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Abstract

Parametric decay instabilities frequently occur in wave interactions.
These instabilities typically have thresholds for wave amplitudes. They
arise when nonlinearity, such as a spatial pressure inhomogenety, cou-
ples different waves. For these instabilities to arise, the waves must
satisfy frequency and wavenumber matching conditions, which follow
from the laws of energy and momentum conservation. However, para-
metric instabilities are not limited to wave interactions; the simples
form of parametric instability is parametrically coupled oscillators.

Magnetoactive plasma represents a unique wave medium in which
numerous waves of various polarizations and spatial-temporal scales
are easily excited and weakly damped. The greater the number of
wave types, the easier it is to satisfy resonance conditions like the
frequency and wavenumber matching conditions, and thus parametri-
cally excite, or ”drive” new waves from the initial wave. Therefore, in
magnetoactive plasma, all known types of parametric instabilities can
arise.

1 Wave equation

It is natural to start the discussion of the theory of parametric decay instabil-
ities by considering parametric resonance (PR). In this case, it is convenient
to choose a model that is close to reality and has sufficient simplicity to
trace on this model the main qualitative patterns that govern decay para-
metric instabilities. It is not difficult to choose such a model. In oscillatory
systems the discussion of parametric instabilities begins with the analysis of
solutions of the Mathieu equation. In our case for a wave medium, such as
plasma, it is convenient to refer to the following equation:

∂2u/∂t2 − υ2 [1 + ε cos (ω0t− k0x)] ∂
2u/∂x2 = 0, (1)

where we assume the linear dispersion relation ω = kυ.
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Obviously, Eq.1 can be considered as one of the simplest generaliza-
tions of the Mathieu equation to wave media. In the absence of a term
proportional to ε, such equations in linear approximation describe many
well-known waves: acoustic, magnetosonic, Alfvénic, etc. Thus, for linear
acoustic waves in a homogeneous plasma from the equations:

∂ρ/∂t+ ρ0∂u/∂x = 0;
ρ0∂u/∂t = −∂p/∂x; p/ργ = const ,

}
(2)

where ρ, u, p are respectively density, mass velocity and pressure; γ is the
adiabatic exponent; the index zero denotes unperturbed quantities, follows
the equation

∂2u/∂t2 − υ2∂2u/∂x2 = 0,

where υ2 ≡ γp0/ρ0 (sound speed).
Suppose we are interested in low-amplitude Alfvén waves.
The propagation of Alfvén waves can be described by a wave equation:

∂2u

∂t2
= v2A

∂2u

∂x2
(3)

where vA = B0√
µ0ρ0

is the Alfvén speed.

Here the x-axis is directed along B, and (u denotes any of the compo-
nents of the mass velocity perpendicular to B0.

Let the density ρ be modulated by a sinusoidal pump wave of small
amplitude, then

v2A = v2A0
[1 + ε cos (ω0t− k0x)] . (4)

Formal substitution of these values into (2) and (3) leads to equations of
type (1). A rigorous derivation of the equations describing the propagation
of sound or Alfvén waves in a medium with wave density modulation will
give rise to additional harmonic terms associated with other nonlinear terms
(such as, for example, the convective term). This circumstance significantly
complicates the equations, but does not change the nature of the parametric
relationship, so for a qualitative analysis it is sufficient to limit ourselves to
the choice of the model equation (1). We can say that Eq.(1) describes a
wave medium in which the influence of the pump wave is reduced to the
modulation of the wave phase velocities.

2 Parametric decay instability (PDI). Regions of
instability.

Let’s consider how the parametric coupling arises for a pair of waves

ω1,k1;ω2,k2
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described by Eq.(1). It is easy to see that in the absence of a pump wave
(ε = 0) Eq.(1) describes independent spatiotemporal harmonics with the
linear dispersion relation ω(k) = kvA.

To investigate the coupling of waves, it is convenient to switch to Fourier
components in (1) for the spatial variables Vk(t) =

∫∞
−∞ u(x, t)e−ikx dx and

transfer the term that takes into account the influence of the pump waves
to the right-hand side of the equation.

So, we will use the wavenumber representation of u(x, t) , which is
Vk(t) =

∫∞
−∞ u(x, t)e−ikx dx.

Given the equation:

∂2u

∂t2
= v2A [1 + ε · cos(ω0t− k0x)]

∂2u

∂x2

First, we take the Fourier transform of both sides of the equation with
respect to x.

The Fourier transform of ∂2u
∂t2

is:

F
{
∂2u

∂t2

}
=

∂2Vk(t)

∂t2

The Fourier transform of ∂2u
∂x2 is:

F
{
∂2u

∂x2

}
= −k2Vk(t)

Now, consider the term with the cosine function:

F
{
v2A [1 + ε cos(ω0t− k0x)]

∂2u

∂x2

}
The cosine term can be written using Euler’s formula:

cos(ω0t− k0x) =
1

2

(
ei(ω0t−k0x) + e−i(ω0t−k0x)

)
The Fourier transform of cos(ω0t−k0x) will result in two delta functions

in the frequency domain:

F {cos(ω0t− k0x)} =
1

2

(
eiω0tδ(k + k0) + e−iω0tδ(k − k0)

)
Combining these results, the Fourier transform of the product

[
v2Aε cos(ω0t− k0x)

] ∂2u

∂x2

involves the convolution of the individual transforms. Let:

f(x) = cos(ω0t− k0x) and g(x) =
∂2u

∂x2
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The convolution in the Fourier domain is:

F{f(x)g(x)} =
1

2
v2Aε

[
eiω0tδ(k + k0) + e−iω0tδ(k − k0)

]
∗ (−k2Vk(t))

The convolution of a delta function with another function shifts the
argument of the function:

−1

2
v2Aε

[
(k + k0)

2Vk+k0(t)e
iω0t + (k − k0)

2Vk−k0(t)e
−iω0t

]
Simplifying, we get:

F
{[

v2Aε cos(ω0t− k0x)
] ∂2u

∂x2

}
= −1

2
v2Aε

[
(k0 + k)2Vk0+k(t)e

iω0t + (k0 − k)2V ∗
k0−k(t)e

−iω0t
]

Combining everything, the equation in wavenumber space is:

∂2Vk(t)

∂t2
+v2Ak

2Vk(t)+
1

2
v2Aε

[
(k0 + k)2eiω0tVk0+k(t) + (k0 − k)2e−iω0tV ∗

k0−k(t)
]
= 0

or, taking into account that ω(k) = v2Ak
2, we have:

∂2Vk(t)

∂t2
+ω(k)Vk(t) = −1

2
εv2A

[
(k0 + k)2eiω0tVk0+k(t) + (k0 − k)2e−iω0tV ∗

k0−k(t)
]

(5)
The equation we obtained is actually not a single equation. Consider-

ing the continuous spectrum of waves, any waves, it can be said
that this is a system of two equations for coupled waves with wave
numbers k and k0 ± k. Note that ε is a small quantity.

First of all, we note that in the zeroth approximation in ε, all
Vk oscillate with their own frequencies ωk. The weak coupling does
not significantly change the frequency of the oscillator. However,
in the case when the forcing force in the right-hand side of Eq.(5)
falls into resonance with the natural frequency, the oscillator can
be excited.

The resonance condition for the second term in the right-hand side of
Eq.(5) has the form: ω0 − ω(k0 − k) = ω(k), for the first: ω0 + ω(k0 + k) =
ω(k).

Let the first condition be fulfilled, then the another term is non-resonant
and can be ignored.

In turn, the Fourier component Vk0−k of the resonance part of the equa-
tion Eq.(5) is described by the equation
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d2V ∗
k0−k/dt

2 + ω2 (k0 − k)V ∗
k0−k = −(ε/2)(2k0 − k)2v2A exp (iω0t)V2k0−k−

−(ε/2)k2v2A exp (−iω0t)Vk

(6)
In this equation also the second term is resonant. Therefore, considering

only the resonant interaction of two coupled oscillators (designated as
oscillator 1 and oscillator 2), we obtain the following shortened system:

∂2Vk1(t)

∂t2
+ ω2(k1)Vk1 = −1

2
v2Aε · (k2)2e−iω0tV ∗

k2(t)

∂2Vk2(t)

∂t2
+ ω2(k2)Vk2 = −1

2
v2Aε · (k1)2eiω0tVk1(t)

(7)

where the notation k2 = k0 − k1 is introduced.
Taking into account the resonance conditions for frequencies, it can be

said that parametrically related waves are those whose frequencies and wave
vectors satisfy the conditions

ω0 = ω1(k1) + ω2(k2)

k0 = k1 + k2
(8)

i.e., the conditions of spatiotemporal synchronization. These conditions
look like the energy and momentum conservation conditions in
quantum mechanics. Thus, they remind us of the deep connection
between the quantum mechanical and wave descriptions of wave
processes.

In accordance with the above, we will seek the solution (7) in the form
Vk = a(t) exp [−iω (k) t] , where a(t)-slowly changing amplitudes of the
coupled waves. Then

−2iω1
∂a1
∂t

= −
(ε
2

)
k22v

2
Aa

∗
2 exp(−i∆ωt)

−2iω2
∂a∗2
∂t

= −
(ε
2

)
k21v

2
Aa1 exp(i∆ωt)

(9)

where
∆ω = ω0 − ω1 − ω2.

It is easy to see that the solution to (9) is:

a1 ∼ exp

(
−i

∆ω

2
t+ νt

)
;

a∗2 ∼ exp

(
i
∆ω

2
t+ νt

)
,

(10)
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where

ν =
√
γ2D − (∆ω)2/4; γ2D ≡

ε2k21k
2
2v

4
A

16ω1ω2
(11)

This solution describes a first-order parametric decay instability. It fol-
lows from (11) that at zero frequency detuning, i.e., at ∆ω = 0 [this means
strict fulfillment of the resonance conditions (8)], the amplitudes of the waves
a1 and a2 grow exponentially with an increment γ = γD. In this case, the
relationship ω1ω2 > 0 must be fulfilled, which, together with the resonance
conditions, gives ω0 > ω1, ω2.

In other words, in the case of parametric resonance instability, waves with
frequencies less than the pump wave frequency are excited (red satellites). It
should be noted that in the absence of dissipation the increment of the decay
instability is proportional to the first power of the pump wave amplitude:

γD ∼ ε

Equation (11) determines the width of the first-order instability zone
n = 1. For detuning |∆ω/2| > γD, the instability disappears. This means
that the width of the first PI zone is proportional to the first power
of the pump wave amplitude.

Knowing the theory of parametric resonance in oscillatory systems, this
conclusion could have been made immediately after reducing the problem
to solving the shortened equations (7), which describe a system of two para-
metrically coupled oscillators.

It should be emphasized that the system of shortened equations
is obtained using the conditions of not only temporal (ω0 = ω1 + ω2),
but also spatial k0 = k1 + k2 resonance. The similarity of (1) with
Mathieu’s equation, as well as the method of obtaining systems of shortened
equations (based on spatiotemporal resonance of modes), allow qualitative
conclusions to be drawn about higher-order parametric resonance and the
corresponding instability zones.

Obviously, for waves of relatively small amplitude (in our example, ρ̃ ≪
ρ0), the increment of the n-th order PI γn ≈ εn.

Accordingly, the instability zone narrows with increasing n, since |∆ωn| /2 =
γn, where ∆ωn = nω0 − ω1 − ω2.

Figure 1 shows the zones of PI of the n-th order.
Instabilities of the first and second orders are of mos practical importance

due to decrease in increments and the narrowing of instability zones with
increasing n.

PI of the second order manifest themselves in those cases when PI of the
first order do not arise due to the impossibility of fulfilling conditions (8).

In systems where PI of the first order are absent, the conditions for the
occurrence of PI of the second order are usually met.
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Figure 1: Stability - instability chart of the parametric interaction. (Mathieu
equation stability chart).

3 Thresholds of PDI

Parametric decay instabilities arise when the amplitudes exceed certain val-
ues. In the approximation of a homogeneous plasma, these thresholds are
determined by the decrements of the excited wave doublet, which can be
shown by introducing dissipation terms into equation (7). This is not dif-
ficult to do if small imaginary additions to the natural frequencies ωi are
introduced according to the scheme ωi → ωi + iγi, where γi are the decre-
ments of the corresponding waves. Assuming ∆ω = 0 and performing simple
calculations and taking dissipation into account, we obtain the follow-
ing expression for the growth rate of the parametrically excited wave
νD :

νD = −γ1 + γ2
2

+

√
γ2D +

(γ1 − γ2)2

4
, (12)

The requirement νD > 0 gives the expression for the instability threshold
in general form:

γ̂2D > γ1γ2 (13)

or for the model problem (7):

εthr =
16ω1ω2γ1γ2
k21k

2
2v

4
A

(14)
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From (13), it follows that the threshold disappears when at
least one of the decrements of the excited wave pair tends to zero.

4 Conclusion

In this work, we have explored the fundamental dynamics of Parametric
Decay Instability (PDI) within a magnetized plasma environment. By ana-
lyzing the mathematical frameworks, such as the modified Mathieu equation,
and applying it to wave media, we demonstrated how PDI is driven by res-
onance conditions between waves of different frequencies and wavenumbers.
Specifically, we showed that parametric instabilities can arise under the in-
fluence of a pump wave, and their occurrence is governed by energy and
momentum conservation, similar to quantum mechanical systems.

One of the key findings is that the instability threshold is highly depen-
dent on the amplitudes of the interacting waves, where exceeding a certain
amplitude initiates the instability. Furthermore, the resonant conditions dic-
tate the regions of instability, with the first-order instabilities being the most
prevalent due to their larger growth rates and broader regions of resonance.

The study also highlights the practical significance of first and second-
order parametric instabilities, particularly in scenarios where the conditions
for first-order instability are not met. These insights are crucial for under-
standing wave dynamics in plasma and could have applications in controlled
fusion, space physics, and plasma-based devices.
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