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Abstract

The conundrum of Dark Matter coupled with the discovery in 1998 that the
universe is paradoxically accelerating its expansion has led some cosmologists to
question the correctness of the non-Euclidean geometric theory of gravity, Gen-
eral Relativity. In the 17th century, there was also a great paradox between two
views for the geometric constituents of a line, heterogeneous (made of points)
versus homogeneous (made of infinitesimal segments). Evangelista Torricelli, a
protege of Galileo, elucidated his logical reasoning on why lines must be made of
segments and not points and created one particular fundamental example among
many. In this paper, I produce unknown corollaries to Torricelli’s argument allow-
ing me to falsify the relationship between infinitesimals and the Archimedean
axiom, resolve L’Hopital’s paradox, rewrite the Fundamental Theorem of Cal-
culus and derive Gaussian curvature. I hypothesize that the intractability of
Dark Energy and Dark Matter is due to the points of coordinate systems within
General Relativity actually being a logically flawed heterogeneous interpretation
with basis vectors as a stand-in for the properties of homogeneous infinitesi-
mals. I propose a novel but geometrically logical model for gravity based on the
changing area of “surfaces” that suffers from no Cosmological Constant but can
model red-shift of light. I present hypothetical arguments to demonstrate that
there is sufficient compelling similarities to support the investigation of rewriting
Euclidean/non-Euclidean geometry, the Calculus and all the laws of physics with
axiomatic homogeneous infinitesimals of three components that each follow the
theory of proportionality. They are relative cardinality, homogeneous infinitesimal
and lastly their sum.
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1 Introduction

The Dark Energy Task Force, a committee of scientists tasked with advising the DOE,
NASA and NSF on Dark Energy, has stated [1], “The acceleration of the Universe is,
along with dark matter, the observed phenomenon which most directly demonstrates
that our fundamental theories of particles and gravity are either incorrect or incom-
plete.” The theoretical value for the Cosmological Constant (CC) is well known by
now as the worst prediction ever made in physics for good reason:

An alternative explanation of the accelerating expansion of the Universe is that general
relativity or the standard cosmological model is incorrect. We are driven to consider this
prospect by potentially deep problems with the other options. A cosmological constant
leaves unresolved one of the great mysteries of quantum gravity and particle physics: If
the cosmological constant is not zero, it would be expected to be 10129 times larger than
is observed.

If these problems are fundamental enough for the Task Force to advise that General
Relativity (GR) itself could be incomplete or incorrect then it also begs the question:
How could it be either? I propose an answer: GR could be incorrect if our concept of
infinitesimals has always been incomplete.

2 Background

The meaning behind dx (invented by Leibniz! for the Calculus but also ubiquitous in
GR2, can be traced back to concepts from over 2500 years ago and more rigidly to
Bonaventura Cavalieri in 16353, One of the great debates during his time was whether
lines were made of non-dimensional points (heterogeneous) or made of infinitesimal
segments of lines (homogeneous)?. In the same vein, it was also debated whether
area would be composed of infinitesimally thin slices of area versus stacked lines and
whether volume was made of infinitesimally thin sheets of volume versus stacked
planes. Evangelista Torricelli, a brilliant scientist and inventor in his own right and
well known to Galileo, is also known in these debates for his talent at taking a dif-
ficult concept and explaining it in many different ways. This has been said to have
enabled the transfer of fundamental concepts more so than the voluminous writings

Lsee [2] for a discussion on who invented the term “infinitesimal”

2Tt would seem to me it is taken for granted. Often the Einstein field equation in compact form doesn’t
even bother to include the infinitesimal notation dx,dz, with the metric notation g,,dz,dx, such as
R/u/ - %Rguu + Ag/u/ = kTuu-

3see [3] p303 for timeline

4see [4] p. 4 for discussion



of Cavalieri. Torricelli’s analysis of the heterogeneous/homogeneous debate [5] landed
him firmly on the infinitesimal segment® side as recent authors have pointed out®.
All indivisibles seem equal to one another, that is, points are equal to

points, lines are equal in thickness to lines, and surfaces are equal in depth

to surfaces is an opinion that in my judgment is not only difficult to prove,

but false.
By this he meant that it would seem we should be using infinitesimal segments” instead
of non-dimensional points. Whereas points can’t be distinguished from each other, the
segments can have infinitesimal length and that length isn’t necessarily the same from
one segment to another thus distinguishing them (as would be his similar argument
for area and volume).

One example in particular that he used to demonstrate his reasoning, prior
to his early death at the age of 39, has been called by Francois De Gandt the
“condensed” “fundamental example” for Torricelli’s view on the heterogeneous/ho-
mogeneous paradox®. While I have come to very much agree with the sentiment
that this is a “condensed paradox”, my examination of Torricelli’s example has also
revealed startling unknown similarities with the chain of logic that was used to create
non-Euclidean geometry and ultimately General Relativity.

3 Flatness, Curvature and HlIs

Imagine that you could have a single line and it is itself composed of “infinitesimal”
line segments. Suppose that the magnitude |SEG™| of a segment n could either be of
equal relative magnitude (as in Eqn.1) to an adjacent segment n — 1 or could have
a different value (as in Eqn.2) within the line itself. A simple to state introductory
hypothesis is whether Euclidean geometry can be derived from

|ISEG™| — |[SEG™!| = 0 : intrinsically flat (1)

which I will call intrinsically flat® and whether non-Euclidean geometry can be derived
from

|ISEG™| — |[SEG™ | # 0 : intrinsically curved (2)
which I will call intrinsically curved.

Pairing the properties of these equations with that of Torricelli’s homogeneous
infinitesimal (HI) concept creates an interesting perspective. If the logically true por-
tions of non-Euclidean straight and curved lines were actually based on properties of
HIs then curved space-time could provide certain accurate predictions within a region
yet still suffer from paradoxes as a flawed interpretation of the underlying geometry.
By this I mean that Torricelli’s HIs have a striking resemblance to both coordinate

5Torricelli may have not always written “point” but he certainly was of the opinion that they were not
non-dimensional

613] and [4]p125

Tthere was a philosophical distinction between indivisibles and infinitesimals. I do not expand upon the
indivisible concept as I view this a geometrical and philosophical red herring. See p. 24[6]

8see [5] p. 164

9Note that Euclid’s definition of a straight line (Euclid’s Elements, Book I, Definition 4) is one that “lies
evenly upon itself” and in this case both terms are equal or even.



systems and basis vectors. For coordinate systems, I can derive the real number line
with HIs and show how it can contract and extend. For basis vectors, HIs also pos-
sess direction and relative magnitude, but with HIs their absolute magnitudes |SEG]
are arbitrary'? whereas with basis vectors their flat boundary condition magnitude
seems to be defined as “1” within GR!!. I hypothesize that by using Hls instead and
inverting the perfect fluid analogy that GR incorporates (i.e. using Ap instead of p
for energy density'?), a more logical and predictive model will result. Using GR nota-
tion with this research, I propose an equation (see Eqn. 61) where the Newtonian
approximation is akin to the left side rather than the right side of

A — A2¢] = [1 - 24| ®3)

with
A = pyac (4)

and
Apyae = energy density. (5)

If A, sometimes referred to as a constant of integration, is not uniform throughout
the universe (for Dark Matter it would have a different value within galaxies), nor
during its development (for Dark Energy the overall value would have changed as the
universe has evolved), then a simple analogy is that I am re-establishing the boundary
conditions with Equation 3.

As a historical analogy, HIs would be to curved and straight lines underlying space-
time as ellipses were to the perfect circles upon which epicycles and deferents relied'>.
Since infinitesimals have been almost entirely replaced by the concept of the math-
ematical limit'*1%16, then the CC problem would effectively stem from premature
abandonment of HI research by the time the Calculus was developed and thus never
made it in to the consideration of non-Euclidean geometry nor relativity.

4 Structure

The logical order for this work is not the same as for historical order of the devel-
opment of Euclidean/Calculus/non-Euclidean geometry so some portions may seem
out of sync initially. To simplify this, the structure of this paper is in two sections.
Firstly a geometrical introduction to the Calculus of HIs and secondly to philosophi-
cal hypotheses of the geometry. The geometrical introduction (some of which is in the
appendix) consists of:

1. Explain Torricelli’s Parallelogram and his logic for HIs.

Ogimilar to Riemann’s “two magnitudes can only be compared when one is a part of the other; in which

case also we can only determine the more or less and not the how much”[7]

11 e. see Fig 2.3 [8]

125ee change of state paradox as discussed by DETF [1]

13this was inspired by free Yale University ASTR 160 Lect. 24 class video of C. Bailyn @15:30
https://oyc.yale.edu/astronomy /astr-160/lecture-24

4see [4] p. 359-364 for discussion

1519] “banished”

16[10] p. xii



2. Produce two new corollaries to his example and derive the concept of intrinsic
flatness, curvature, relative strain, Relative Cardinality, absolute strain and line
length.

3. Demonstrate that flat HIs with RC are compatible with the Archimedean axiom
using L’Hopital’s paradox and non-standard analysis as proofs that I can derive
the real number line.

4. Introduce the name and acronym for this research, set the HI as a primitive notion
and give postulates.

5. Analyze lineal, areal, and voluminal lines.

6. Introduce Background and Foreground geometry

7. Using a flat background, relax the point postulate and hypothesize how to derive
the Fundamental Theorem of Calculus: Use Relative Cardinality to define Euclidean
geometry, Leibniz’s j—g and the process of integration.

8. Using foreground geometry, describe the similarities between voluminal lines and
principal curvature K of Gaussian curvature.

9. Introduce concept of RC functions and HI functions.

The philosophical introduction consists of equating the HIs philosophically and my
hypothesis that background and foreground geometry, along with RC and HI functions,
should replace the concepts of coordinate systems, field potentials and tensors.

1. Give hypothesis for the physical philosophy similarities and differences between
energy density and perfect fluid change of state paradoxes in GR and elastic medium
relative strain philosophy of this research.

2. Hypothesize that length contractions and time dilations can be approximated to a
HI function

3. Give hypothesis of how red shift is a HI function of relative strain that creates a
gravitational well and a HI function of relative strain change universe wide.

4. Give hypothesis that the change of momentum/energy density and time dila-
tion/length contraction for a particle is best described using a HI wave function
with voluminal line paths instead of world lines of GR.

5. Hypothesize that physical events can be traced to either periodic minima and
maxima of intrinsic curvature (space) or periodic temporal events (time)!”

6. Describe the geometric similarities and differences between RC functions in New-
tonian gravity, curved coordinate system of GR, and HI function. Describe
hypothetical path to unify GR and quantum mechanics by reinterpreting both using
HI functions.

One obvious section that should be included in this paper is an analysis of prior
research by Gauss, Riemann, Bolyai and Lobachevsky etc. during the development
of non-Euclidean geometry when they analyzed Torricelli’s HIs. Unfortunately, I only
have access to commonly published works and not perhaps unpublished notes. I cur-
rently find no published evidence that any of them analyzed Torricelli’s work. However,
absence of evidence is not evidence of absence and thus will have to rely upon the
peer review process to enlist mathematical historians. My efforts at assistance prior
to submission of this paper has not been fruitful.

the “events” within Gravitation[8], such as p. 6, seem more to do with the Relative Cardinality
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I call the framework for this research the Calculus, Philosophy and Notation of
Axiomatic Homogeneous Infinitesimals (CPNAHI). In light of the breadth of this
research versus the readability of an introductory paper, I have decided to follow
Torricelli’s example and try to err on the side of simplicity. His known simplifications
have proven to be more effective for the initial spread of ideas than a dense but unread
“Geometria Indivisibilibus”.

5 Geometry: The Calculus of Homogeneous
Infinitesimals

5.1 Historical Analysis of Torricelli’s Parallelogram

In order to give background to an uninitiated reader, I could recreate the historical
explanation for Torricelli’s parallelogram involving area and area of lines'® but it isn’t
necessary to get to the crux of his philosophy. Condensing this example!® and adding
in a bit more notation:

Assume that a line is made of points and that the number of points in a line
determine the length. Two lines that are of the same length have the same number of
points. A shorter line has less points and a longer line has more points.

Now take a parallelogram with the four corner points labeled A,B,C, and D. Draw
a line BD down the diagonal of it as shown in Figure 1. Let us make a point E on the
diagonal line BD. Now draw perpendicular lines from E to a point F on AD, and a
second line to a point G on CD. Move these two lines point by point simultaneously so
that E moves toward D until they meet, keeping the lines EF and EG always parallel
to AB and BC respectively. When we move the lines EF and EG, we are moving their
ends simultaneously from point to point on AD, CD and BD.

assume lines are made of points

E

¢ yZ

o
D <G C
E is moved towards D point by point, keeping

EF and EG perpendicular to their respective ends

Fig. 1 Torricelli’s parallelogram paradox

¥some of the arguments Torricelli made are how lines logically seemed to have non-zero width but

hopefully my argument makes the resolution of all those trivial
194¢ may be possible that I read a notationless explanation similar to the one presented here. If so, I am
unable to find it again and my apologies to that author.



Since line AD is shorter than the line CD, the number of points that the line AD
contains is less than the number of points that line CD contains. However, this creates
a paradox. Since we moved the lines point by point and with both points F and G
ending up together at point D then this shows that lines AD and CD must also have
the same number of points as shown in the equations in Fig. 2.

assume lines are made of points

E

14

.
D <G C
line AD is shorter than line CD therefore
#points AD<#points CD
points E,F and G move to D simultaneously therefore

#points AD=#points CD

Fig. 2 Torricelli’s parallelogram paradox

Torricelli’s meaning was that the lines AD and CD must be made up of infinitesimal
segments (and not dimensionless points) and that these segments must consist of the
same number in each line even if they are not of the same magnitude.

The current most advanced explanation for this paradox is said to be the difference
between cardinality and magnitude?’. While I very much agree with the presence of
these fundamental properties, let us introduce some notation to gain further insight.

Specifically avoiding Leibniz’s notation I need something basic to designate that I
am referring to the cardinal number of segments #SEG so that I can write

#SEGsp = #SEGep. (6)
Expressing that the magnitudes of these segments thus cannot be equal I write

ISEGap| # |SEGep|. (7)
While this can and has been said to have lead to the development of the Calculus,
let us dig further.

5.2 Homogeneous Infinitesimal Magnitudes: Their Sums,
Differences, Strains and Relative Cardinality

Assume that the relative length of a line is defined by the sum of the magnitudes of
the segments within it (i.e. as opposed to Bernhard Riemann’s definition [7] that the
length of every line is “measurable by every other line” which includes no mention of
the infinitesimals of which it is composed)

20gee [4] p. 125



Z |SEG 4p| = length 4. (8)

Now let us define that the magnitude of any segment within the same line can be

compared to the magnitude of any other segment such that I can write the equation
or inequality of one segment n vs an adjacent segment n — 1

ISEG", | — |SEG" ;| = 0 : intrinsically flat (9)
which I will call intrinsically flat and
|ISEG" | — |SEG"'| # 0 : intrinsically curved (10)

which T will call intrinsically curved. I am unable to find an equivalent definition for
curvature within any theory since the advent of the infinitesimal or indivisible concept.
While the most immediate subject to discuss concerning these equations would be the
Archimedean axiom?! (and perhaps Bernhard Riemann’s definition of curvature and
flatness [7]), let us hold off for a bit.

Just to enhance clarification, let us bring in line BD into our consideration also.
Figures 3,4 and 5 are a visual aid for understanding the previous two equations. If
by the property of congruence we can lay the lines BD, CD and AD next to each
other and they are of unequal length, let us then imagine that we can use the vertical
dividing lines to help denote the segments within each line. Torricelli’s example is
represented by Fig. 3 so that we could understand that the magnitudes of the segments
within BD are all the same (intrinsically flat). The same for CD and AD. However,
the magnitudes of the segments within BD must not be the same as CD, nor AD
(Again, this is what Torricelli meant when he said that points are indistinguishable
whereas segments can differ by their magnitude). We can then also understand that
the cardinality (this can be thought of as the “number” for now) within AD must be
the same as BD as well as for CD.

-Same # of segments within lines BD, CD and AD
-segment magnitude equivalent within each line
-segment magnitude differs between each line
-each line is intrinsically flat

Fig. 3 Intrinsically Flat Lines With Equal Cardinality

2lsee [4] p. 50 for discussion of Euclid, Elements, book V, definition IV



5.2.1 Relative Strain

Although strain is normally considered a physical concept, we will consider it first as a
geometric one. Figure 3 is an example of relative strain €,.; if we consider the concept
that line AD is being stretched out to the length of line BD but our measurement
system is also being stretched out, relative to each other. If our measurement system
is another line AD stretching to BD then the cardinality stays the same relative to
our measurement system.

5.3 Torricelli’s Parallelogram Theorem

Let us refer to his parallelogram setup as Torricelli’s Parallelogram Theorem (as it
will become within a new axiomatic framework) so that I can assign these equations
as a description of it. I use the term “parallelogram” instead of “rectangle” since his
Italian use of ”parallelogrammo” seems to translate to the former.

#segmentspp = #segments.p = #segments 4 (11)
ISEGEp| — |SEGE | =0 (12)

|ISEG¢p| - |SEGE L | =0 (13)

ISEGp| — [SEGT | =0 (14)

|SEGpp| > |SEGcp| > |SEG ap| (15)

5.4 First Corollary to Torricelli’s Theorem

However, this also means that another way to compare lines (which are not representa-
tive of Torricelli’s example) would be to set the magnitudes of all the segments within
the lines equivalent not only within the lines (intrinsically flat) but between the lines
also. The longer the line is, the more segments it has (as opposed to dimensionless
points) as in Figure 4.

-Differing # of segments within lines BD, CD and AD
-segment magnitude equivalent within each line
-segment magnitude the same between each line
-each line is intrinsically flat

Fig. 4 Intrinsically Flat Lines With Differing Cardinality



I assign these equations as a description of the First Corollary:

#segmentsy, > #segments, > F#segments 4 (16)
ISEGp| — |SEGE | =0 (17)

SEGRp| — [SEGE| =0 (18)

ISEGip| = |SEGT ' =0 (19)

|SEGpp| = |SEGcp| =|SEG ap| (20)

5.4.1 Absolute Strain

Figure 4 is an example of absolute strain €, if we consider the concept that line AD
is being stretched out to the length of line BD but our measurement system is another
AD that is not being stretched out. The magnitudes of the segments stay the same
but the cardinality increases relative to our measurement system line. Thus relative
strain is from changing magnitude and absolute strain is from changing cardinality.

5.5 Second Corollary to Torricelli’s Theorem

Likewise, we could also set the magnitudes of the segments to differ within each line
(intrinsically curved). It may be helpful to imagine that the line is either compressed
or stretched out in different places and to understand my hypothesis is that Riemann’s
example of areas that are stretched out [7] can be derived from intrinsic curvature. I
do not bother with cardinality in this example as it may obfuscate the simple meaning
I am attempting to demonstrate (although it is no less important). See Figure 5.

-segment magnitude differs within each line
-each line is intrinsically curved

Fig. 5 Intrinsically Curved Lines

#segmentspp <=> F#segments,, <=> #segments 4 p (21)
|ISEG" 5| — |SEGE )| <=>0 (22)
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|ISEGZp| — |SEGE,| <=> 0 (23)
ISEG | — |SEG" )} <=> 0 (24)

ISEGPP| <> |SEGP| <> |SEGAP| (25)
Note that for the limited example here, it may be possible for the line to be flat

between some HIs and curved between others, unlike the Theorem and First Corollary
where they are always flat within the line.

5.6 Line Length: Sum of Segments and Relative Cardinality of
Flat Lines

If T choose to build a line out of equal magnitude segments (flat), then I can represent
Eqn. 8 as the number of segments or Relative Cardinality (RC),

#SEG = RC, (26)

times the magnitude of a representative segment |SEG| so that I can write
Y ISEG| = RC x |SEG| = line length. (27)
Thus, in our normal sense of line length, if we wanted to compare the length of
the three lines from Torricelli’s Theorem we would have to define that each line is

composed of segments of equal magnitude and that the line with the greatest Relative
Cardinality is the longer line within Fig. 4.

5.6.1 Segment Notation

See Appendix Section D for my argument that Leibniz’s notation Z—Z can be derived
from

ARCy _dy
= . 2
ARC, dz (28)
In order to distinguish HIs, I borrow his notation and modify it to
—~
|SEG| = dx (29)

where the double ended arrow above dx indicates that it is indicating the magnitude
of a HI.

In order to have notation to indicate that we are examining the difference of
magnitude between two HIs, I introduce the notation in the equation

— — X
dx o, —dx » = dx (30)

11



where the A combined with the double ended arrow indicates the difference of
magnitude between two HIs. This allows us to rewrite Eqn. 9 as

X
dx =0 (31)

for intrinsically flat and Eqn. 10 as

A
dr #0 (32)
for intrinsically curved.

5.6.2 Archimedean Axiom

It has been said that infinitesimals do not follow the Archimedean axiom??. As a
counterargument, I am going to falsify the following statement (bold mine)?3:
it shows that for any o infinitesimal relative to a, the ratio a + 0 : a
determines the same upper set as a : a but differs from the latter in hav-
ing an empty “middle set”;since the quantities no are obviously all
infinitesimal in relation to «a
Let us define the real line by a combination of RC and segment magnitude |SEG| and
rewrite a definition given in Ref.[13]:

Assume segment magnitudes, [o,p|, are said to have a ratio with respect to one
another and Relative Cardinalities, [n, m], are said to have a ratio with respect to one
another. In the simplifying case of o = p, no is capable of exceeding mp. We can easily
set the inequality to no > mp and choose m =1 where n > 1 and mp = a.

Stating that any number n times an infinitesimal o cannot be greater than a,
no > a, is simply a demonstration of the confusion of trying to compare RC, mag-
nitudes and line length with poor definitions. These are three different types of
proportion. Eudoxus® Theory of Proportions must apply to cardinality n, homoge-
neous infinitesimals 0 AND homogeneous sums such as line length a, areas, volume
etc.?*. Otherwise, is a supposed to be the length of a line, magnitude of an infinitesi-
mal or a cardinal number? Is n modifying the magnitude of o or is it the cardinality
of segments that are of o infinitesimal length that sum up to equal a line length that
is greater than the line length a?

The modern mathematical notation[13] of

(Ve > 0)(3n € N)[ne > 1] (33)

(e > 0)(¥n € N)[e < %] (34)

appears to not have been helpful to others in understanding the distinction between
a segment magnitude €, a cardinal number n and a line length of 1. It also does not

225ee [11] for discussion

23see p.171 [12]
241 may refer to this as the Theorem of Homogeneous Infinitesimal Relativity in future papers
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appear to have led to the concept that infinite sets can have differing cardinality similar
to finite sets nor that infinitesimals € can have different magnitudes and multiple
directions.

5.6.3 L’Hopital’s Paradox and non-standard analysis

As a proof, let us use the definition for line length to resolve L’Hépital’s paradox?®
and non-standard analysis. L’Hopital’s paradox is given by the equation

X+der=X (35)

where X is a non-infinitesimal line segment and dx is an infinitesimal segment. We
can instead write

X=X (36)
becomes
— —
RCldI 1= RCQdZL' 2 (37)
with
RC{ = RCy (38)
and
— —
dx 1= dx 2. (39)

—~
If for every dx 1 that is added to the left side of Eqn.37, increasing the Relative Car-
dinality in comparison to the right side, the magnitude of the left hand side segments
are also correspondingly reduced. I can then write

~ ~ -~
RCldx 1+ ldx 1= RCQd.’E 2 (40)
which gives
RCi+1 dr
1 2
_— = . (41)
RCQ d;( 1

This proves that ratios of relative cardinalities can be algebraically compared to
ratios of homogeneous infinitesimals in accordance with the theory of proportions.

For non-standard analysis, “T'wo hyperreal numbers are infinitely close if their
difference is an infinitesimal”[11] can be proven if we do not resize Relative Cardinality

—
or dz 1. Eqn.37 allows Eqn.40 to be rewritten as
~ ~ —~
RCQdLB 2 — RClda: 1= ldzx 1- (42)
Regardless of this paper, note that non-standard analysis and the above statement

that infinitesimals are non-Archimedean are saying the exact opposite thing. They
cannot both be correct.

?5see [4] p. 13 for discussion
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5.7 Pandora’s Box of HIs

With all of this we can understand that Torricelli’s actual argument was that he
was choosing to define and examine the lines as having equivalent RC with differing
segment magnitude?S.

While this hopefully seems to be a fairly simple analysis, I also view it as opening
Pandora’s box as it casts suspicion on the derivation of everything?’ that is based
upon infinitesimals. Although it may not be obvious yet, I am not only saying that
the Z—Z of Leibniz’s notation can be defined as ﬁﬁigz = % but also that infinity can
have different magnitudes (I hypothesize that Cantor’s transfinite numbers [14] can
be derived from this), that Hilbert’s “betweenness” postulate, basis vectors®® and
even tensors are all flawed representations of the magnitude of HIs. This path could
obviously meander forever so instead let us restart by enlisting the aid of primitive
notions within an axiomatic framework.

6 CPNAHI: The Calculus, Philosophy and Notation
of Axiomatic Homogeneous Infinitesimals

As one author states[15], axioms should be given without justification. However, I see
no way to simply launch into a proof using CPNAHI and feel I must include a brief
defense concerning the structure of this paper. I know of nothing within the body
of knowledge of geometry nor mathematics? that already contains analysis of both
Torricell’s work and non-Euclidean geometry from which to launch my hypotheses. I
instead will attempt to justify my primitive notions and postulates and list similarities
between these and certain topics to help motivate individuals to my view that CPNAHI
has compelling features. I fear letting the perfect be the enemy of the good.

I have chosen the term CPNAHI because of my view that while Notation provides
economy of thought, my actual equations are of geometric concepts such as summation,
differences, ratios, etc. of HIs (Calculus) equated to Philosophical concepts such as
money, population, space, time, force, velocity, change in wavelength, change in clock
rate, strain, pressure, momentum, density and change in density, energy, ad infinitum.
In simpler words, HIs are a language.?° It is also my view that if the notation giving
us economy of thought does not properly represent the underlying geometry, then the
philosophical interpretations will be of poor and misleading value.

6.1 Primitive Notion and Postulates
CPNAHI Primitive Notion

Let a homogeneous infinitesimal (HI) be a primitive notion.

26 As we will see, later in this paper, there is another way to view the actual area of the rectangles based
only on RC

27see [11] for examples just viewed through the lense of Calculus alone

285ee [8] p. 52 and p. 229 for examples

29n0r alternate axiom systems. See Chapter 15 [16]

30it may be informative if you consider the hypothetical argument between a “hard-nosed physicist” and
a “hard-nosed mathematician” [8] p. 230 if neither views geometry as a language
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CPNAHI Postulates

Hls can have the property of length, area, volume etc.?! but have no shape3?
HIs can be adjacent or non-adjacent to other Hls
a set of HIs can be a closed set
a lineal line is defined as a closed set of adjacent HIs (path) with the property of
length. These HIs have one direction.
5. an areal line is defined as a closed set of adjacent HIs (path) with the property of
area. These HIs possess two orthogonal directions.
6. a voluminal line is defined as a closed set of adjacent HIs (path) with the property
of volume. These HIs possess three orthogonal directions.
7. the cardinality of these sets is infinite
8. the cardinality of these sets can be relatively less than, equal to or greater than the
cardinality of another set and is called Relative Cardinality (RC)
9. Postulate of HI proportionality: RC, HI magnitude and the sum each follow
Fudoxus’ theory of proportion.
10. the magnitudes of a HI can be relatively less than, equal to or the same as another
HI
11. the magnitude of a HI can be null
12. if the HI within a line is of the same magnitude as the corresponding adjacent HI,
then that HI is intrinsically flat relative to the corresponding HI
13. if the HI within a line is of a magnitude other than equal to or null as the correspond-
ing adjacent HI, then that HI is intrinsically curved relative to the corresponding
HI
14. a HI that is of null magnitude in the same direction as a path is defined as a point
15. the coordinates of any coordinate system are the Relative Cardinality of Homoge-
neous Infinitesimals.

=W

7 CPNAHI Lines

7.1 Lineal Lines

A lineal line is defined as a path consisting of lineal HIs (i.e the segments). See
Appendix Section A for a discussion and graphical aids in understanding a lineal line.
A point in a lineal line is defined as a HI null in the direction of the line. There are
no other directions. If each adjacent non-null HI is of equivalent magnitude then the
line is intrinsically flat. If an adjacent non-null HI is of differing magnitude then the
line is intrinsically curved.

Since one-dimensional R* can be functionally identical to a lineal line, this is why
Torricelli’s example works when examining the line segments comparatively. Although
his parallelogram possessed area, geometrically he was simply examining one of the
issues that arise from not defining relative cardinality and magnitudes. Lineal line
points are similar to points within R since both have null infinitesimal magnitude. See

31this is also in accordance with Eudoxus‘ theory of proportions which I view as equivalent to not being
possible to sum heterogeneous infinitesimals
32no “protruding parts” to paraphrase Descartes. See [4] p. 169 for discussion
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Lineal Line Pseudo-Point Geometry, Appendix Section C for a discussion of R" for
n > 2.

7.2 Areal Lines

An areal line is defined as a path consisting of areal HIs. See Appendix Section B for
a discussion and graphical aids in understanding an areal line. A point in an areal
line is null in the direction of the line but is non-null in the orthogonal direction. If
an adjacent non-null HI is of equivalent magnitude in the direction of the line, it is
intrinsically flat. If an adjacent HI is of differing non-null magnitude then the line is
intrinsically curved.

7.3 Voluminal Lines

A voluminal line is defined as a path consisting of voluminal HIs. Figure 6 is a graphical
aid in understanding a voluminal line. A point in a voluminal line is null in the direction
of the line (z) but is non-null in the two orthogonal directions (z and y). If an adjacent
HI is of equivalent magnitude in the direction of the line, it is intrinsically flat. If an
adjacent HI is of differing non-null magnitude then the line is intrinsically curved.

< <

dx, dx
n
[ [en
— ——F 3N I . — ¥ :N I
d yn points are HI d Yn ;
null in z direction
jon W (e
o N — o R
dy, 2 d >
n+1 + Yn +1 +
= =
O
— 3 — o+ R
d ? d 2
Yn +2 + Yn +2 +
—< N = N
d Xn +2 d Xn +2
voluminal line consisting of voluminal line consisting of
intrinsically flat voluminal HIs intrinsically curved voluminal Hls

x and y decrease magnitude

Fig. 6 Intrinsically Straight and Curved Voluminal Lines

In Figure 6, the image on the left is intrinsically flat so that we can write

— — ey

dr , —dr o1 =dz =0, (43)

— — A

dy , —dy 41 =dy =0, (44)
and

— — e

dz1—dz n11 =dz =0. (45)
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The one on the right is intrinsically curved in the orthogonal directions. As we
examine down in the z direction we write

X
de <> 0, (46)
X
dy <> 0, (47)
and
X
dz =0. (48)

In both we have a voluminal point represented by the shaded parallelogram. It is null
in the z direction. I could also show a voluminal line that is intrinsically curved in the
z direction but that isn’t necessary for the similarity we are examining®?.

I find it has the same properties as the constituent of a sphere as areal lines do
when they constitute a circle (see App. Sec. B). If the points of adjacent voluminal
lines make up the “surface” of a sphere then each concentric surface would have the
same cardinality as the radius increases because the points now have the property of
area and that area increases as the radius increases.?*

With this understanding that voluminal lines can be intrinsically curved not only
in the direction of the line but also with respect to the orthogonal directions of their
HIs, let us examine the properties of a set of these as compared to Gaussian curvature.

7.3.1 Similarity Between Principal Curvature of Points on a Surface
and Intrinsic Curvature Across Points Within Voluminal Lines

There are four basic types of points on surfaces within Gaussian curvature: elliptic,
hyperbolic, parabolic and planar. If we examine the principal curvature K properties
for each type of point, we can see a pattern in Table 1 that matches the orthogo-
nal intrinsic curvature of voluminal lines within CPNAHI: I propose that Gaussian

Table 1 Gaussian Principal Curvature Vs Voluminal Line Orthogonal Direction
Intrinsic Curvature

A oy
principal curvature K7 and Ko intrinsic curvature of dr and dy

elliptic same sign same sign

hyperbolic  opposite sign opposite sign

parabolic one is 0 and other is pos or neg  one is flat and other is pos or neg
planar both are 0 both are flat

curvature is a flawed view of voluminal lines.??

33although examining z is necessary when deriving Newton’s gravity as this is his flat background dr
radius

34the affine connection of rolling a “Euclidean plane” along the surface would seem to be derivable from
this definition

35it may also be helpful to view the similarity with Fig. 9.2 p.232 [8]
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I am assuming for now that the need for the two infinitesimal terms dz,dz, in

— — —
GR is that these can be derived from dr and dy and that dz is considered to be the
same magnitude?®.

8 Background and Foreground Geometry

The following images are a schematic attempt to relay a concept of the meaning of
geometry as a language. They are not meant to be quantitative, only descriptive. I use
a single line to aid in this introduction as a voluminal line would be difficult for me to
draw with my limited skills and isn’t quite necessary for this introduction. For a flat
background, this line would be the line radiating out from the center (the radius of
Newton’s equations). For CPNAHI, these lines are the same as the z direction within
Figure 6.

8.1 Background Geometry: Flat HIs

Let us consider a concept of lines and what I call “background” geometry. In Figure 7
I have a comparison. The three lines give three separate concepts of flat lines or space:
made of equidistant points, made of basis vectors and made of lineal lines. A position,
denoted by the black dot, can be defined on the line (coordinate system). Note that
there are no real distinguishing features and seem to be similar.

8.1.1 Philosophical Equivalence of Background Flat HIs

Essentially any and all “field” potentials, such as with Newton’s %, are just defined

as using one direction of a flat HI to represent an infinitesimal distance dx in absolute
space and another HI direction as an infinitesimal of field potential d¢. Notationally,

—
¢ = RCy *do (49)
and
—
X =RC, xdz (50)
but it is the change in relative cardinality
ARCy
1
ARC, (51)

that is the equivalent of gravitational force®7.

8.2 Foreground Geometry: Curved and Flat HIs

Within CPNAHI, let us define a geometry as foreground. By this I mean that no
“absolute objects” philosophically can exist. Only HlIs that are either flat or curved. I
can define a “geometrical object” as the maxima or minima of the intrinsic curvature.

36in a future paper I will explore if this is what is meant by a “Riemannian” metric

37In a future paper I will attempt to derive Maxwell’s equations via CPNAHI.
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Fig. 7 Schematic comparison of background lines

These maxima and minima can be thought of as geometric waves. I do not yet know

whether a position can be defined although cardinality of the maxima/minima would
seem to be a good place to start.

8.2.1 HI functions in Curved and Flat foreground HlIs

Let another HI, not adjacent to the foreground HIs, exist as a HI function of the
foreground HIs. By this I mean:

b2y Al
dy = f(dfﬂ foreground)~ (52)

b= X

The intrinsic curvature of dy is a function of the intrinsic curvature of dx . If the
intrinsic curvature of x is zero, then so too the intrinsic curvature of y. If the intrinsic
curvature of x is not zero, then neither is the intrinsic curvature of y.

8.2.2 Philosophical Equivalence of Foreground HIs

Let us now bring in physical philosophy to HIs. Assume that we are going to equate
A A A

dy to the change in wavelength of a test particle/wave dz ;. If dz ,,; = 0 then the
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wavelength is not changing (no length-contraction). Also assume that we are going
b2
to philosophically equate dy to the change in process time dt (i.e. half-life) of a
A
particle/wave. If dt = 0 then the radioactive decay periodicity is constant (no time

b=
dilation). Thus if d% foreground 1S zero there is no time dilation nor length contraction
but if it is not zero then the amount of time dilation and length contraction is a HI
function of the intrinsic curvature of the foreground HIs.

8.3 Foreground Geometry Comparison with GR

The top two lines in the Figure 8 shows a basic concept for what I think General
Relativity is describing: a mixture of geometry and physical philosophy. A physical
“object” can affect a foreground geometry that is composed of points or basis vectors.
It is shown having moved from left to right. This object affects the spacing of the
points®® or similarly the magnitude of the basis vectors. The points nearest to the
object are closer together and more equidistant away from the object in the top lines.
The magnitude of the distance between the points seems to be taken from the concept
of basis vectors, in that the magnitude equals “1”. As the points get closer, the value
becomes less than 1. If the points get close enough, they overlap and the value becomes
0. In the middle line, the basis vectors are smaller nearer the object but become larger
and of constant magnitude away from the object.

The bottom line is a lineal foreground line within CPNAHI. There is no “physical
object” as this is geometry only. The object is defined as where the HIs reach minimum
magnitude. Away from the object, the magnitudes become equivalent (intrinsically
flat). I term this local relative strain €,¢; local curvature. (A side note in that magni-
tudes getting larger instead of smaller could be a more consistent and understandable
framework.)

We could analyze this concept against that of a “metric and tensors but this
would seem to be far too intense for an introductory paper without prior acceptance
of my primitive notion and postulates.

9 39

9 Schematic comparison of perfect fluid model

within GR and elastic material model within
CPNAHI

On the left and right hand side of figure 9 is a conceptual schematic comparison
between what I hypothesize GR is attempting to physically model versus a philo-
sophical model of an elastic medium being equated to HIs. I say attempt because the
Cosmological Constant A is included. The terms in the left graph with question marks
are from the Report of the Dark Energy Task Force[1].

On the left side, as a beginner explanation, for GR the physical object is defined as
having energy density that is analogous to the particle density p of a perfect fluid*°.

38see [8] p. 23 for discussion

39see Chapter 13[8]
40see Box 5.1 [8]
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T

Objects moves from left to right

Fig. 8 Schematic comparison of points, basis vectors and lineal HIs in foreground geometry

It also is defined as having momentum that is analogous to the pressure p of a perfect
fluid. The farther away from the object, the limiting value of the distance between
the points is “1”. As the p of the object increases, the smaller the distance between
the points that are closest to the object, becoming less than 1. If the density increases
enough (or “volume”*! decreases enough.), the distance between the points will go
to zero and thus they will overlap. The overlap would seem to correspond to the
Schwarzschild radius
1-20=0 (53)
where
¢ =.5. (54)
It also has the difficulty in that away from this object (that is using the perfect
fluid analogy), there was supposed to be nothing other than the equidistant points
with a spacing of 1 (or basis vectors of magnitude 1). Instead there now seems to be
theoretical attempts to also place a “dynamical fluid”[1]*? in the regions away from

417 put quotation marks because this volume is based on equidistant points. In other words, the distance
between the points surrounding the energy density decrease but the points that define the spatial volume of
the energy density are constant. In CPNAHI terms, changing absolute strain would change the surrounding
relative strain. I find this and any other “constants” that rely solely upon absolute strain definitions as
dubious.

42searching Arxiv.org returned 2,495 results for “quintessence”, 1,832 results for “dark energy fluid”,
1,232 for “Cosmological Constant fluid” on 2024-08-18
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Fig. 9 Schematic comparison of perfect fluid model within GR and elastic material model within
CPNAHI

the object where nothing was and to represent this value using the Greek letter A
which represents a “scalar multiple of the metric g,,,”.

On the right hand side I have a lineal line within CPNAHI. Equated to this geomet-
ric line is the physical model of an elastic medium. The flat HIs represent an unstrained
(eret = 0) elastic medium. Where the HIs reduce in magnitude I have geometric strain
of the medium that increases (€.¢; > 0). Near the minima for the HI magnitude, I
model this as the greatest change in density of the elastic medium. At this stage in my
research, I am currently assuming that I can still model this area as having the great-
est pressure (momentum) and not greatest change in Ap. I have more research to do
in order to ensure which is the most logical representations of the properties of fluid
models. Geometrically, I define another HI that is a HI function (see Section E) to the
magnitudes of the HIs within the line. Philosophically I overlap this functional HI as
a representation of the magnitude of temporal process and the relative magnitude of
wavelength. The larger the intrinsic curvature within the line, the larger the change in
the temporal process and change in wavelength. Notationally, I mean the HI function

A A
dt tp — f(dl’ medium) (55)
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for change of temporal process (time dilation) and

A A
dz wl = f(dl' medium) (56)

for change in wavelength (length contraction). The greater the strain in the medium

dx medium, the greater the change in the temporal process and wavelength. Thus,
GR uses tensors where “time” is a coordinate system on equal footing with a three
dimensional coordinate system of space. It views the change in the spacing of the points
of this coordinate system as a “curvature” of space-time. Geometrically, CPNAHI
uses HI functions of a voluminal HIs that are summed to create and define volume.
Philosophically CPNAHI models time dilation and length contractions as HI functions
of a three directional relative strain of an elastic medium representing the volume.
Although relativity considers the speed of light constant, I find it very doubtful that
A

% actually is and have a hypothetical experiment that could confirm this. I find

dt .,

~
it more compelling to define d% as a relative flex rate of the medium where the ratio
dt
A
dx

ey
A is an approximately constant HI function of the non-zero strain dx mediym- I will

expand on this in a future paper.
As for the equation |A — A2¢| = |1 — 2¢|, this will also require a future paper to
determine the most correct philosophical distinction between whether this is

—
dT medium = A= Puac (57)
and
A
dr medium = A — A2¢ = Apyqe. = energy density (58)
or whether
raxs
dT medium = Strain. (59)

Looking at the bottom line on the right side, I also see no reason that the lineal line
itself couldn’t have a symmetric change in magnitudes of the HIs. I call this universal
curvature, meaning that there is a overall change in magnitude but it remains locally
flat everywhere. This is shown in the figure as the magnitude changing from A to A+C.
If T model this as a change in the density pyqc, then this would seem conceptually very
close to the change in state of a dynamic fluid as discussed by the DETF [1]. As with
local curvature, a change in wavelength would also result from universal curvature. I
view it as probable that the intractability of the GR view of A as a scalar multiple of
the metric g, is the inability to conceptually equate these.

Thus for the sake of simple comparison, I consider it logical and probable to write

A= Pvac (60)
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and that if the intrinsic curvature of z is very small then it is almost flat and the
spherical approximation of the right side of Fig. B5 can be approximated to the left
side giving us

A foreground ARCbaCkground
@

dz = AN, = Apyae. =~ ||A.—A26.|| ~ || dPNewton

ARC}?aCkground l | = dr

(61)

with the z being the direction of the voluminal line in Fig.6 and r as the radius
of a spherical coordinate system in LLPP. I propose this equation to represent an

approximation for gravitational force*?. I propose that gravitational time dilation and
YA foreground

length contractions are HI functions of dz - If pyae is not constant throughout
the universe nor during its development, then CPNAHI would seem a more logical
way forward in examining the Cosmological Constant problem.

10 Summary

This paper has introduced the homogeneous infinitesimal as an axiomatic primitive
notion and viewing it through the concept of RC functions on background geometry
and HI functions on foreground geometry. By this I mean that I have attempted:

1. to provide compelling evidence that Euclidean and non-Euclidean geometry, the
Calculus, as well as our laws of physics are all based upon the undocumented prop-
erties of homogeneous infinitesimals within this axiomatic framework. Euclidean
geometry and the Calculus would be based upon a flat HI background where lines
are composed of LLPP geometry. Functions are defined based on the Relative
Cardinality of these lines. Non-Euclidean geometry can be derived from flat and
intrinsically curved foreground HIs where lines are lineal, areal, voluminal etc.

2. to show the background for future research on the distinction and similarities
between a four component tensor and HI function that has one component as a
function of another three.

3. to show the importance of philosophy in that these geometrical HIs can be

equated to distinct but similar concepts such as flat gl_t( being equated to both the
infinitesimal passage of time and to the lack of time dilation.

4. to elucidate my view that the Cosmological Constant paradox is the Gordian Knot
that results from of the confusion between homogeneous infinitesimals and basis
vectors/points on the geometric side and a perfect fluid model of particles to an
inverted elastic medium wave model on the philosophical side.

10.1 Hypotheses

The following hypotheses will be proven or falsified in a future paper. These area
included to aid in generating interest in CPNAHI.

43it would seem more logical at the moment to model Ap,qc as causing €,.; but I will require more time
to study perfect fluid theory and a possible radial limit to the intrinsic curvature
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10.

11.

12.

13.

. Define CPNAHI Geometric Conservation (GC) as conservation of HI magnitude

and/or Relative Cardinality

Conservation of energy and momentum within GR can be derived from GC
Covariance and Contravariance can be derived from GC

Events within MTW (Box 1.1) are equivalent to the points within HIs. One event
is one point.

HIs do not have the boundary condition flaw inherent in basis vector concept.
0-spheres are made of lineal lines, 1-spheres of areal lines and 2-spheres of voluminal
lines. Non-null directions within the points make up the surface of the sphere. 0-
spheres would have points of null direction, 1-spheres of length and 2-spheres of
area.

Riemann’s n-ply extended magnitude can be derived from a HI

The Calculus was initially developed utilizing the infinitesimal segment concept
(i.e. Newton’s fluxion and Leibniz’s differential dz). Hypothesis: The Leibnizian
concept of a derivative can be derived from the change of RC of lineal lines on a
flat background. If the RC does not change, then the derivative is zero, if the RC
does change then the derivative is non-zero.

Differential Geometry is the mathematical discipline that studies the geometry of
smooth shapes and smooth spaces, otherwise known as smooth manifolds. Hypoth-
esis: The derivative of a lineal line can be proven as examining the infinitesimal
difference between magnitudes of lineal HIs. If the derivative difference is zero, then
the line is intrinsically flat. If the derivative difference is non-zero then the line is
intrinsically curved. Prove that differential geometry can be derived from this.
Euclid’s Parallel Postulate Hypothesis: The parallel postulate can be defined from
the change in RC between areal HIs bounded by LLPP lineal lines (using GC).
Coordinate systems utilize points. Heterogeneous lines use points. Hypothesis: The
metric tensor utilized in General Relativity is actually a measure of the relative
distance between points which is a flawed view of the magnitude of HIs.

The tensoral representation of co-moving with a particle in a Lorentz frame is given
by
-1000
_ 0 100
0 001

Hypothesis: Co-moving with periodic intrinsic curvature and using HI functions
can approximate this tensor. The foreground intrinsic curvature is non-zero as a
particle/wave passes, but the maxima and minima of HIs within a wave function
as we co-move with it would be flat**. T will expand on the CPNAHI alternative to
Special Relativity in a future paper.

George Cantor defined that a number could have a magnitude between finite and
infinite called “transfinite” numbers [14]. Hypothesis: Relative Cardinality is the
concept that infinity can have different magnitudes. Transfinite numbers are a
conception of this.*?

44see [8] p. 53 for discussion on Lorentz frame

4535 opposed to Galileo, see [4] pp. 92-93 for discussion
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14.

15.

16.

17.

Hilbert’s paper on his axioms[17] states
The axioms of this group define the idea expressed by the word “between,”

Hypothesis: The “between” within Hilbert’s axioms are a flawed view of the
magnitude of a HI.

Bernhard Riemann described a surface as being stretched [7]. Hypothesis: Volumi-
nal points that are adjacent to other voluminal points in the non-null direction can
be thought of as creating a surface. If the magnitude of these non-null directions
are equivalent, then HIs can be proven to be a more logically consistent description
of flat. If they are not equivalent, then HIs can be proven to be a more logically
consistent description of “stretching”. I will attempt to show in future work that
Riemann’s paper matches the description of the properties of HlIs.

Hypothesis: If foreground voluminal intrinsic curvature is defined as a magnitude
with direction, this can be shown to change the directional components of a volu-
minal line which can be equated to the path of a wave function representing a
physical particle. This can define and derive a gravitational “force” vector at that
location. The changing of the components of the wave function in response to the
foreground curvature can be equated to a change in wavelength, temporal process,
momentum and energy density.

Partial derivatives of time and/or space are present within equations which describe
quantum mechanics. Hypothesis: GR and Quantum mechanics can be written using

—
one equation by rewriting both governing equations with partial derivatives of dt

—
and dx as well as redefining energy density and momentum.

Appendix A CPNAHI lineal lines

Let us switch notation from x to y. Define a “line” as a set or “path” of adjacent
HIs that possess length and an “intrinsically straight line” (Fig. Al) as a path of
“adjacent” HIs with the property of

— — A
dy , —dy 41 =dy =0. (A1)
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Hls ~
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Fig. A1l Intrinsically straight lineal line made of equal HIs
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An intrinsically curved line made of HIs of length (Fig. A2) could be represented

—~ —~
by HI dy ,, having greater infinitesimal length than HI dy ,,, ;. This allows us to write
the inequality

— —
dy , > dy .1 (A2)
which gives us

— — A
dy n dy n+l — dy 7& 0. (AS)

=3
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of unequal
length
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Fig. A2 Intrinsically curved lineal line made of unequal HIs

Appendix B Euclidean lines vs CPNAHI areal lines

Figure B3 demonstrates the conception of columns of intrinsically flat areal HIs that
makeup areal lines that can be summed to create area. This is in opposition to the
heterogeneous view of stacked lines of zero width being summed to create area.

B.1 Euclidean lines vs CPNAHI area lines for a circle

Figure B4 demonstrates that an areal line composed of HIs of area can define the
radius of a circle®. Areal points, which are HIs that are null in the line direction (radial
here), can be defined as forming the area and circumference of circles as in Figure B4.
Every circle has the same number of points. The reason that the circumference grows
as the radius increases is due to the increase in the relative magnitude of the HIs in
the orthogonal direction?”. Note that the circumference of every circle is intrinsically
flat. A note in the margin of Torricelli’s Opere essentially describes the properties of
these areal lines (“tapering”) as they make up a circle*®. I hypothesize that a 1-sphere
is the same as Figure B4.

Figure B5 is a conceptual comparison between multiple lines penetrating the
circumferences of concentric circles versus single lines that penetrate and form the cir-
cumference of radial circles within CPNAHI. Understand that the dual “lines” in the

46also see [4] p. 28 Al-Ghazalis wheel
4TKepler viewed these as triangles. See [4] p. 62.
48see [4] p. 126 for discussion
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Fig. B3 Intrinsically Flat Areal Lines Summed To Create Area Of A Parallelogram

n+2

Circumferential lines are points of areal HIs

Fig. B4 Intrinsically Orthogonal-Curved Areal Lines Summed To Create Area Of A Circle

figure on the right indicating the increasing magnitudes of the HIs can be graphically
misleading. Only a single line is represented in the figure on the right and it has the
property of area. The lines radiating out from the figure on the left possess no width

but only length.
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It may also be helpful to understand we can view the figure on the left as a
radial coordinate system of background geometry. An objects position can be described
using this coordinate system. The figure on the right is made of HIs using foreground
geometry. A geometric object can be define via changes in the magnitudes of the HIs
(geometrical waves).

Cardinality Paradox: Can more lines penetrate circumference  Single areal line "penetrates" both circles.

of outer circle than inner circle? Is the cardinality of the outer ~ HIs have property of area; Points that possess
circle greater than the cardinality of the inner circle? width form intrinsically flat circumference of
Can lines over lap? Can lines be summed to create arca? circle. Cardinality of both circles are equivalent.

Fig. B5 Euclidean Circle Paradox Versus CPNAHI Areal Lines

B.2 Manifolds and 2-spheres vs CPNAHI voluminal point
surfaces

By the same token, compare the following quote and the pictorial concept of rays
emanating from a source within a differentiable manifold as shown in the 2-sphere
from Figure 9.3 p. 241 in Gravitation[8]. Note the similarities of “rays” and voluminal
lines. I hypothesize that a “2 sphere” is equivalent to saying the surface is made of the
area of the voluminal points that are contained within the voluminal lines radiating
as “rays” from the origin. Note that I do not show the z direction in these drawings
that could also reduce in magnitude along with = and y.
Thus S? is a manifold, and the rays P are the points of S2.

If one considers that the voluminal points that make up the area of the sphere and
the points are within the voluminal lines, then there is a similarity between the “rays”
and voluminal lines.

Appendix C Lineal Line PseudoPoint (LLPP)
Geometry Versus Leibnizian Tangent

C.1 LLPP on Flat Background HlIs

Let us consider a background geometry consisting of areal HIs. For this introduction we
will consider only areal lines and that they are all flat. If we relax the point postulate
for lines so that they are always null in all directions, then this is equivalent to points
in Euclidean geometry and I call this a pseudopoint. We allow a lineal line to be drawn
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on this background so that any and all drawn lineal lines are flat and can now intersect
at the null points. See Figure B5 for the issue this causes with cardinality. Let us call
these special conditions Lineal Line PseudoPoint geometry (LLPP).

Philosophically, an “absolute object” can exist “on” this background and line
lengths as defined by Equation 27 can be used to define a coordinate system. In
other words, an objects position can be defined via the coordinate system cre-
ated from the background areal HIs. Note that the second Corollary this does not
apply because I intentionally analyzed the lines from their components comparatively
without background areal HIs limiting our ability to change the magnitude of the
segments.

Appendix D Areal Homogeneous Infinitesimals
Versus Leibnizian/Newtonian
Differentiation

In Figure D6 I have Keisler’s example[9] of a tangent line drawn to a line y = f(x).
I purposefully use his example as I hypothesize that non-standard analysis can be
derived from CPNAHI. Extrinsic curvature in LLPP*? is defined as a change in length
of an areal line segment with respect to two lines. This must be a change in RC
since the background is flat. Any lines drawn upon this flat background are in and of
themselves flat from segment to segment within the path of the line.

Hypothesis: This image can be described as using LLPP to describe a change in
the RC of areal HIs.

In Figure D7 I have placed what look like the + signs in Keisler’s image to indicate

~
that the background consists solely of flat areal HIs. These signs represent the dy

and d>;_v( of the background areal HIs. The drawn lines all use LLPP to exist. From
Equation 27, we can see that within this diagram

~
Ay = RC,dy (D4)

and
—
Az = RCydx . (D5)

~ ~
Since the background areal HIs, dy and dx are defined as flat then we know that
~ ~
dy =dx (D6)
and thus we get the equality of ratios

~
% _ RC,dy

(D7)
Az peocdr

49which does not appear to be the same as MTW [8] 21.5 after a perfunctory examination
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Ay =change in y along curve

dy = change in y along curve tangent line

Fig. D6 Keisler differential Figure 2.2.3

Ay = change in y along curve
dy = change in y along tangent line

Background is flat areal HIs

1(x)

(a+ Ax, b+ Ay)

w \ ain
&, \ \\x

RC of areal infinitesimals is changing
between the two paths bounded by lineal HIs
using LLP

Fig. D7 Keisler Differential Explained Via LLPP

Note that Az and Ay are line segment representing a change in a and b. So although
I could write

=< (D8)



it would be correct to also set ARC, = 1 and to view differentiation as the column of
areal HIs that is ARC, high.

We can then understand that the following non-CPNAHI notation is a special case
of flat HIs where every segment is divided into equal segments:

lim Az, = dx. (D9)

1—o00

By definition, on a flat background, any line with which you would compare the length
with would have identical segment magnitude and thus the line length depends solely
on RC.

D.1 Leibniz Notation, Integration, Fundamental Theorem of
Calculus, Euclid’s Parallel Postulate, Straight Voluminal
Lines in a Curved Foreground

It may be obvious by now that basic integration can be derived as the summation of
— —
columns of areal HIs RCydy high by RC,dx wide,

~ ~
> RCydy RC,da . (D10)

Since RC, = 1 for a column and with the RC function y = f(2)°°, we can see the
notational difficulties that necessitated new notation different from Leibniz since

S RC,dy dx :/f(:r)da:. (D11)

~
I do not put in here a discussion of the length of y = RCy,dy from the origin as a

—
function of the length of © = RC,dx from the origin as it should be obvious from the
previous equations.

D.1.1 Fundamental Theorem of Calculus

Thus, within CPNAHI, we can understand the Fundamental Theorem of
Calculus is defined by using LLPP on a flat background: As a simple expla-
nation, for differentiation it is the change in cardinality of columns of areal
HIs bounded between two lines. For integration it is the summation of
columns of areal HIs bounded between two lines. Leibniz’s notation seems
to work because we are always comparing the Relative Cardinality of y
with the Relative Cardinality of  but RC, is defined as 1 in differential
notation of %. This can easily be seen by changing a graph from x and y
and using a Cartesian Coordinate plot instead.

50see [11] for a discussion of when Euler helped move the Calculus from being about variables of geometry
to functions
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D.1.2 Euclid’s Parallel Postulate

Similarly, Euclid’s parallel postulate can be defined through Geometric Conservation,
in that two LLPP lines are parallel provided the Relative Cardinality of the column
of flat background areal HIs that they bound between them does not change.

D.1.3 Straight Voluminal Lines in a Curved Foreground

In foreground geometry straight voluminal lines can be defined, using Geometric Con-
servation, by the magnitude of the three orthogonal components as shown in Fig. 6.

— —
Even if dy ,, and dz ,, are not equal in magnitude relative to each other but do not

~ -~ —~ ~
change relative to themselves, dy , = dy ,,,; and dx , = dr 1 along the voluminal
line path, then this is how a line can be straight in a curved foreground. I will expand
upon this and the similarities/differences between GR world lines in a future paper.

D.1.4 Torricelli’s Theorem Within CPNAHI

Using the definition of a LLPP, we can understand that Torricelli’s parallelogram
paradox as historically examined is actually NOT a comparison of HI magnitudes but
instead of differing RC for areal lines. My examination of it simply gives us a geometric
scenario to a use and compare different values for both infinitesimal magnitudes and
relative cardinality.

D.1.5 Conservation and Change of RC*HI

Without proof, allow me to assert that two lineal lines that are flat and of equal
magnitude segments are of equal length if they both have the same RC. Changing
the magnitude of the segments does not change their ratio. By the same token, the
area bounded by parallel lines in Torricelli’s parallelogram consists of flat equal Hls
of area and both will contain the same RC as if the HIs in each were stacked into
area lines. Changing the magnitude of the areal HIs will not change their ratio. Using
CPNAHI, I hypothesize that the left side of the Einstein Field Equation is an attempt
to match the 4 volume sum of intrinsically curved HIs with 4 volume of flat Hls that
philosophically represent 3 spatial dimensions and 1 time dimension without spelling
out their RC nor magnitudes. In other words, the 3-volume change represented by the
Newtonian gravitational equation plus 1 dimension for time is attempting to match
the 4 volume change that would occur by keeping the RC constant but changing the
HI magnitudes. The Newtonian equation changes cardinality to change 4-volume, the
EFE is attempting to represent that with change of HI magnitude.

Appendix E HI functions versus RC functions

Suppose that we are using LLPP, and that the length of one line is dependent on the
length of another line orthogonal to it. I call this an RC function and write

ARC, = f(ARC,). (E12)

33



I detect no difference between this and y = f(z). Essentially the length of y is a
dependent on the length of z.

~ —~
Suppose that we have a lineal HI dx and that the magnitude of second HI dy is
dependent upon the magnitude of the first. I write

A praxs
dy = f(dx) (E13)
and call this a HI function.

E.1 Proposed Overview of HI functions versus RC functions

Imagine two sets of flat voluminal HIs that sum up to create two volumes, one back-
ground and one foreground. I hypothesize that upon the background flat voluminal
HlIs, LLPP is used to create R, Euclidean geometry and the Calculus with RC func-
tions upon which Newtonian physics relies. With the foreground we are free to change
magnitudes of the HIs themselves, creating intrinsic curvature and geometric waves
(maxima and minima). Upon this foreground we are free to map on these waves philo-
sophical models of an elastic medium that utilize HI functions to describe physical
phenomena present in our universe such as energy density, momentum, time dilation
and length contractions.
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