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Abstract

Division by zero, specifically 0
0 , has been considered undefined due to its indeterminate nature

[1]. In this paper, we propose treating 0
0 as an indeterminate state U , which belongs to a set

of undefined states S. Drawing an analogy with quantum mechanics, specifically the concepts of

superposition and wavefunction collapse [2, 3], we explore how such mathematical indeterminacies

might behave similarly to quantum states prior to measurement. We introduce several types of

”collapse”—conjugate, symmetric, asymmetric, and random—to describe the potential resolutions

of U into definite states. The framework presented here demonstrates mathematical consistency in

representing and manipulating indeterminacies through (U1·0)
0 = U2. Additionally, we propose hy-

potheses connecting this framework to quantum phenomena such as entanglement, the uncertainty

principle, and cosmological singularities, suggesting that this approach may offer new insights into

both mathematics and quantum theory.

I. INTRODUCTION

0
0
has been considered undefined in mathematics due to the infinite number of possible

solutions to equations like x× 0 = 0 [1]. This indeterminate nature poses a significant chal-

lenge, as it prevents assigning a unique value to 0
0
. However, the concept of indeterminacy

is not unique to mathematics—it plays a central role in quantum mechanics, where systems

exist in multiple states simultaneously until measured, a phenomenon known as superposi-

tion [2, 4]. Inspired by this parallel, we propose that 0
0
be interpreted as an undefined state

U , belonging to a set of indeterminate states S.

By drawing an analogy between mathematical indeterminacies and quantum systems in

superposition, we introduce the idea of ”collapse” as a means to resolve such undefined ex-

pressions. In quantum mechanics, measurement forces a system to collapse into a definite

state from its superposed possibilities [3]. Similarly, we suggest that mathematical indeter-

minacies like 0
0
may collapse into a specific value upon observation or ’measurement’. We

categorize different forms of collapse—conjugate, symmetric, asymmetric, and random—and

explore how these concepts might provide a new framework for understanding division by

zero.
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This paper aims to formalize the treatment of 0
0
as an indeterminate state and demon-

strate its consistency within mathematical operations. Additionally, we hypothesize that

this framework may offer insights in quantum mechanics, including quantum entanglement,

measurement uncertainty, and cosmological singularities. By merging concepts from math-

ematics and physics, we hope to open new avenues for investigating indeterminacy in both

fields.

A. Notation and Terminology

To facilitate clarity in this discussion, we introduce the following notations:

U : Represents an undefined or indeterminate state (0
0
), and it belongs to a set of undefined

states S.

D: Upon measurement or observation, U collapses into a specific value, referred to as a

constant D. Mathematically, this collapse can be expressed as

U
measurement−−−−−−−→ D, (1)

where D can take values from any number system, including real, complex, or imaginary

numbers [1].

S: Denotes the set of all possible undefined states that U can occupy before measurement,

i.e.,

U ∈ S. (2)

R: Denotes the set of all possible definite values that U can collapse into upon measure-

ment, i.e.,

D ∈ R. (3)

Collapse: The process where U resolves from a state in S into definite values (definite

states) in R, such as D1, D2.

The collapse of U into definite values can be categorized as follows:

Conjugate Collapse: Both indeterminate states collapse into the same value, D1 = D2.

Symmetric Collapse: The states collapse into opposite values, D1 = −D2.

Asymmetric Collapse: The states collapse into distinct, unrelated values, D1 ̸= D2.

Random Collapse: The states collapse into random values from predefined sets, e.g.,

D1 ∈ R1, D2 ∈ R2, (4)
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where R1 and R2 are subsets of R.

II. TREATMENT OF DIVISION BY ZERO

A. Representing 0
0 as an Undefined State U

As the expression 0
0
is left undefined because any number multiplied by zero equals zero,

resulting in infinitely many solutions, we introduce the notation

0

0
= U, (5)

where U represents the undefined state. To further structure this idea, we assume that U

belongs to a set of all possible undefined states, denoted as S [1]. This allows us to explore

the behavior of indeterminate states within a predefined set of possibilities:

U ∈ S. (6)

Upon measurement, U collapses into a value within a separate set R, which contains all

possible definite values:

U
measurement−−−−−−−→ D, D ∈ R. (7)

This interpretation allows us to draw parallels between mathematical indeterminacies and

quantum mechanical indeterminacies, where a system exists in superposition before it col-

lapses upon measurement [3].

B. Constraints by Quantum Mechanics

We limit the possible values of U to discrete or continuous sets, analogous to quantum

systems. For example, in a spin-1
2
system, we limit U to

S =

{
+
1

2
,−1

2

}
, (8)

similar to how spin measurements collapse into one of two outcomes [3].

In systems with continuous probability distributions (e.g., position or momentum), U

follows a probability distribution P(x) over R, constrained by the system:

U ∼ P(x), x ∈ S. (9)
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This approach reflects how quantum measurements yield discrete or continuous outcomes

from an initially indeterminate state [4].

III. FORMALIZATION OF THE INDETERMINATE STATE U

A. Mathematical Consistency of the Equation (U1·0)
0 = U2

We consider the equation
(U1 · 0)

0
= U2, (10)

where U1 and U2 represent indeterminate states within the set S, i.e., U1, U2 ∈ S, and (U1 ·0)

is an inseparable unit.

Multiplying both sides of Eq. (10) by 0, we obtain

(U1 · 0) = U2 · 0. (11)

This manipulation results in an equation that is valid under standard arithmetic rules.

B. Collapse to Definite Values

Upon measurement, the indeterminate states U1 and U2 collapse to definite values D1

and D2, respectively:

U1
measurement−−−−−−−→ D1, U2

measurement−−−−−−−→ D2, D1, D2 ∈ R. (12)

Substituting these definite values into Eq. (11), we get

(D1 · 0) = D2 · 0. (13)

Since any number multiplied by zero equals zero, Eq. (13) simplifies to

0 = 0. (14)

This equality holds true for any values of D1 and D2 in R, ensuring that the equation

remains valid after the collapse. Therefore, the manipulation demonstrates that the original

Eq. (10) is mathematically consistent within this framework.
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C. Implications for the Relationship Between D1 and D2

The fact that Eq. (13) reduces to 0 = 0 implies that the specific values of D1 and D2 do

not affect the validity of the equation. This allows for various types of collapses (conjugate,

symmetric, asymmetric, random) without violating mathematical consistency.

For example:

Conjugate Collapse:

D1 = D2 ∈ R. (15)

Symmetric Collapse:

D1 = −D2, D1, D2 ∈ R. (16)

Asymmetric Collapse:

D1 ̸= D2, D1, D2 ∈ R. (17)

Random Collapse:

D1 ∈ R1, D2 ∈ R2, R1,R2 ⊆ R. (18)

In all cases, Eq. (13) remains valid, as both sides reduce to zero.

IV. APPLICATIONS IN QUANTUM MECHANICS

A. Pre-Measurement State

In quantum mechanical systems, before measurement, particles exist in a state of super-

position [2]. Similar to how U belongs to the set S before collapsing, we assume quantum

systems also have an indeterminate state space, denoted as SQM. The possible states of a

quantum system can therefore be represented as

UQM ∈ SQM. (19)

Let U1 and U2 represent the states of particle 1 and particle 2, respectively. The relation-

ship between the two particles before measurement is given by the equation

(U1 · 0)
0

= U2, (20)

where U1 and U2 represent the uncertain, pre-measurement states of the two particles within

SQM.
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B. Post-Measurement State

After measurement, the indeterminate states U1 and U2 collapse into definite values,

denoted by constants D1 and D2, respectively, where D1,DD2 ∈ RQM. Substituting into

Eq. (11), we have

(D1 · 0) = D2 · 0. (21)

Simplifying Eq. (21) yields

0 = 0. (22)

This equality confirms that the equation remains valid regardless of the specific values of

D1 and D2 in RQM. Therefore, the type of collapse (conjugate, symmetric, asymmetric,

or random) does not affect the mathematical consistency of the relationship in quantum

mechanical systems.

Most current quantum mechanical experiments, particularly those involving entangled

particles, suggest that the relationship between D1 and D2 often follows the symmetric

collapse rule, where D1 = −D2 [5]. This section may provide a formalization in mathematics

for this type of quantum behavior.

V. HYPOTHESES

In this section, we introduce hypotheses regarding the undefined state U = 0
0
, which

is analogous to a quantum superposition. Equation (10) may represent a new framework

for understanding indeterminate states in quantum systems and the early universe. These

hypotheses may provide alternative insights into quantum entanglement, measurement, un-

certainty, and cosmological singularities.

A. Division by Zero and Quantum Superposition

We hypothesize that the undefined state 0
0
, denoted as U , behaves similarly to a quantum

system in superposition. In quantum mechanics, superposition refers to a system existing

in multiple states simultaneously until measured [2, 4]. Analogously, the state U ∈ S,

representing 0
0
, remains indeterminate until ”collapsed” into a definite value through a
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measurement-like process. This superposition analogy suggests that mathematical indeter-

minacies could have a physical interpretation in quantum systems, particularly in systems

where undefined or unknown states exist prior to observation.

B. Division by Zero and Quantum Entanglement

We further hypothesize that the concept of undefined states can be extended to quantum

entanglement. Entangled particles share quantum states that remain indeterminate until

measured [5]. We propose that in certain entangled systems, these states may follow a

structure similar to 0
0
, where the measurement of one particle leads to the collapse of an

undefined state U across the entire system, as shown by Eq. (10). This collapse could follow

one of several forms:

• Conjugate Collapse: Both entangled particles collapse to the same value, i.e., D1 =

D2. This form of collapse would correspond to a situation where measurement results

for two entangled particles yield identical outcomes.

• Asymmetric Collapse: The entangled particles collapse to distinct and unrelated

values, i.e., D1 ̸=D2. This could represent an unexplored form of entanglement where

measurement outcomes are independent of each other, yet still correlated in a non-

classical manner.

• Random Collapse: The particles collapse into random values from predefined sets,

i.e., D1 ∈ R1 and D2 ∈ R2, where R1 and R2 are subsets of the possible outcomes

R. This collapse aligns with probabilistic interpretations in quantum mechanics and

could account for the inherent randomness of quantum measurements [4].

• Extended Collapse in Quantum Fields: We propose a potential extension to

non-classical fields, where multiple particles or subsystems collapse in a more com-

plex, collective manner, governed by quantum field dynamics. This extension may

provide insights into interactions within quantum fields that extend beyond pairwise

entanglement.
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C. Division by Zero and the Uncertainty Principle

Another hypothesis links the undefined state U = 0
0
to the Heisenberg uncertainty prin-

ciple. The uncertainty principle states that certain pairs of physical properties, such as

position and momentum, cannot both be precisely measured simultaneously [3]. We pro-

pose that this uncertainty can be modeled using undefined states such as U = 0
0
, which

naturally reflect indeterminacy. The collapse of U upon measurement, as formalized in

Eq. (10), may correspond to the ”trade-off” between the precision of conjugate variables.

This approach may offer a new mathematical formalism for understanding the limits of preci-

sion in quantum measurements, potentially providing an alternative perspective in addition

to the current understanding of the uncertainty principle.

D. Division by Zero in Cosmology

Finally, we hypothesize that the concept of undefined states may provide a new framework

for understanding cosmological singularities, such as the initial conditions of the Big Bang.

Specifically, we propose that the universe, prior to the Big Bang, could be modeled as

an undefined state U = 0
0
, existing in a form of ”cosmic superposition” [4]. The Big Bang

would then represent the collapse of this indeterminate state into a definite universe through

Eq. (10). This interpretation parallels the quantum mechanical wavefunction collapse but

on a cosmological scale. It may offer a potential new lens for understanding the nature of

spacetime and the initial conditions of the universe.

E. Conclusion

In summary, we have hypothesized several mathematically and theoretically possible

forms of collapse, including conjugate, asymmetric, and random collapses. Moreover, we pro-

posed hypotheses that may offer new perspectives on quantum entanglement, measurement,

the uncertainty principle, and the early universe. Through possible future experimental

verification, these hypotheses may have the potential to expand the current understanding

of quantum mechanics and cosmology, offering new mathematical and physical insights into

the nature of the universe. As most current quantum mechanical experiments relating to

entangled particles have followed the symmetric collapse rule, where D1 = −D2 [5], this may
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validate Eq. (10) and suggest that the formalization through Eq. (10) and Eq. (11) provides

a ’code of the universe,’ determining how entangled particles function.

VI. A COMPUTATIONAL INTERPRETATION OF QUANTUM ENTANGLE-

MENT AND INDETERMINACY

In this section, we explore an alternative interpretation of quantum entanglement and

mathematical indeterminacies, proposing that they may be manifestations of an underlying

computational framework—a “universal code” governing the universe. This approach offers

a perspective on the nature of indeterminate states and their collapse into definite values,

suggesting that both quantum phenomena and mathematical operations like division by zero

could be pre-determined by an implicit set of rules embedded in the fabric of reality.

A. A ”Universal Code” Hypothesis

Inspired by the deterministic behavior of computer algorithms, we hypothesize that quan-

tum states—particularly entangled particles—do not “choose” their outcomes through ran-

dom, non-local influences. Instead, these outcomes are dictated by a universal code, akin

to how variables in a computer program take specific values based on pre-programmed in-

structions.

For instance, in the case of two entangled particles, such as those involved in a spin-1
2

system, the relationship between their states before measurement can be formalized as:

(U1 · 0)
0

= U2, (23)

where U1 and U2 are indeterminate states before measurement. Upon measurement, these

states collapse into definite values D1 and D2, governed by the symmetric collapse rule

D1 = −D2, which is often observed in quantum mechanical experiments [5]. Rather than

invoking an instantaneous signal that “transmits” the state of one particle to the other, we

propose that the collapse is predetermined by a universal computational framework, encoded

as:

D1 = −D2. (24)
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Thus, when one particle is observed to be in the state D1 = +1
2
, its entangled counterpart

must automatically adopt the state D2 = −1
2
, without any need for physical interaction or

communication. This deterministic behavior parallels how variables in computer programs

interact based on predefined conditions [? ].

B. Implications for Quantum Non-Locality

This “universal code” hypothesis provides an alternative explanation for the phenomenon

of quantum non-locality. In the traditional interpretation, two entangled particles are

thought to share information instantaneously, regardless of the distance separating them.

This idea of “spooky action at a distance,” as Einstein once described it [? ], has been a

topic of philosophical and scientific debate.

However, by assuming that entanglement is encoded in a pre-existing computational

structure, we eliminate the need for faster-than-light communication. The behavior of the

particles is determined by the same underlying code, similar to how distant elements of

a computer program are linked by a central algorithm, even though no physical signal is

transmitted between them [? ].

C. A Code for Mathematical Indeterminacies

Extending this idea to mathematical indeterminacies such as 0
0
, we propose that the

same universal code may govern the resolution of undefined expressions. The collapse of

an indeterminate state U into a definite value D, analogous to the collapse of quantum

superpositions, can be interpreted as the execution of a pre-existing rule within the code.

In this view, division by zero does not represent an “impossible” operation, but rather

an expression of indeterminacy that resolves deterministically when triggered by a specific

condition or observation. This idea mirrors the behavior of quantum systems, which remain

in superposition until measured [2].
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D. Potential Experimental and Theoretical Implications

The “universal code” hypothesis is speculative, yet it offers potential implications for

future experimental research. If quantum phenomena and mathematical operations are

governed by a hidden code, new experiments could be designed to test the deterministic

nature of entanglement and other indeterminate states. For example, we could explore

whether certain patterns of particle behavior or quantum collapses align more closely with

algorithmic predictions than with purely random quantum processes.

Furthermore, this framework may offer a unified explanation for a variety of physical and

mathematical phenomena, ranging from quantum entanglement to cosmological singulari-

ties, as discussed in the following section.

VII. DISCUSSION

In this paper, we propose a mathematical framework for treating the indeterminate ex-

pression 0
0
as an undefined state U , which belongs to a set of indeterminate states S. By

drawing analogies to quantum mechanics, specifically superposition and wavefunction col-

lapse [2–4], we introduce the idea of mathematical collapse, where indeterminate states

resolve into definite values. This framework allows 0 as a divisor to be not only conceptually

valid but also mathematically consistent, overturning the notion that division by zero is

impractical.

By treating (U1·0)
0

= U2 as an equation that remains consistent after the collapse of

indeterminate states, we show that operations involving division by zero can conform to

arithmetic rules, provided that the collapse process is properly defined. This idea may

provide a fresh perspective on how these expressions can be understood.

Moreover, by drawing analogies to quantum mechanical superposition and collapse, we

suggest that mathematical indeterminacies, like quantum states, exist in a range of possible

outcomes until measured or calculated. This framework might contribute to our understand-

ing of quantum phenomena in physics.

While this paper presents a conceptual framework, it is purely speculative. Future re-

search could further explore the nature of S and its relationship toR in various mathematical

contexts. Additionally, the specific mechanism by which measurement collapses an unde-
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fined state from S to R remains an open question, which may require the development of

new mathematical tools or models.
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