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Abstract

We investigate a coupled, non-linear dynamical systems model for the relationship
between population and depleting resources inspired by limits to growth. The model
is determined by logistic growth in population with carrying capacity determined by
resources. The rate of decline of resources is determined linearly by the population.
The model produces an initial exponential increase in population followed by a decrease
to the fixed point while congruently resources decrease in a sigmoidal fashion to the
fixed point. We fit the model to world population over the period 10000 BC to 2021
in different time intervals corresponding to different growth rates. We show a number
of projections to 2500 based on fitting to the time period of 1950 to 2021 with various
parameter constraints.

1 Introduction

Since the dawn of civilisation human world population has been increasing at roughly an
exponential rate with the rate changing over different time periods, see Figure 2. This surge
in population has been maintained mostly by non-renewable resource depletion of biomass,
fossil fuels and other raw materials such as aluminium, steel, and rare-earth metals [5, 1]. The
recent rapid decrease in birth rates across increasing proportions of the world is suggestive
that population could soon reach it’s peak. There are many proposed reasons for the decrease
in birth rates but perhaps the underlying factor is a critical point in the decrease of resources.

We analyse a coupled dynamical system where population is limited by resources in a
logistic fashion and resources decline proportionally with increasing population. This model
gives similar results for population and resources to the famous limits to growth model (LtG)
[3]. Indeed the main aim of this paper is to simplify the LtG by focusing on the two primary
variables of population and resources. Although the LtG is based on a dynamical system
of differential equations it is not immediately obvious what these equations are as they are
represented either in causal diagrams or algorithms [4]. In addition the number of variables
and complexity of the relations in the LtG hinders an easy understanding of the equations
[4].
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We fit our model to world population data over different time intervals from 10000 BC
to 2021 corresponding to different exponential growth rates. We do not investigate any
resource data but this would be useful future work to assess how well this fits to the model.
We project the model into the year 2500 and show four of many possible projections for
future population. How fast population declines is dependent on all four of the parameters
in the model. The main takeaway of this model is that population rises to a peak and then
falls back to a stable point, the only difference being the rate at which this happens. All
code for simulation and fitting is found on the author’s GitHub [2].

2 Model

Let Pt and Rt be the population and resources respectively at time t . Then with positive
parameters, α, β, γ, δ > 0 , the coupled, non-linear dynamical systems model is defined (when
convenient we drop the t subscript)

Ṗ = P (α− βP/R) , (1)

Ṙ = δ − γP . (2)

where the dot above the letters is the usual representation of the derivative with respect to
t , i.e. Ṗ := d

dt
P . We note that (1) is the logistic growth equation but with carrying capacity

R dependent on P . We refer to the model represented by (1) and (2) as the population
resource model.

2.1 Fixed Point

The following theory to analyse fixed points is found, for example, in Sections 5.2 and 6.3
of [7]. Fixed points occur when Ṗ = 0 and Ṙ = 0 simultaneously. We find there is a single
fixed point at

P ∗ = δ/γ , R∗ =
βδ

αγ
=

β

α
P ∗ . (3)

To analyse the stability of the fixed point (P ∗, R∗) we find the Jacobian

J =

(
∂Ṗ
∂P

∂Ṗ
∂R

∂Ṙ
∂P

∂Ṙ
∂R

)
=

(
α− 2βP

R
β P 2

R2

−γ 0

)
.

Noting P ∗/R∗ = α/β then evaluating J at the fixed point gives

J(P ∗, R∗) =

(
−α α2

β

−γ 0

)
.

Let τ and ∆ be the trace and determinant of J(P ∗, R∗) respectively. As τ = −α < 0
the fixed point (3) is stable. Although not really of interest to this paper we shall briefly
categorise the type of stable fixed point. The type of stable fixed point is determined by the
sign of

D = τ 2 − 4∆ = α2(1− γ/β) .
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When D > 0 ⇔ γ < β the fixed point is a stable node, when D < 0 ⇔ γ > β the fixed point
is a stable spiral and when D = 0 ⇔ γ = β the fixed point is an edge case such as a star or
degenerate node.

2.2 General Comments and Simulations

We shall choose the initial population and resources greater than their respective fixed points
R0 > R∗ , P0 > P ∗ . Also we choose initial resources far greater than initial population
R0 >> P0 giving initial population dynamics

Ṗ ≈ αP

so that P ≈ P0e
αt initially grows roughly exponentially with rate α . We have three cases

for the sign for Ṗ corresponding to whether the population is increasing, reaching a critical
point or decreasing:

Ṗ


> 0 , P/R < α/β ,

= 0 , P/R = α/β ,

< 0 , P/R > α/β .

These cases, the initial conditions and the stability of the fixed point indicate that after the
initial population increase the population hits a maximum before descending down to the
fixed point. When P > P ∗ then Ṙ < 0 and so resources will decrease towards the fixed point
R∗ . From (2) we see that resources decrease at a proportional rate to population.

We can simulate the population resource model numerically using the numerical ODE
solver odeint in the Python SciPy library. We evaluate the numerical solution at each time
step ∆t = 10−2 . The results for changing one of the parameters while keeping the others
fixed is shown in Figure 1. Higher α, γ and smaller β give a faster decline in population
and resources. Higher α and smaller β , γ give a higher population peak. The δ parameter
controls primarily only the size of the final fixed points. From the simulations we can see
that in general resources decrease in a sigmoid fashion.

3



Figure 1: Numerical simulation of the population resource model with P0 = 103, R0 = 106

for different times with step size ∆t = 10−2 . Left plots show the population and right plots
shows the concurrent resources. The plots show the four combinations of changing one

parameter while keeping the other three parameters fixed. The final row for the δ
parameter changing is plotted on a log-axis to see the difference between the simulations
more clearly. We note from the final row the possibility of population and resources to go

under the fixed point.
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3 Application to World Population

World population of humans has been increasing roughly exponentially though at different
rates for potentially at least the last 12000 years coinciding with the beginning of civilisation,
see Figure 2. We fit the population resource model to different growth intervals of world
population data from 10000 BC to 2021. Each time step of ∆t = 10−2 in the numerical
solution of the model is counted as a year. We start the fit at t = 0 equivalent to year
−10000 or 10000 BC and choose β = γ = 1 , δ = P0 = 4432266 , R0 = 2.5 ·1010 . The units of
resources are not specified and as mentioned in the introduction we do not fit to any resource
data. We fit the α over the following time intervals where the growth rate appears to change

[−10000, −6001] , [−6000, −1] , [0, 999] , [1000, 1699] ,

[1700, 1799] , [1800, 1869] , [1870, 1949] , [1950, 2021] (4)

as shown in Figure 2. We note for each of the intervals beyond the first, [−10000, −6001] ,
we choose P0 and R0 to be the population and resources at end of the previous interval. The
fits use the Python Scipy minimize function to minimise the sum of squares between the data
and the numerical solution of the model [2]. The initial resources R0 = 2.5 · 1010 was chosen
by trial and error so that there is a slight drop off in the rate of growth in the final time
interval [1950, 2021] as is evident in the data. The δ and initial resources P0 were chosen
to be the estimated population at the first time of 10000 BC that we have data. γ = 1 is
chosen so P ∗ = P0 (of the first interval above) and so the eventual population will drop back
to what it was at at 10000 BC. Of course potentially more realistic values could be chosen
for δ so that the eventual population is higher. The final parameter β = 1 is chosen through
trial and error to allow for convergence when fitting α through all the time periods whilst
also keeping resources declining in a smooth fashion.
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Figure 2: Numerical simulation of the population resource model with step size ∆t = 10−2

scaled to a year with α fits to the population data at the different time periods (4)
exhibiting different growth rates with remaining parameters chosen as above. Population

data from our world in data [6].

In Figure 3 we project the population to the year 2500 based on fitting the final time
interval [1950, 2021] with different parameter bounds. We see that there are multiple possibilities
that fit the last time period reasonably but lead to different projections. We note that the
parameters are fixed through the projections whereas in reality as when fitting the historic
data the parameters are likely to change across time.

Figure 3: Numerical simulation of the population resource model with step size ∆t = 10−2

scaled to a year with α, β, γ fits to the population data over [1950, 2021] and then
projecting this fit to the year 2500. Full line, same fit as Figure 2, only α fitted with
remaining parameters chosen as above. Dashed lines α, β, γ fitted, dashed dotted line

chosen α = 2.5 with β, γ fitted and dotted line chosen γ = 0.2 with α, β fitted.
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4 Conclusion

Inspired by simplifying the limits to growth model, we presented a coupled, non-linear
dynamical system of population and depleting resources based on population logistic growth
with carrying capacity dependent on resources. We then applied this model to world
population and found due to the rough exponential increase of population we could apply
a reasonable fit to several growth intervals from 10000 BC to 2021. Finally we project the
model into the future to the year 2500 based on fitting the final time period of [1950, 2021].
There is a wide array of possibilities with a common feature of population hitting a maximum
before falling to a fixed point. We chose this fixed point to be the population at 10000 BC
which may be unrealistic and represents an extreme case of the complete fall of civilisation.
We also note that in reality populations are usually in flux so an exact fixed point (apart
form zero) is unlikely. Time will tell if this model will still be able to fit to the population
particularly if/when the population hits a maximum and then decreases.
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