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ABSTRACT: In this paper, we provide some useful lemmas to construct continued fraction based
on a given power series. Then we establish new continued fraction approximations for the gamma
function via the Tri-gamma function. Especially, we analytically determine all parameters of the
continued fraction by Bernoulli numbers.
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1. Introduction

The classical Euler gamma function  defined by

o0

I(x)= j redt, x>0, (1.1)

0

was first introduced by the Swiss mathematician Leonhard Euler (1707-1783) with the goal to

generalize the factorial to non-integer values.
The logarithmic derivative y (x) of the gamma function 77 (x) given by

I'()

w(x) e

or InT(x) :jlx w(t)dt

is well-known as the psi (or digamma) function.
The derivative ¥/(X) is called the Tri-gamma function, while the derivatives ' (x) are called

the poly-gamma functions,

where
) dn
v @) =@} n ).
dx’
Today the Stirling’s formula
nlx2r n(ﬁj (1.2)
e

is one of the most well-known formulas for approximation of the factorial function by being widely
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applied in number theory, combinatorics, statistical physics, probability theory and other branches of

science.

The Stirling’s formula for #! has a generalization to the gamma function,

T(x+1)~ Zﬂx(ijx, X —>00. (1.3)

e

Also, the Stirling’s series for the gamma function is presented (see [1, p.257, Eq. (7.1.40)]) by

F(x+l)z\/ ﬂx(zj ex 22’12” . MJ, X —>o00, (1.4)

e

where B, (n 0 {0}) denotes the Bernoulli numbers defined by the generating formula
ZZ :iBni, Z| <2r,
ee—-1 = "n
then the first few terms of B, are as follows
o =0,n21,
B, =15 :—%,B2 :%,B4 :—3—10 B, = 412 B, :—i,Bm :%,-

Up to now, many researchers made great efforts in the area of establishing more accurate

approximations for the gamma function, and had lots of inspiring results. [2-4], [6-12]

Especially, You [13] proved the asymptotic expansion of I'(x + 1) via the Tri-gamma function as

follows.

e

F(x+1)z 2ﬂx(£j exp{éy/(ﬁ%)}exp(zxifﬂj, X —> 0, (1.5)

where

c = BZIHZ + (1 - 21_2" )BZn
" 2n+D(2n+1) 12 '

Then, he provided new asymptotic expansion using continued fraction for the factorial n! and the

gamma function via the Tri-gamma function.

e n

(1 +1)~y2m (ﬁ] exp(éw'(n %D exp(lRm (n)j, (1.6)



where

4
Rm (n): ° ¢ ’
n’+s, + !
2 t2
n’+s, +
2 tm—l

n s, e

n+s,
1 11 193 146617 865896794 24573335208457

here tOZ_’SOZ_; [’1:— , 8 = ; t2:— 58y = ;o

240 28 1176 89166 5273344093 6302739063 984

Motivated by these works, we provide some useful lemmas to construct continued fraction based
on a given power series. Then we establish new continued fraction approximations for the gamma
function via the Tri-gamma function. Especially, we analytically determine all parameters of the
continued fraction by Bernoulli numbers.

The rest of this paper is arranged as follows.

In Sect. 2 some useful lemmas are given. In Sect. 3 new continued fraction approximations for the

gamma function are provided. In the last section, the conclusions are given.

2. Lemmas
In this section, some useful lemmas are given. Especially, we provide two lemmas to construct the

continued fraction based on a given power series.

Lemma 2.1.(The Euler connection [3, p.19, Eq. (1.7.1, 1.7.2)]) Let {G,} be asequencein \ {0} and

fi=2c, n o 2.1)
k=0

Since f,#%, f #f ,, N , there exists a continued fraction A,+K(a,/b,) with n' approximant f,

for all n. This continued fraction is given by

¢ —c /e -c,/c,_
Cot— ——— — 2.2)
l +14¢, /¢, +---+14¢, /cm1
Lemma 2.2. Let {c,} beasequencein \{0}.
3 :i 4 _1 4 , nm (2.3)
n21+1 2 b n2 m a.
i=1 i=1 n+ L n+K i
n i=2 i
]
n
where
a,=c, b=0,
al——i, b=-a, i=2,3,---,m
Cin

Proof. Assume that



Ci
s, n,m : (2.4)

fumze,  f,n=3.

n

The left-side of (2.3) is equal to f, (n).

Since

fo(m)y#oo, f (n)#f, ,(n), m ,

using Lemma 2.1,
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The middle expression of (2.3) is equal to
o 1 a (2.6)
2 2 b m a
n g Y on Uy i
n+ n+—+ K b
n n i=2 n+7[
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Thus,
a, =c, b=0,
c, c )
a=—"-b=—"=-a, i=2,3,---,m.
cz—l ci—l

Then, it is obviously true that



L 7 a 1
7

= 4 : 2.7)
n [ b n2 m a.
=op+ L n+ K —
n =2 4 i
n
The proof of Lemma 2.2 is complete.
Lemma 2.3. Let {c,} beasequencein \{0}.
2 2
¢ 1 » N 1 N
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K5
i=2 N —p,;
where
P =¢, ¢4, =0,
c, .
; .
p,=——, ¢, =—a,, 122,3’...,7”
lel
Proof. From (2.4) and Lemma 2.1,
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The proof of Lemma 2.3 is complete.
3. Main results

In this section, we provide new continued fraction approximations for the gamma function via the
Tri-gamma function.

Theorem 3.1. For every integer n > 1, we have

’ 1 1 1 *  a
F(n+1)z 2ﬂn(§j exp[ﬁw'(nJrEDexp n—zlg a,b'

n+-+
n

, (3.1

=2 n(zjn exp(it//'(n +lnexp S 4
e 12 2 n’ - b a,

nooehy ba3
G I BV
n
where
1 1
a=—B,+—B,, b =0,
S Y R

Y i(2i—1) 6B, +(i+1)2i+1)1-2"%)B,, b 223
o (i+1)2i+1) 6B, +i(2i-1)1-2"HB,,, " S

Proof. Let



Bzi+2 + (1 - 2172[)321'

¢, = , i=1,2,3,--. (3.2)
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From (3.2) and Lemma 2.2,
G 1 7 a
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i=1 1 n- g PR
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According to (1.5) and (3.3),

D(n+1)~+27 n(g) exp(llz w'(n %n L2 K (3.4)
= n +
n
Thus, our new continued fraction approximation can be obtained.
Remark 3.1. From (2.3), we have another expression of (3.4) as follows:
T(n+1)=~27n 2 exp Lt,//' n+l exp Lz+
e 12 2 no K 4a;
i=2 a;
n—i
n
, (3.5)
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- e) ARV e a,
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where
; 1 ; 107 . 20377 2426199 10828367
108 2 T3 T 141247 T 1059604 T 3234932

For the convenience of readers, we rewrite.
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Theorem 3.2. For every integer n > 1, we have
T(n+1)=27n L nexp Lt//’ n+l exp i[é’ p’
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Proof. Using Lemma 2.3 and the same method from (3.2) and (3.3), we have

nY 1 1 1 = pn’
Tn+l)=27n|—| exp| —vw'| n+— | |exp| — L . 3.8
(n+1) (ej p(lz"”( 2D p[n3 K n2+q,-j (3.8)

Thus, our new continued fraction approximation can be obtained.

g ==p;, =23,

Remark 3.2. From (2.8), we have another expression of (3.8) as follows:



C(n+1)=+27 n(zj exp(il//'(n+—
e
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4. Conclusion
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For the convenience of readers, we rewrite.
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(3.10)

As mentioned above, in our investigation, we provide some useful lemmas to construct continued

fraction based on a given power series. Then we establish new continued fraction approximations for

the gamma function, via the Tri-gamma function. Especially, we analytically determine all parameters

of the continued fraction by Bernoulli numbers.
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