
Two Types of Universal Arrows
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Abstract A universal arrow is a pair which consists of an object and a morphism. And an
isomorphism is defined by a universal arrow. The isomorphism may be a composition of
two morphisms. We may define two types of universal arrows, which is determined by the
properties of the morphisms. A universal arrow is of the type I if the morphisms are not
isomorphisms; And a universal arrow is of the type II if the morphisms are isomorphisms.
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1. Introduction

Suppose that F : C → D is a functor. Given a D ∈ D. A universal arrow from F to D
is a pair 〈R,u〉 consisting of an object R ∈ C and a morphism u : F(R) → D in D such
that the equation (3.1) holds. See definition 3.1 for more details.

The equation (3.1) factors as ũ ◦ ®F. Then we define two types of universal arrows
in definition 3.2. A universal arrow is of the type I if ®F and ũ are not isomorphic; And
a universal arrow is of the type II if ®F and ũ are isomorphisms. See section 3.1 for
more details.

A limit lim←−− F of a functor F is defined by a universal arrow from ∆ to F. This

universal arrow is of the type II, see proposition 3.2. There are universal arrows
determined by an adjunction 〈F,G,φ〉. These universal arrows are of the type I in
general. But if some conditions are satisfied, then the universal arrow is of the
type II, see proposition 3.3. Furthermore, other examples are given in section 3.2.

2. Preliminaries

Definition 2.1 ([4–6]). A category C consists of:
• a collect of objects;
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• for each pair A,B ∈ C, a collect HomC(A,B) of morphisms from A to B;
• for each triple A,B,C ∈ C, a function

HomC(B,C) ×HomC(A,B)→ HomC(A,C)

given by
(g, f ) ↦→ g ◦ f ,

call composition;
• for each A ∈ C, a morphism idA ∈ Hom(A,A), called identity on A,

satisfying the following axioms:
associativity: for each f ∈ HomC(A,B), g ∈ HomC(B,C), and h ∈ HomC(C,D)

h ◦ (g ◦ f ) = (h ◦ g) ◦ f ;

identity law: for each f ∈ HomC(A,B),

idB ◦ f = f ◦ idA = f .

Definition 2.2 ([4–6]). Let C,D be categories. A functor F : C → D is a morphism
consisting of:

• assigning to each object C ∈ C an object F(C) ∈ D;
• assigning toeachmorphism f ∈ HomC(A,B) amorphismF(f ) ∈ HomD(F(A),F(B)),

satisfying the following axioms:
• F(g ◦ f ) = F(g) ◦ F(f ) for each composition g ◦ f ;
• F(idA) = idF(A) for each object A ∈ C.

Definition 2.3 ([4–6]). Let C,D be categories, and let C −→F−→G D be functors. A

morphism τ from F to G is called a natural transformation, written τ : F →• G,
provided that τ is a function which assigns to each C ∈ C a morphism τC B

τ(C) : F(C) → G(C) in D such that for each morphism f : C → C′ in C the following
diagram commutes in D.

F(C) G(C)

F(C′) G(C′)

τC

F(f ) G(f )

τC′

Definition 2.4 ([4]). Let C, D be categories, and S, T : Cop × C → D functors. A
dinatural transformation τ : S −→•• T is a function which assigns to each object C ∈ C
a morphism τC B τ(C) : S(C,C)→ T(C,C) of D in such a way that for every morphism
f : C→ C′ in C the following diagram is commutative.

S(C,C) T(C,C)

S(C′,C) T(C,C′)

S(C′,C′) T(C′,C′)

τC

T(1,f )

S(1,f )

S(f ,
1)

τC′

T(f ,
1)
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3. Two Types of Universal Arrows

Recall the definition of a universal arrow.

Definition 3.1 ([4–6]). Let F be a functor from C to D. Given an object D ∈ D. a
universal arrow from F to D is a pair 〈R,u〉 consisting of an object R ∈ C and a
morphism u from F(R) to D, such that for all object C ∈ C and every morphism
g : F(C)→ D, there exists a unique morphism f : C→ Rwith g = u ◦ F(f ).

Furthermore, there is the dual concept of definition 3.1.

3.1. TheDefinition of Two Types. It is clear that if the pair 〈R,u〉 is a universal arrow,
then we have the following isomorphism[2,4] for all C ∈ C.

(3.1) HomC(C,R) � HomD(F(C),D)

Let ®F denote the restriction of the functor F to the hom-sets, and let

ũ : HomD(F(C),F(R))→ HomD(F(C),D)

be a morphism given by
h ↦→ u ◦ h.

Then the equation (3.1) factors as ũ ◦ ®F:

(3.2) HomC(C,R)
®F−→ HomD(F(C),F(R))

ũ−→ HomD(F(C),D).

Observation 3.1. Since ũ ◦ ®F is an isomorphism, we have that ®F is monic[4–6], and
ũ is epic[4–6].

And the restriction of ũ to the image of HomC(C,R) under F̃ is monic. Hence if

(3.3) F(HomC(C,R)) = HomD(F(C),F(D)),

then ®F and ũ are isomorphisms.

Observation 3.2. We have that ®F is an isomorphism if and only if ũ is an isomor-
phism.

Furthermore, if the condition (3.3) is not satisfied, then we have that for every

h ∈ HomD(F(C),F(R)) with h < im ®F, there exists a unique f ∈ HomC(C,R) such that

u ◦ h = u ◦ F(f ).

Therefore, we may define two types of universal arrows as follows.

Definition 3.2. Let the notations be as in equations (3.1) and (3.2) and defini-
tion 3.1.

I. The morphisms ®F and ũ are not isomorphic;
II. The morphisms ®F and ũ are isomorphisms.

Some examples will be given.
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3.2. Examples.

Notation 3.1. For an arbitrary functor F, let ®F denote the restriction of F to the hom-

sets, and let F
•
denote the restriction of F to the objects. For an arbitrary category

C with an arbitrary morphism u : B → C ∈ C, let ũ denote the morphism defined as
follows:

ũ :

{
Hom(A,B)→ Hom(A,C) given by f ↦→ u ◦ f , or,
Hom(C,A)→ Hom(B,A) given by g ↦→ g ◦ u, but not both.

Suppose that F : C → D is a functor such that F
•
(C) = D for every object C ∈ C and

a fixed object D ∈ D. Let D , D′ ∈ D. We assume that the pair 〈R,u〉 is a universal
arrow from F to D′. For all C ∈ C, we have that

HomC(C,R) � HomD(D,D′),

and

HomC(C,R)
®F−→ HomD(D,D)

ũ−→ HomD(D,D′).

Hence for all C ∈ C,

HomC(C,R) � HomC(R,R) � HomD(D,D′).

And if the identity morphism idD ∈ HomD(D,D) is not in ®F(HomC(C,R)), then there
exists a unique f ∈ HomC(C,R) such that u ◦ F(f ) = u ◦ idD = u. This is possible.
Furthermore, for all C ∈ C, if the equation

HomC(R,R) � HomD(D,D)

holds, then the universal arrow is of the type II, otherwise the universal arrow is of
the type I.

Let G be a directed graph, and G′ ⊂ G a subgraph of G. Suppose that F is an
inclusion functor from G′ to G. Given a vertex g ∈ G with g < G′. We assume that a
universal arrow 〈r,u〉 from F to g exists. Then we have that

HomG′ (v, r) � HomG(v,g),

and

HomG′ (v, r)
®F−→ HomG(v, r)

ũ−→ HomG(v,g),

for all v ∈ G′. Hence the morphism u : r → g is a unique edge from the subgraph G′

to g if G′ is finite*.

*The finiteness hypothesis is necessary.
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G′

Proposition 3.1. Themaps ®F and ũ are isomorphisms. Thus the universal arrow is
of the type II.

Proof. It is evident. �

Let F : C → D be a functor, and ∆ : D → DC a diagonal[4] functor. Then a
limit of the functor F is a universal arrow 〈R, τ〉 from ∆ to F. The object R ∈ D is
called limit object[4], written lim←−− F B R, and for every natural transformation[4]

σ : ∆(D) →• F, there exists a unique f : D → R in D such that σ factors through ∆(f )
along τ : ∆(R)→• F, cf. [4–6]. Hence we have that

HomD(D,R) � HomDC (∆(D),F),

for all D ∈ D. Therefore, we have that

HomD(D,R)
®∆−→ HomDC (∆(D),∆(R))

τ̃−→ HomDC (∆(D),F).

The maps ®∆ and τ̃ are isomorphisms.

Proposition 3.2. The universal arrow of every (co)limit is of the type II.

Proof. This follows immediately from the definition of a diagonal functor. �

Let A be an abelian[2, 3] group, and A = M0 ⊃ M1 ⊃ M2 ⊃ · · · a sequence of
subgroups. Suppose that N is a category consisting of

objects: nonnegative integers,
morphisms: i→ j if i ≥ j.

Let F : N → Ab be a functor, which assigns to a nonnegative number i a factor
group[2,3] A/Mi, and assigns to a morphism i→ j a canonical[2] epimorphism[2,3]
A/Mi → A/Mj given by a + Mi ↦→ a + Mj, and let ∆ : Ab → AbN be a diagonal[4]
functor. Then the pair 〈lim←−− F, τ〉 is a universal arrow from ∆ to F. And We call lim←−− F
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the completion(denoted Â B lim←−− F) ofAwith respect toMi, cf. [1,7]. Hencewe have

that
HomAb(B, Â) � HomAbN (∆(B),F),

and

HomAb(B, Â)
®F−→ HomAbN (∆(B),∆(Â))

τ̃−→ HomAbN (∆(B),F),

for all B ∈ Ab. Furthermore, we have that

lim←−− F B {(a0,a1, . . .) ∈
∏
i

A/mi
�� ai ≡ aj (mod mj) for all i ≥ j }.

It is clear that ®F and τ̃ are isomorphisms.

Let X and Y be categories. An adjunction[3, 4, 7] from X to Y is a triple 〈F,G,φ〉
consisting of two functors

X −→F←−G Y,

and amap φ which assigns to every pair 〈X ∈ X,Y ∈ Y〉 an isomorphism of hom-sets

(3.4) φ : (X,Y) ↦→ φX,Y : HomX(X,G(Y) � HomY(F(X),Y),

which is natural[4] in X and Y. For all pair 〈X ∈ X,Y ∈ Y〉, we have that every
morphism f : X → G(Y) makes the diagram (3.5) commute, cf. [4–6].

(3.5)
HomX(X,G(Y)) HomY(F(X),Y)

HomX(G(Y),G(Y)) HomY(F ◦G(Y),Y)

φX,Y

�

φG(Y),Y

�

f̃ F̃(f )

Observe that an identity morphism idG(Y) ∈ HomX(G(Y),G(Y)). Hence for every
v ∈ HomY(F(X),Y), there exists a unique morphism f ∈ HomX(X,G(Y)) such that
v = F(f ) ◦ u, where

u B (φG(Y),Y (idG(Y)) : F ◦G(Y)→ Y),

that is, themorphism u is the image of the identitymorphism idG(Y) under themap
φG(Y),Y .

Given a Y ∈ Y. Then we have that the pair 〈G(Y),u〉 is a universal arrow from F to
Y by diagram (3.5). Hence we have that

HomX(X,G(Y))
®F−→ HomY(F(X),F ◦G(Y))

ũ−→ HomY(F(X),Y),

for all X ∈ X. In general ®F and ũ need not be isomorphisms. Hence the universal
arrow is of the type II if further conditions are satisfied.

Proposition 3.3. The universal arrow 〈G(Y),u〉 is of the type II if and only if u is a
monomorphism.
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Proof. By observation 3.1, ũ is an epimorphism. Hence we have that ũ is an

isomorphism if and only if u is a monomorphism. Therefore, ®F is an isomorphism
if and only if u is a monomorphism by observation 3.2. �

Remark. By equation (3.4), we have that the diagram (3.6) is commutative.

(3.6)
HomX(X,G(Y)) HomY(F(X),Y)

HomX(X,G ◦ F ◦G(Y)) HomY(F(X),F ◦G(Y))

φX,Y

�

φX,F◦G(Y)

�

�G(u) ũ

Therefore, it is clear that if ũ is an isomrphism, then we have that

HomX(X,G(Y)) � HomY(F(X),F ◦G(Y)).

Of course, the dual statements hold by the dual arguments. We shall give some
examples.

Let H : Grp → Set be a forgetful[2, 4, 7] functor which assigns to a group G the
underlying[2,7] set of G and assigns to a homomorphism of groups a map of sets,
and let F : Set → Grp be a functor which assigns to a set X a free group[2, 3] F(X)
generated by X and assigns to a map f : X → Y a homomorphism[2,3] F(f ) : F(X) →
F(Y) induced by f .

Remark. For a groupG ∈ Grpwith an identitymember id ∈ G, themember id ∈ H(G)
is a normal element of the set H(G). Hence the member id ∈ F ◦ H(G) is not the
identity member of the group F ◦H(G).

For every pair 〈X ∈ Set,G ∈ Grp〉, we have that

(3.7) HomSet(X,H(G)) � HomGrp(F(X),G).

Hence the functor F is the adjoint of H, cf. [2,4,7].
Given a nonempty set X ∈ Set. Then we have that the pair 〈F(X), ι〉 is a universal

arrow from the set X to the functor H, where ι : X → H ◦ F(X) is an inclusion map.
Therefore, we have that

HomGrp(F(X),G)
®H−→ HomSet(H ◦ F(X),H(G))

ι̃−→ HomSet(X,H(G)),

for all G ∈ Grp.

Proposition 3.4. The map ®H and ι̃ are isomorphisms if and only if X � H ◦ F(X).

Proof. Observe that ι is a monomorphism, and ι̃ is an epimorphism. It follows that
ι̃ is an isomorphism if and only if ι is an epimorphism. Hence ®H is an isomorphism
if and only if ι is an epimorphism. �

Remark. If the set X is finite, then ®H and ι̃ are not isomorphisms. And the converse
does not hold. If X � H ◦ F(X), then the set X should be a denumerable[8] set.
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On the other hand, given a group G ∈ Grp, we have that the pair 〈H(G), π〉 is
a universal arrow from the functor F to the group G, where π : F ◦ H(G) → G is a
canonical epimorphism[2,3]. Therefore, we have that

HomSet(X,H(G))
®F−→ HomGrp(F(X),F ◦H(G))

π̃−→ HomGrp(F(X),G),

for all X ∈ Set.

Proposition 3.5. The maps ®F and π̃ are isomorphisms if and only if F ◦H(G) � G.

Proof. Observe that π and π̃ are epimorphisms. Thus the morphism π̃ is an isomor-
phism if and only if π is a monomorphism. This implies that ®F is an isomorphism
if and only if π is a monomorphism. �

Remark. if the group G is finite, then ®F and π̃ are not isomorphisms. But the con-
verse is not true.

Let R,S be rings[2, 3], and RMS a bimodule[2, 7]. Suppose that S and R are
categories of right S-modules and right R-modules, respectively. Then the functor
–– ⊗R M is the adjoint of the functor HomS(M, ––), cf. [2,4,7].

Let F denote HomS(M, ––), and let G denote –– ⊗R M. Hence we have that

HomS(A ⊗R M,B) � HomR(A, HomS(M,B)),

and

HomS(A ⊗R M,B) HomR(A, HomS(M,B))

HomS(A ⊗R M,A ⊗R M) HomR(A, HomS(M,A ⊗R M))

φA,B

�

φG(A),B

�

f̃ F̃(f )

for every triple 〈A ∈ R,B ∈ S, f : A ⊗R M→ B〉.
Given an A ∈ R. The pair 〈A ⊗R M,u〉 is a universal arrow from A to HomS(M, ––)

where
u B φG(A),B(idA⊗RM) : A→ HomS(M,A ⊗R M),

that is, the image of the identity morphism idA⊗RM ∈ HomS(A ⊗R M,A ⊗R M) under
φG(A),B. Hence we have that

HomS(A ⊗R M,B)
®F−→ HomR(HomS(M,A ⊗R M), HomS(M,B))

ũ−→ HomR(A, HomS(M,B)),

for all B ∈ S.

Proposition 3.6. The maps ®F and ũ are isomorphisms if and only if u is an
epimorphism.

Proof. We have that ũ is an epimorphism by observation 3.1. Hence we have
that ũ is an isomorphism if and only if u is an epimorphism. Hence ®F and ũ are
isomorphisms if and only if u is an epimorphism. �
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Dually, given a B ∈ S, the pair 〈HomS(M,B), v〉 is a universal arrow from –– ⊗R M to
B, where v : HomS(M,B) ⊗R M→ B. Hence we have that

HomR(A, HomS(M,B))
®G−→ HomS(A ⊗R M, HomS(M,B) ⊗R M)

ṽ−→ HomS(A ⊗R M,B),

for all A ∈ R.

Proposition 3.7. Themaps ®Gand ṽ are isomorphisms if andonly if v is amonomor-
phism.

Proof. Observe that ũ is an epimorphism. Hence we have that ṽ is an isomorphism
if and only if v is amonomorphism. Therefore, ®G and ṽ are isomorphisms if and only
if v is a monomorphism. �

Suppose that C and D are categories. Let F : Cop × C → D be a functor, and

∆ : D → DCop×C

a diagonal[4] functor. An end[4] of the functor F is a universal dinatural[4] transfor-
mation 〈E,ω〉 from ∆ to F, where the object E ∈ D, and ω : ∆(E) −→•• F is a dinatural
transformation such that to every dinatural transformation β : ∆(D) −→•• F there ex-
ists a unique morphism f : D → E which makes the diagram (3.8) commute, for all
C,C′ ∈ C, cf. [4].

(3.8)
∆(D) F(C,C)

∆(E) F(C′,C′)

βC

∆(f )
βC ′

ωC′

ωC

Hence we have that
HomD(D,E) � HomDCop×C (∆(D),F),

and

HomD(D,E)
®∆−→ HomDCop×C (∆(D),∆(E))

ω̃−→ HomDCop×C (∆(D),F),

for all D ∈ D. An end of a functor is regarded as a limit of the functor. Therefore, we
have that ®∆ and ω̃ are isomorphisms, and the universal arrow of every end is of the
type II.
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