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1 Introduction

Question 3

Polyhedral cone representation.
A convex cone K C R? is called polyhedral if it can be written as K = ARﬁ_
where A € R¥* for some finite k.

(a) Let 8™ be the cone of n x n positive semidefinite matrices. Show that
S"™ is a polyhedral cone by constructing an appropriate matrix A that defines a
polyhedral cone for 8™, i.e., 8" ={pA : p>0, A= 0}.

Solution for Part (a)

First, let’s recall the definition of a polyhedral cone. A cone K is polyhedral if
it can be expressed as the set of linear combinations with non-negative scalars
of finite vectors. That is:

K={A\ : XeRE},

where A is a d x k matrix and k is finite. In other words, K is finitely generated
by the columns of A.

Now, consider the cone 8™ of n x n positive semidefinite (PSD) matrices.
We need to show that S™ is a polyhedral cone.

However, it is important to note that in general, the cone 8™ is not polyhedral
when n > 1. This is because the cone of n x n PSD matrices is not a finitely
generated cone. Instead, it is convex and closed but has infinitely many extreme
rays.

Therefore, unless n = 1, 8™ is not a polyhedral cone.

Corrected Problem Statement Given that 8™ is not polyhedral for n > 1,
perhaps the intended problem is to show that a subset of §™ is polyhedral or to
consider cases where n = 1.



Alternatively, if we consider the cone of n x n diagonal PSD matrices, this
cone is polyhedral because it corresponds to non-negative diagonal matrices,
which can be represented as a finite combination of the standard basis matrices.

Solution Assuming Diagonal PSD Matrices

Let’s consider the set of diagonal nxn PSD matrices, denoted by D". A diagonal
matrix D is PSD if and only if all its diagonal entries are non-negative. Thus:

D" ={D e R™" : D =diag(dy,da,...,dy,), di >0} .

We can represent D™ as a polyhedral cone generated by the n basis matrices
E® where E® has a 1 in the (i,7)-th position and zeros elsewhere:

oL {ZdiE(“ D d; > o}.
=1

Thus, D" is a polyhedral cone generated by the finite set of matrices {E(l)7 E® ..

Conclusion for Part (a)

Given that 8™ is not polyhedral for n > 1, the initial statement of the problem
seems incorrect. If the problem intended to ask about the cone of diagonal PSD
matrices or a finite-dimensional subset, then it would be correct to show it is
polyhedral.

Therefore, the cone of all n x n PSD matrices is not polyhedral when n > 1.

Alternative Interpretation

Perhaps the problem wants us to consider the set of n x n PSD matrices as
a convex cone that can be represented via linear matrix inequalities (LMIs),
which are a set of linear (affine) inequalities in the entries of the matrix.

Let’s consider the characterization of 8™ using linear inequalities.

Expressing PSD Matrices via Linear Inequalities

An n x n symmetric matrix X is PSD if and only if all its principal minors
are non-negative. However, this involves checking an exponential number of
conditions.

Alternatively, we can consider the definition of the PSD cone in terms of the
Gram representation.

A symmetric matrix X is PSD if and only if there exists a matrix V € R™**
such that X = VVT, for some k < n.

However, expressing X = VV T involves bilinear terms, and cannot be di-
rectly used to represent S™ as a polyhedral cone.

Given these considerations, it is clear that the PSD cone S is not polyhedral
when n > 1.
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Final Answer for Part (a)

Therefore, the cone 8™ of n xn positive semidefinite matrices is not polyhedral
when n > 1. It cannot be represented as a finite combination of generators with
non-negative coefficients.

Note: If n =1, then S! is the set of non-negative real numbers R, which is
a polyhedral cone in R!.

Recommendation

It is possible that the problem statement contains an error or is intended to be
about a different concept. If the question aims to discuss the properties of the
PSD cone and its representation, it might be better to rephrase or reconsider
the question.

Alternate Problem (Corrected)

Suppose instead the question is:

Show that the cone of n x n PSD matrices with entries constrained to be
diagonal matrices is a polyhedral cone.

In that case, the solution provided earlier for diagonal PSD matrices applies,
and the cone is indeed polyhedral.

(b) Consider a weight vector w € RP and two feature mappings ¢ : X — R,
¢ : X — RP. Then the vector-valued mapping = +— ¢(x)¢'(z)" defines a
bipartite kernel on a product space B x B’:

K(z,a') =w' (6(x)¢'(a)").

Computing kernels K (x,2') directly may consume a lot of memory because
the feature mappings may be high-dimensional. Instead, kernels are typically
computed on-the-fly whenever their values are needed.

Design an algorithm that performs the computation on-the-fly by exploiting
a polyhedral description of the cone

C := conv{¢(x)¢'(2)", = € X},
that is, describe an algorithm that efficiently computes
_ T 1T
e = inf {wT o(a)6'(x) )

by on-the-fly computation of w' ¢(z)¢'(x) " for arbitrary z.



Solution for Part (b)

First, let’s understand what is being asked.

We are given:

- A weight vector w € RP. - Two feature maps ¢ : X — R and ¢’ :
X — RP. - The mapping z — ¢(z)¢'(z)" € RP*P. - The kernel function
K(z,a') = T (o()d'(a") ).

Our goal is to compute:
_ T / T
c= inf {w' (6(x)¢'(x)")}

efficiently, without explicitly computing and storing the entire matrix ¢(z)¢’(z) .
Note that ¢(x)¢’(x) " is an outer product of two vectors, resulting in a D x D
matrix, which can be large if D is large.
However, since w € R”, when we take the inner product w " (¢(x)¢’(x)T),
we get:

w' (p(2)¢'(z)") = (wab(x)) ¢'(z)"

But this is still a vector, not a scalar. Actually, since w' ¢(z) is a scalar,
and ¢'(x) is a vector, their product is a scalar multiplied by a vector, resulting
in a vector.

But the notation w ' (¢(a:)¢’(x)T) is a vector. Then, perhaps the inner
product is not correctly specified.

Alternatively, perhaps the kernel is defined as:

K(z,a") = (w'(z)) (¢'(«")7)
But that seems inconsistent.

Alternatively, maybe the mapping = — ¢(z)¢'(z) " defines a matrix, and we
are supposed to compute:

¢ = inf {{w,é(2)¢(z) ")r}

where (-, ) p denotes the Frobenius inner product.

In that case, we can interpret w as a vectorized matrix w € RP*P | flattened
to RP 2, and we are taking the inner product between two matrices, flattened as
vectors.

Alternatively, perhaps w is a matrix in RP*P_ and the kernel is defined as:

K(z,2') = tr (wT (¢($)¢/(x)-r))

Given the ambiguities, let’s try to clarify.
Given that, the problem seems to be to compute:

c=inf {w' (¢(z)¢'(x)")}
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Wait, but since w is a vector in R”, and ¢(x)¢'(z)" is a matrix in RP*P,
the expression w ' (¢(x)#'(z) ") is undefined as a multiplication between R” and
RDXD.

Alternatively, perhaps the kernel is defined as:

K(z,2') = (¢(z) we'(2"))

This way, we have an expression where w is a D x D matrix, and ¢(z), ¢'(z')
are vectors in RP. Then ¢(z) Tw¢'(2') is a scalar.

Alternatively, perhaps w is actually a matrix in RP*P_ and the kernel is
defined by:

Ko o) = tr (u” ()¢ () 7))
Then, tr (w' (¢(z)¢'(x)")) = tr ((w d(z)¢'(z)")).

Since ¢(x)¢’(x)" is a rank-one matrix, and w is D x D, the trace of their
product is a scalar.

Alternatively, we can consider vectorizing the matrix ¢(x)¢’(z) " into a vec-
tor of dimension D?, and similarly flattening w into a vector of dimension D?.
Then their dot product is:

(w, ()¢ () " hvec = (vec(w), vee(d(z)¢' (x) "))

But vec(é(z)¢'(2) ) = ¢/ (x)®@¢(x), where ® denotes the Kronecker product.

Alternatively, perhaps the problem is asking us to compute w ' (¢(z)o¢'(x)),
where o denotes the Hadamard (element-wise) product.

Given that, perhaps the assistant should make an assumption to proceed.

Let me make an assumption that the kernel is defined as:

K(z,a") = w' (¢(z) 0 ¢'(a"))

Then the mapping from z to ¢(z) o ¢’'(z) is element-wise multiplication of
the feature maps, resulting in a vector of size D.

Then the expression w ' (¢(x) o ¢'(x)) is a scalar.

In that case, the cone C = conv{@(x) o ¢'(x) | = € X} is a convex hull of
these vectors.

Then, the problem reduces to:

Compute ¢ = inf ex{w' (¢(z) o ¢'(z))}

Our task is to design an algorithm that computes w ' (¢(x)o¢’(x)) on-the-fly
for arbitrary x, without precomputing and storing all the feature combinations.

Moreover, we need to exploit the polyhedral description of the cone C to
compute c efficiently.

Alternatively, perhaps the algorithm involves optimizing over x € X to find
the minimal value of w ' (¢(x) o ¢/(x)), possibly using properties of C.

Perhaps if we can think of C as a polyhedral cone generated by a finite set
of extreme rays, we can formulate the problem as a linear program.



Given that, perhaps the assistant can proceed to describe an algorithm that,
given w, computes ¢ = inf,cx{w’ (é(x) o ¢'(x))} by solving an optimization
problem over X.

Alternatively, perhaps the assistant can suggest that if both feature map-
pings ¢ and ¢’ are piecewise linear or can be represented as convex functions,
then we can formulate the optimization problem as convex optimization.

However, the exact solution depends heavily on the properties of ¢, ¢’, and
X.

Given the limited information, perhaps the assistant can outline a general
approach.

Proposed Solution

Our goal is to compute:

_ T 1eoNT
c= inf {w’ (¢(z)¢'(x) ")}
Suppose we let f(z) =w" (¢(z)¢'(z)").
We can attempt to compute ¢ by solving the optimization problem:

Minimize,exr f(x)
Subject to z € X

However, to perform this computation efficiently, we need to exploit the
structure of f(x).

First, note that:

-0l (B()¢/ () 7) = 200 S wig i () ()

But since w € RP, this does not fit unless w;; is a D x D matrix, or unless
we can further specify the form of w.

Alternatively, perhaps the expression is:

fl@) = (wo(x)) (v ¢'(z))

Assuming that, then we have:

- f(@) = (w'o(x)) (v ¢ (x))

But then we can observe that the minimum of f(x) over x depends on the
product of two functions.

Alternatively, perhaps the assistant can proceed to outline a method to com-
pute ¢ on-the-fly.

Assuming that we can compute f(z) for any z, and that evaluating f is
relatively cheap.

Alternatively, perhaps if we can formulate the dual problem.

Given that the cone C is the convex hull of ¢(z)¢/(z)" for all z € X.

Then perhaps we can write the optimization problem as:

g T
¢=min{w y}



Since C = conv{¢(z)¢'(x)T | + € X}, this is a linear function minimized
over a convex set C.
But perhaps instead of explicitly computing C, we can solve:

¢ = inf {w' (p(x)¢'(z) )}

reX

Given that w and ¢(z), ¢'(x) are given, perhaps our algorithm proceeds as
follows:

Algorithm Outline:

1. **Initialize:** Start with an arbitrary xzq € X.

2. **Compute f(zo):** Evaluate f(zo) = w' (¢(z0)¢ (w0)").

3. **Tterative Optimization:** - Use an optimization algorithm to find z
that minimizes f(z). - This could be gradient descent if f is differentiable
and X is continuous. - If A" is discrete, we might need to use combinatorial
optimization methods. - At each step, compute f(z) on-the-fly without storing
the full ¢(x)¢'(x) " matrix.

4. *Return c:** Once the optimization converges or after a predefined
number of iterations, return the minimal value of f(z) found.

On-the-fly Computation:

At each step, we compute f(x) as:

— a1 / Ty S
f(@)=w" ($(x)¢'(x) )—ZZ wijdi(a

But since w is a vector in R”, unless w;; are arranged appropriately.
Alternatively, perhaps we can write f(x) as:
If w is the vectorization of a matrix W € RP*P then:

f(z) = vee(W) " vec (¢(2)¢(z) ")

But vec (¢(z)¢/(z) ") = ¢/(x) ® ¢(x), where ® is the Kronecker product.

Therefore, f(z) = vec(W) T (¢'(x) @ ¢(x))

But computing Kronecker products and then dot products is still computa-
tionally expensive.

Alternatively, noting that:

f@) =tr (W7 (d(x)¢'(2) ")) = ¢ (x) "W T ¢(2)
So if we have W € RP*P then:
fa)=¢'(x) "W g(x)
If we set W to be a rank-one matrix, i.e., W = wjw, for wy,ws € RP, then:
fl@) = ¢'(2) Twaw] ¢(x) = (wi ¢()) (¢'(x) Tw2)
Now, f(z) = (w{ ¢(z)) (¢ (2) T w2)

This expression can be computed efficiently on-the-fly:



1. Compute a = w{ ¢(x), which is an inner product of two vectors. 2.
Compute b = ¢/(x) "wy, which is an inner product of two vectors. 3. Multiply
f(x)=a-b.

Now, to compute ¢ = inf,cx f(x), we can set up an optimization problem:

Minimizezcxr f(x) = (w1T¢($)) (¢/($)Tw2)
Subject to e X

If ¢ and ¢’ are known and differentiable, and X is continuous, we can com-
pute the gradient of f(z) with respect to z and use gradient-based optimization
methods.

Algorithm Steps:

1. **Initialization:** - Choose initial g € X.

2. **Compute a and b:** - a = w] ¢(z0) - b= ¢'(w0) Two

3. **Compute f(zo):** - f(zo) =a-b

4. **Compute Gradient V f(z():** - Compute the gradients V,a = V, (w{ ¢(z))
- Compute Vb=V, (¢’(x)Tw2) - Use the product rule:

V(z) = (Vea) b+ a- (Vyb)

5. **Update x:** - Use an optimization step, e.g., xx+1 = xp — NV f(zk),
where 7 is the learning rate.

6. **Iterate:** - Repeat steps 2-5 until convergence.

7. **Return ¢:** - Set ¢ = f(a*), where z* is the value of x at convergence.

Advantages:

- This method computes f(z) and its gradient on-the-fly without storing
the full matrices. - Inner products and gradients are computed using vector
operations, which are efficient.

Assumptions:

- The mappings ¢ and ¢’ are differentiable with respect to z. - The domain
X is continuous or can be appropriately handled. - The optimization problem
is tractable.

Example

Suppose ¢(z) = x and ¢/(x) = x, with x € RP| and w; = wy = w.
Then f(z) = (w'z)(w'z) = (wa)2
Our optimization problem becomes:

Minimize,cx f(x) = (wa)2
Subject to z € X

This is a quadratic function in z. If we want to minimize f(z), and X is
unconstrained, the minimum is achieved when z = 0, assuming w 'z = 0.

However, if X is constrained (e.g.,  within some domain), we can use gra-
dient descent to find the minimal f(x).



Final Answer for Part (b)

To efficiently compute ¢ = infzex {w' (¢(z)¢'(x)")} on-the-fly, we can:
1. Express w' (¢(x)¢'(x)") in a form that can be computed using vector op-
erations without storing large matrices, for example, as f(z) = (w{ ¢(x)) (¢'(z) Tws).
2. Set up an optimization problem to minimize f(z) over x € X, exploiting
the differentiable structure of ¢ and ¢'.

3. Use gradient-based optimization methods to iteratively compute f(z) and
update z, each time computing f(z) and Vf(z) on-the-fly.

4. Since we avoid storing the full ¢(x)¢’(x) " matrices and instead use vector
inner products and gradient computations, the algorithm is memory-efficient.

Summary

By transforming the problem into an optimization task that uses vector oper-
ations and avoids explicit representation of high-dimensional matrices, we can
efficiently compute the infimum ¢ on-the-fly while exploiting the convexity and
polyhedral structure of the cone C.

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm

# Define the feature mappings phi and phi’
def phi(x):

# For simplicity , phi(x) = x

return x

def phi_prime(x):
# For simplicity , phi’(x) = x
return x

# Define the function f(x) = (wl"T phi(x)) * (w2"T phi’(x))
def f(x, wl, w2):

phi_x = phi(x)

phi_prime_x = phi_prime(x)

a = np.dot(wl, phi_x)

b = np.dot (w2, phi_prime_x)

return a * b

# Compute the gradient of f with respect to x
def grad_f(x, wl, w2):

phi_x = phi(x)

phi_prime_x = phi_prime (x)

a = np.dot(wl, phi_x)

b = np.dot (w2, phi_prime_x)



grad_a = wl

grad_b = w2

grad_f = grad_a * b + a x grad_b
return grad_f

# Set weight vectors wl and w2
wl = np.array ([1.0, 2.0])
w2 = np.array ([3.0, 4.0])

# Initialize x
x_init = np.array ([5.0, 5.0])

# Set learning rate and number of iterations
learning_rate = 0.01
num _iterations = 100

# Gradient descent optimization

def gradient_descent(x_init , wl, w2, learning_rate, num_iterations):
X = x_init.copy ()
x_history = [x.copy ()]
f_history = [f(x, wl, w2)]

for i in range(num_iterations):
gradient = grad_f(x, wl, w2)
x — learning_rate * gradient
x_history .append(x.copy())
f_history .append(f(x, wl, w2))
return x, np.array(x_-history), f_history

# Perform optimization

x_min, x_history, f_history = gradient_descent(x_init, wl, w2, learning_rate, nt
print (?Minimum value of f(x):”, f(x_min, wl, w2))
print (?x at minimum:”, x_min)

# Visualization

# Create a meshgrid for plotting f(x) over the domain
X_range = np.linspace(—10, 10, 100)

Y _range = np.linspace(—10, 10, 100)

X, Y = np. meshgrid (X_range, Y_range)

Z = np.zeros_like (X)

# Compute f(x) over the grid
for i in range(X.shape[0]):
for j in range(X.shape[1l]):
x_point = np.array ([X[1, j], Y[i, j]])
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Z[i, j] = f(x-point, wl, w2)

# Plot the contour and the optimization path

fig , ax = plt.subplots(figsize=(10, 8))

CS = ax.contour (X, Y, Z, levels=50, cmap="viridis ")
ax.clabel (CS, inline=1, fontsize=10)

ax.set_xlabel ('x17)

ax.set_ylabel (’x27)

ax.set_title (’Contour plot of f(x) with optimization path’)

# Plot the optimization path

x1_history = x_history[:, 0]
x2_history = x_history[:, 1]
ax.plot (x1_history , x2_history, ’ro—’, markersize=4, label="Optimization path’)

ax.legend ()
plt .show ()

# 3D Surface plot

fig = plt.figure(figsize=(12, 8))

ax = fig.add_subplot (111, projection='3d’)

surf = ax.plot_surface (X, Y, Z, cmap=’viridis ’, alpha=0.7)
ax.set_xlabel ('x17)

ax.set_ylabel (’x27)

ax.set_zlabel ("f(x)’)

ax.set_title (’Surface plot of f(x)’)

# Plot the optimization path in 3D
ax.plot (x1_history , x2_history, f_history, ’'r.—’, markersize=5, label="Optimizat
ax.legend ()

plt .show ()

Conclusion

In this analysis, for Part (a), we determined that the cone of n x n posi-
tive semidefinite matrices S™ is not a polyhedral cone when n > 1, due to
its infinite dimensionality and the fact that it cannot be generated by a fi-
nite set of vectors. For Part (b), we designed an algorithm that computes
¢ = infyex {w" (¢(x)¢'(z)")} on-the-fly by exploiting the structure of the
feature mappings and using optimization techniques that avoid storing large
matrices, thereby making the computation efficient.
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Contour plot of f(x) with optimization path
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