuits are mutated by modifying gate parameters [15] or by swapping gates.
The mutation rate is determined by classical optimizers, with typical mutation rates of 5% for single-qubit
gates and 10% for multi-qubit entangling gates. This creates a population of quantum circuits, each a variant
of the original.

3. Classical Fitness Evaluation:

The mutated circuits are executed on quantum hardware or simulators, and metrics such as fidelity, success
rate, and error rate are collected. A classical fitness function ranks the circuits based on their performance,
selecting the best-performing circuits for further mutation and optimization.

4. Quantum Evolution and Feedback Loop:

The top-performing circuits are selected to survive and evolve, forming the basis for the next generation.
Classical optimizers adjust the mutation rate and strategies based on feedback from quantum hardware,
allowing circuits to evolve dynamically and resist noise.

5. Noise Adaptation:

A key feature of QCEO is its ability to adapt to quantum noise in real-time. Instead of merely mitigating
noise post-execution, the framework actively seeks to evolve circuits that are inherently resistant to the
specific noise profile of the hardware being used.

6. Convergence:

The iterative process continues until the circuits converge to a stable configuration with maximum fidelity
and noise resistance.

Updated Experimental Setup:

To evaluate the performance of the Quantum-Classical Evolutionary Optimization [1] framework, both si-
mulated environments and real quantum hardware were utilized. The experiments were conducted using the
Qiskit Aer simulator and the IBM Quantum Experience platform, specifically the ibmq manila device [16].

Rationale for Noise Models: We employed depolarizing noise and readout error models in our
simulations. These noise models were selected because they represent two of the most common types of noise
in NISQ devices:
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· Depolarizing noise models the probability of an error occurring in a qubit’s state due to interactions
with its environment, effectively causing random flips in the qubit state. This noise type is well-suited for
evaluating the robustness of quantum circuits as it simulates the broad degradation seen in real hardware
operations.

· Readout errors occur during the measurement process, where the classical state is incorrectly recorded.
This type of noise is critical to model as it reflects the performance limitations during the final step of
quantum computation, particularly on real devices like ibmq manila, which suffer from hardware-specific
measurement noise.

Hardware Setup: The ibmq manila device was chosen due to its status as a commonly accessible, well-
documented NISQ platform, ideal for testing circuit optimization and noise resistance. The device provides
insights into how QCEO performs under realistic quantum computing conditions, particularly when tested
against inherent hardware noise.

Rationale for 10,000 Shots: Each quantum circuit configuration was executed with 10,000 shots [17] to
ensure sufficient statistical significance in the results. In quantum computing, shots represent the number of
times a quantum circuit is run to gather a probabilistic distribution of outcomes. By using 10,000 shots, we
minimized statistical noise and ensured that the results were representative of the true performance of the
circuits, particularly when comparing fidelity and error rates across generations. This number of shots is a
standard in quantum circuit experiments for balancing computational cost with accuracy.

Generations and Mutation Parameters: · Generations: The evolutionary process was carried out
over 50 generations for each experiment [18]. This number was chosen based on preliminary tests, where
significant fidelity improvements were seen within 50 generations, with diminishing returns observed beyond
this threshold.

· Mutation Rate: A mutation rate of 5% for single-qubit gates [19] and 10% for multi-qubit entangling gates
[20] was applied. These values were selected to ensure that each generation introduced meaningful changes
without destabilizing the circuit performance.

The Quantum-Classical Evolutionary Optimization [1] framework leverages the unique properties of quan-
tum systems, specifically superposition and entanglement, in conjunction with evolutionary algorithms to
explore and optimize the solution space. In classical optimization, escaping local minima—suboptimal solu-
tions that appear to be the best within a limited region of the solution space—can be challenging, especially
in complex, high-dimensional landscapes. Evolutionary algorithms address this problem by introducing ran-
domness through mutations and recombination, providing a mechanism to explore more of the solution space.
Quantum mechanics offers additional, more powerful ways to enhance this process.

Superposition and Solution Space Exploration: In classical computation, a system is restricted to
a binary state at any given time [21], making it challenging to simultaneously explore multiple solutions.
However, in quantum computing, superposition allows a quantum state to exist in a combination of multiple
basis states at once [22]. This ability to represent and process multiple states simultaneously enables quantum
circuits to explore a much larger portion of the solution space in parallel.

In the context of QCEO, superposition allows quantum circuits to sample different configurations of
the solution space simultaneously, increasing the likelihood of discovering promising circuit configurations
more quickly than in classical algorithms. As each quantum circuit in QCEO is mutated and evolved, the
superposition of states ensures that many potential solutions are explored in parallel, reducing the risk of
getting trapped in local minima during optimization.
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Entanglement and Circuit Adaptation: Quantum entanglement, another foundational principle of
quantum mechanics, provides additional advantages by creating correlations between qubits that classical
systems cannot replicate. In QCEO, the use of entangling gates [20] during mutations generates entangled
states, where the outcome of one qubit measurement is directly related to the state of another qubit, regardless
of their spatial separation. This entanglement provides a more nuanced way to explore the solution space, as
changes to one part of the circuit can propagate through the system, affecting multiple qubits simultaneously.
This interconnectedness enables the quantum system to ”learn”relationships between different qubits and
gate configurations, allowing for more efficient adaptations as the system evolves.

Escaping Local Minima Through Quantum Randomness: Quantum randomness, inherent in the
probabilistic nature of quantum measurements, plays a critical role in helping the system avoid getting stuck
in local minima. Classical optimization techniques often use methods such as simulated annealing or ge-
netic mutations to introduce randomness and explore beyond local minima. In quantum systems, however,
randomness is naturally embedded in the measurement process, where the outcome of a quantum operation
is probabilistic rather than deterministic.

In QCEO, this quantum randomness enhances the evolutionary process by providing a built-in mechanism
for exploration. When a quantum circuit is mutated and executed, the results are inherently probabilistic,
ensuring that the system explores different potential outcomes even for similar mutations. This quantum-
driven exploration helps the system escape from suboptimal regions of the solution space [23] more effectively
than classical randomness. In particular, the ability to generate superpositions of states and measure proba-
bilistically across those states enables QCEO to identify better circuit configurations more efficiently than
traditional evolutionary algorithms.

Quantum Speedup in Optimization: Quantum systems offer the potential for quantum speedup,
where certain classes of problems can be solved more quickly on quantum computers than on classical
systems. While full quantum speedup has yet to be demonstrated for many real-world problems, the pro-
babilistic nature of quantum systems, combined with the ability to explore large portions of the solution
space simultaneously via superposition, gives QCEO a unique advantage. The evolutionary aspect of QCEO
leverages this capability, allowing circuits to evolve rapidly while continuously adapting to noise. In summa-
ry, quantum superposition allows QCEO to explore multiple configurations in parallel, and quantum
entanglement enhances the system’s ability to adapt by correlating the behavior of qubits across the circuit.
The inherent quantum randomness assists in escaping local minima, making the evolutionary algorithm
more robust in optimizing quantum circuits under noisy condition
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Figure 1: table 1

The results presented in Table 1 demonstrate that the Quantum-Classical Evolutionary Optimization [1]
framework consistently outperforms traditional error mitigation methods such as readout error correction
and zero-noise extrapolation. Several factors contribute to this improved performance, particularly in noisy
environments.

1. Adaptability to Noise: One of the key reasons why QCEO performs better is its dynamic adapt-
ability to noise. Traditional error mitigation techniques are static, applying fixed corrections based on
known noise models, but they do not adapt to real-time noise fluctuations on quantum hardware. QCEO,
on the other hand, continuously mutates quantum circuits and evaluates their performance in real-time,
which allows it to evolve circuits that are inherently more resistant to the specific noise characteristics of the
hardware being used.

For example, in depolarizing noise environments, where errors are introduced randomly across qubits,
QCEO’s mutation process introduces small changes to gate configurations and parameters, which enables
the system to gradually evolve circuits that minimize the impact of random errors. This adaptability is
particularly effective for operations that are more error-prone, such as multi-qubit gates [24], which typically
exhibit higher error rates compared to single-qubit operations.

2. Faster Convergence in Noisy Environments: Another critical advantage of QCEO is its ability
to converge faster than traditional methods, especially in noisy environments. Since QCEO introduces
evolutionary changes based on real-time feedback, it iteratively refines the circuit design and moves closer
to an optimal configuration with each generation. This is in contrast to static methods like readout error
correction, which may require multiple rounds of the same circuit to achieve improved results [25].

In noisy quantum systems, QCEO’s evolutionary process allows it to bypass local minima in circuit opti-
mization, as discussed in the theoretical insights. The combination of quantum randomness and classical
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optimization helps the algorithm explore a wider range of potential solutions, accelerating convergence to-
ward higher fidelity configurations.

3. Improvement in Specific Gate Operations: QCEO shows particular effectiveness in optimizing
entangling gates [20], which are known to be more susceptible to errors in NISQ devices. These gates are
critical for creating and manipulating entangled states, which are essential for many quantum algorithms,
including quantum teleportation and quantum optimization tasks. Through the mutation process, QCEO
adjusts the parameters of these entangling gates, leading to circuits that are better tuned for error-prone
operations.

For instance, by mutating the angles of rotation gates [26] and adjusting the timing of entangling gates, QCEO
can find configurations that minimize decoherence and error propagation across the circuit. This leads to
overall improvements in fidelity and noise resistance, particularly in quantum operations that require precise
gate control.

4. Circuit Diversity and Exploration: Another important factor contributing to QCEO’s superior per-
formance is the diversity of circuits explored during the optimization process. Traditional methods often
assume a fixed circuit configuration and optimize only the parameters of that circuit. In contrast, QCEO
explores a diverse set of circuits through mutations, effectively creating multiple configurations that are
tested against noise. This diversity allows QCEO to escape suboptimal solutions that might trap traditional
methods.

Limitations and Future Work:

QCEO, while innovative, faces limitations in terms of scalability and hardware dependencies. As quantum
circuits grow in size, the computational resources required for evaluating fitness increase, making it chal-
lenging to scale beyond NISQ devices. Additionally, circuits evolved for one hardware platform may not
generalize well to other platforms with different noise profiles.

Future Research Directions:

Scalability: Explore quantum machine learning models to predict optimal mutations and reduce computa-
tional overhead.

Cross-Hardware Testing: Test QCEO on multiple quantum platforms to evaluate its portability across
devices.

Integration with Reinforcement Learning: Reinforcement learning can further optimize the mutation process,
dynamically adjusting mutation rates based on feedback.

Conclusion:

The Quantum-Classical Evolutionary Optimization [1] framework offers a novel approach to improving quan-
tum circuit fidelity by leveraging evolutionary strategies and classical feedback. By adapting circuits to noise
in real-time, QCEO outperforms traditional error mitigation methods, demonstrating a 10-15% improve-
ment in fidelity. While challenges remain in scalability and cross-hardware adaptability, QCEO represents a
promising direction for future research in quantum optimization.
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The Quantum-Classical Evolutionary Optimization [1] framework represents a significant advancement in
the field of quantum computing, particularly in addressing the persistent challenge of noise and fidelity in
quantum circuits. By leveraging the power of evolutionary algorithms, QCEO introduces an adaptable, real-
time feedback mechanism that continuously improves quantum circuits by mutating and optimizing their
gate configurations based on real-world noise conditions. The ability to evolve circuits dynamically provides
an edge over static error mitigation techniques, allowing for greater fidelity, faster convergence, and enhanced
noise resistance in quantum operations.

Beyond the demonstrated fidelity improvements, QCEO has broader implications for a wide range of quan-
tum algorithms and applications. For example, in fields like quantum chemistry, where the precision of
quantum circuits is critical for simulating molecular interactions and chemical reactions, QCEO can provide
a framework for evolving noise-resistant circuits that maintain high accuracy over extended computations.
Similarly, in quantum finance, where complex algorithms are used to optimize portfolios or model risk,
QCEO’s ability to adapt to noisy environments makes it an ideal tool for improving the reliability of quantum
algorithms in this domain.

As quantum hardware continues to advance, the scalability of QCEO will be key to its application in larger
quantum systems. While current NISQ devices are limited in qubit count, QCEO’s design allows for seamless
integration with emerging quantum technologies, potentially scaling to handle more complex algorithms
involving tens or hundreds of qubits. Moreover, by incorporating machine learning or reinforcement
learning in future iterations, QCEO can evolve to handle even more complex quantum systems and noise
models, making it a versatile framework for optimizing quantum algorithms across diverse applications.

In conclusion, QCEO not only improves circuit fidelity and noise resistance but also lays the groundwork for
future developments in quantum computing, with potential applications in fields like quantum chemistry,
finance, and machine learning. Its adaptability and scalability make it a promising tool for the next
generation of quantum algorithms, ensuring higher performance even as quantum systems grow in size and
complexity.
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