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Summary 

If we account the constraints on the incremental acceleration as well as the incremental rate of the 

control input in the control system, the physical limit of the actuator can be considered and the stress of 

the system can be reduced. 

This paper deals with the design of the model predictive controller with the constraint on the 

incremental acceleration of the control input. The discrete time state space model of the plant is 

extended to the augmented model which has the incremental acceleration of the control input as the new 

input. The quadratic cost function, which is based on the control error and the incremental acceleration 

of the control input, is adopted.  Constraints on the plant output, the control input, its incremental rate 

and acceleration   are accounted. This constrained MPC problem can be solved by the quadratic 

programming procedure. 

To select the reasonable sampling period and prediction horizon, the lower bound of the settling time 

is derived for the proposed MPC system. Numerical examples illustrate the validity and effectiveness of 

the proposed method.  
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1. INTRODUCTION 

In practice, the control systems are operated under the various constraints. The actuator has its own 

physical limits on the operating range and speed, and consequently the control input is constrained. 

Some systems introduce the constraints on the control input intentionally for the safety.1 

The interest in the control under the constraints has been increased and the different control methods 

have been studied to cope with the constraints, given the importance for practical applications.2 

For the discrete-time linear systems subject to control input constraints, the stabilizing dynamic 

controller was studied based on the polynomial approach.3 The stabilizing linear state feedback was 

studied such that the closed-loop system remains asymptotically stable respecting constraints on both 

the control input and its increment rate.4 General framework for the design of linear controllers was 

developed to cope with time-varying constraints on the inputs, states and outputs, and the design 

procedure was proposed concerning the step response characteristics such as the steady state errors, 

settling times and overshoots.5 For the saturated control input the robust feedforward compensator was 

designed with the gain and phase specifications.6 The reference governors have been studied to cope 

with the state and control constraints by modifying the reference commands designed for the 

unconstrained closed-loop system.2 For a chain of three integrators with the bounded control input, a 

discrete time nonlinear control law was studied to guarantee the minimum time global stabilization, 

which could be used as the nonlinear filter for the trajectory generation. 7 

The model predictive control is the outstanding one among the kinds of control methods accounting 

the constraints. 8,9,10  

The discrete time model predictive controller repeats the process, at each sampling period, in which 

the sequence of the control input optimizing the cost function subject to the constraints is found based 

on the predicted behavior of the plant and then the first step of the sequence is output to the plant.  

Usually the cost function has the quadratic form on both the control error and the control input or its 

incremental rate, and the constraints involve the ones on the plant output, control input and its 



incremental rate. 11,12,13 There are several methods ready to solve the constrained optimization problem 

for the model predictive control.11 

The model predictive controller with the constraint on the incremental rate of the control input was 

studied based on the augmented discrete time state space model with the incremental rate of the control 

input as the new input. 11 In the same manner, based on the augmented model with the incremental 

acceleration of control input as the new input, model predictive control with the constraint on the 

incremental acceleration of the control input can be designed.  

In fact, the real actuators cannot change their operating speed instantly and they work within the 

certain acceleration limit.  

Constrained on the incremental acceleration of the control input, the incremental rate of the control 

input will vary smoothly and the system will experience less stress, but settle down slowly.  

The longer settling time can degrade the prediction performance in the model predictive control 

system. Therefore, in the model predictive control system with the constraints, the information on the 

settling time is valuable for the selection of the sampling period and the prediction horizon to guarantee 

the prediction performance. 

To the best our knowledge there are no studies on the model predictive control with the constraint on 

the incremental acceleration of the control input. 

The aim of our work is to design the model predictive controller dealing with the constraint on the 

incremental acceleration of the control input. To do that the discrete time state space model of the plant 

is extended to the augmented model which has the incremental acceleration of the control input as the 

new input. And the quadratic cost function is formulated based on the control error and the control input 

incremental acceleration in the prediction horizon. Constraints on the plant output, control input, its 

incremental rate and acceleration are setup and represented in terms of the incremental acceleration of 

the control input. The quadratic programming problem in the proposed model predictive controller can 

be solved by the various methods such as Hildreth’s procedure.11 

And then, for the SISO plant, the lower bound of the settling time of the proposed model predictive 

control system is derived to select the reasonable sampling period and prediction horizon. 

  The paper is organized as follows. In Section 2, the model predictive control problem with the 

constraints on the incremental acceleration of the control input is formulated. In Section 3, the cost 

function and the constraints of the MPC problem are arranged in terms of the incremental acceleration 

of the control input so that it can be solved with the quadratic programming procedures. In Section 4, 

the lower bound of settling time in the proposed model predictive control system are derived. In Section 

5, the numerical examples illustrate the validity and effectiveness of the proposed model predictive 

controller. In Section 6, the conclusion is given. 

 

2. PROBLEM FORMULATION 

Let’s consider the discrete time state space model of the plant 

,  (1) 

where  are the state vector, control input 

vector (control variables), plant output vector (controlled variables) and disturbance vector respectively 

at the step , and it is assumed that  . 

It is assumed that the disturbance  is generated from the white noise  by the equations 

   (2) 

1) Augmented state space model 

Let’s define the incremental rate of : 

     (3) 

and the incremental acceleration of : 

 .    (4) 

And  , , ,  are also defined as follows. 

 

 



 

 
Based on the plant model (1), let’s construct the augmented state space model  

,   (5) 

,     (6) 

where the matrices 

.

 (7) 

The Matrices  can be calculated from the following equations. 

 

 

 
The input of the augmented model (5) is the incremental  acceleration of control input  . 

 

2) Cost function and constraints in MPC 

 

Given the state and the incremental acceleration sequence of the control input 

,  let’s suppose that   are  the  step 

predicted values of the plant output , calculated at the step . 

Here it is assumed that   and  .  

Let’s suppose that  is the reference vector for the plant output . 

The cost function is formulated as follows. 

 

 (8) 

The cost function is constructed with the 2-norms of the control error vectors and the  weighted 2-

norms of the incremental acceleration vectors of the control input during the prediction horizon . 

The control input , its incremental rate  and acceleration , and the plant output are 

constrained by the limit vectors   as follows. 

,  (9) 

,  (10) 

,   (11) 

.   (12) 

The model predictive control problem with the constraint on the incremental acceleration of the 

control input is to determine the optimal incremental acceleration of the control input  



minimizing the cost function (8) under the constraints (9-12) for the augmented state space model (5-7). 

 

3. Design of the model predictive controller with the constraint on the incremental 

acceleration of the control input 

In this section the cost function and the constraints are arranged in terms of  so that the 

formulated MPC problem can be solved by the quadratic programming procedure. 

Let’s define the column vectors  and 

. 

The predicted output sequence vector   can be represented as  

    (13) 

where the matrices   are  

.12  (14) 

Let’s define the column vector of the reference sequence  

 and the weight matrix 

.    (15) 

The cost function (8) can be written as follows. 

  (16) 

In the unconstrained case the optimal incremental acceleration sequence of the control input  

 can be derived as follows. 

. (17) 

. 

.  (18) 

, which is the optimal incremental acceleration of the control input at the step , can be 

found in the first  elements of  . 

In the cost function (17) the first term does not depend on the  and then the cost function 

can be written as  

. (19) 

Now the constraints (9)~(12) is represented in terms of   and arranged into the matrix 

inequality form. 

At first, the constraint on the incremental acceleration of the control input (9) is represented as  

,    (20) 

where the matrix  and the vector  are 

,   (21) 

where the column vector  is 

.    (22) 

Next, the constraint on the incremental rate of the control input (10) can be represented as 



,    (23) 

where the matrix  and the vector  are 

,  (24) 

where column vector  and the matrices  are  

,    (25) 

.    (26) 

This can be calculated from the fact that the  can be written as 

 
The constraints on the control input (11) are arranged. 

The control inputs  can be written as follows. 

 

 

 
…, … 

Hence  can be written as  

, 

where  

.  (27) 

Therefore, the constraint (11) can be represented as 

,     (28) 

where the matrix  and the vector  are 

,  (29) 

where  

.  (30) 



Considering (13), the constraint on the plant output (12) can be represented as 

     (31) 

where the matrix  and the vector  are 

,   (32) 

where  

.  (33) 

 At last all constraints (20), (23), (28), (31) form the final matrix inequality equation 

.     (34) 

where 

. (35) 

Now the model predictive control problem with the constraint on the incremental acceleration of the 

control input can be reformulated as 

  (36) 

subject to  

. 

This quadratic programming problem can be solved by the various methods such as Hildreth’s 

procedure. 

 

4. Lower bound of settling time 

Assumption 1. The proposed model predictive controller controls the stable SISO plant of which  the 

steady state gain is . The control system at the zero initial states is tested with the step reference 

signal . 

□ 

When the Assumption 1 is satisfied the control error is zero and the control input has the value of  

in the steady state. 

The following Lemma can be said without proof. 

Lemma 1.  Assume that Assumption 1 is satisfied.  

For , , the following equation should be satisfied. 

    (37) 

□ 

Remark 1. In Lemma 1, the control system is settled at steady state after the  steps, therefore   

can be regarded as the settling time. 

□ 

Definition 1. For any real number ,   represents the nearest integer greater than or equal to 

. 

□ 

The following theorems tell the lower bound of the settling time to the step reference.  

Theorem 1. Assume that Assumption 1 is satisfied and the incremental rate of the control input 

 is constrained by (10).  

To be ,  should satisfy 

, 



where 

.    (38) 

Proof. Lemma 1 should be satisfied. 

For any integer , the following sequence of  maximizes  subject to 

. 

    (39) 

Given  of (39), if  , then . 

Else if , then  . Therefore  is 

the minimum integer which can satisfy Equation (37) under the constraint (10). 

□ 

Remark 2. In theorem 1,   

   (40) 

satisfies Equation (37). 

□ 

Theorem 2.  Assume that Assumption 1 is satisfied and the incremental acceleration of the control 

input  is constrained by (9). 

To satisfy ,  should satisfy 

, 

where 

.    (41) 

Proof. Lemma 1 should be satisfied. 

For any even number , the following  maximizes  subject to 

. 

   (42) 

Given  of  (44),  and  are as follows. 

  (43) 

   (44) 

If , then . Else if 

, then .  

For any odd number  which satisfies , it is impossible 



that . Therefore  is the minimum integer which can satisfy 

Equation (37) under the constraint (9). 

□ 

Theorem 3. Assume that Assumption 1 is satisfied and  are both constrained by (9) 

and (10), respectively. 

To satisfy ,  should satisfy 

, 

where 

.  (45) 

Proof. Lemma 1 should be satisfied. 

The transient response time is so long enough that the incremental rate of the control input  

can reach its limit value . 

For any integers , which satisfies , let’s form  

 .   (46) 

Select , which is the length of period that the control input is accelerated or decelerated, as 

.    (47) 

 of (46) maximizes  subject to  and the constraint 

. 

Given  of (46),   and  are calculated as  

, (48) 

.

 (49) 

If  then . Else if 

, then . If  is 

further constrained by  rather than , then for 

, it is impossible that . 

For , the condition  can be represented as 

, 

, 

.    (50) 

□ 



Remark 3. In theorem 3, the condition (50) should be satisfied to make both constraints active. If not, 

the control input will decelerate before its incremental rate reaches at its limit value . This is 

regarded as the situation in the theorem 2. 

□ 

Remark 4. If  then the constraint on  is not activated while  is only 

constrained. This is regarded as the situation in theorem 1.  

□ 

Remark 5.  and  mean the lower bound of the “ideal” settling time after that the 

plant output is at the steady state. In the practical analyzing of the control system, 2% settling time is 

widely used. In the step response the plant output settles within 2% of its steady state value after 2% 

settling time. It should be noticed that 2% settling time measured could be shorter than the lower bound 

of the “ideal” settling time. 

□ 

5. Numerical Example 

To illustrate the proposed  model predictive controller the plant  is examined. 

The plant transfer function is realized in the discrete time state space model to design the model 

predictive controller and the state observer is used. The plant output  and the control input  is not 

constrained, while the incremental rate and acceleration of the control input  are constrained. 

Hildreth’s procedure is used to solve the quadratic programming problem. ,  

are used. 

Example 1. 

For the sampling period , ,   the plant is controlled in the 

4 cases constrained differently. In first case there are no active constraints. In second case  is only 

constrained. In third case   is only constrained. In the fourth case   are both constrained. 

Simulation results are shown in the Figure 1. In cases of constrained , the inflection point on the 

response of , which appeared in early period, reflects the smoothness. But the iteration number in the 

calculation of Hildreth’s procedure, increased, meaning more computation loads. 

  
(A) (B) 



  
(C) (D) 

 

 

(E)  

Figure 1 The graphs of  and Count (iteration number ) in case of no constraints(-no 

limit), and  constrained case ( ) and   constrained  case ( ) and  

constrained  case ( ). A, ; B, ; C, ; D, ; E, Iteration number 

 

 

Example 2. 

For , the control system is simulated under the different constraints on  with 

 and the constraint on  with . 

When , the lower bounds of the settling times are calculated as 

, respectively, using theorem 3. When , prediction horizons  

 and  are not so long enough to predict the response of the plant output and the 

control input during the settling period. Simulation results in Figure 2 show that the responses of  

 are worse than the ones of .  



  
(A) (B) 

  
(C) (D) 

Figure 2 The graphs of  in different cases of  constraints with  

(- 0.01),  and , for . A, ; B, 

; C, ; D,  

 

Example 3. 

 is used.  and  are also increased four times as large as the ones in 

Example 2 because the sampling period is quadrupled. 

The control system is simulated under the different  constraints with 

 and  constraint with . When 

,  respectively. Simulation results in Figure 3, show 

better responses than the ones in example 2. 

  



(A) (B) 

  
(C) (D) 

 

Figure 3 The graphs of  in different cases of  constraints with  

(- 0.04),  and  with . A, ; B, 

; C, ; D,  

Simulation results show that the proposed control system works well when the prediction horizon of 

the plant output is longer than two times of the lower bound of settling time and the prediction horizon 

of the control input is longer than the lower bound of settling time. 

 

6. CONCLUSION 

In this paper the model predictive control with the constraint on the incremental acceleration of the 

control input is provided to deal with the physical limit of the actuator and reduce the stress to the 

system. 

 The discrete time state space model of the plant was extended to the augmented model which had the 

incremental acceleration of the control input as the new input. The quadratic cost function on the control 

error and the incremental acceleration of the control input was adopted to be minimized subject to the 

constraints on the plant output, the control input, its incremental rate and acceleration.  

The proposed model predictive control problem is the quadratic programming problem which can be 

solved with the various methods. 

When the model predictive control system is operated under the various constraints, the settling time 

is lengthened so that the prediction of the control system behavior can experience the troubles.  

The lower bound of the settling time was calculated to select the reasonable sampling period and 

prediction horizon. Numerical examples verified the effectiveness of the proposed method. 
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