
Training Classifier Gradient Penalty GAN

with Codebook Architecture

Jeongik Cho
jeongik.jo.01@gmail.com

Abstract

Classifier gradient penalty GAN is a GAN proposed to perform self-
supervised class-conditional data generation and clustering on unlabeled
datasets. The classifier gradient penalty GAN’s generator takes a contin-
uous latent vector and a categorical latent vector as input and generates a
class-conditional data point corresponding to the categorical latent vector.

In this paper, we propose to leverage the codebook architecture to im-
prove the performance of classifier gradient penalty GAN. In the proposed
architecture, the generator takes the page vector of the codebook corre-
sponding to the index of the categorical latent vector, instead of taking
the one-hot categorical latent vector directly. Unlike the codebook used in
generative models with vector quantization, the codebook of the proposed
architecture is not embedded with the encoder. Instead, the codebook is
simply trainable and updated via generator loss like trainable parameters
in the generator.

The proposed architecture improved the quality of the generated data,
class-conditional data generation performance, and clustering performance
of the classifier gradient penalty GAN.

1 Introduction

Recently, some generative models, such as VQGAN [3] and VQVAE [4], have
used vector quantization to improve the performance of generative models.
These models consist of an encoder that converts input real data into embedded
vectors, a codebook that stores embedded vectors, and a generator that gener-
ates data from the codebook. The encoder is trained to reconstruct the input
data, and the generator generates the data by selecting one or several embedded
vectors from the codebook. This is a kind of memory structure that allows the
generative model to remember the embedded vector and utilize it to generate
data.

Classifier Gradient Penalty GAN (CGPGAN) [2] is an architecture-agnostic
GAN that allows the model to perform self-supervised class-conditional data
generation and clustering without knowing labels, optimal prior categorical
probability, or metric function. CGPGAN uses a discriminator, a classifier, and

1



a generator to train the model. The classifier is trained with cross-entropy loss to
predict the categorical latent vector of the fake data. Also, the conditional vec-
tor of real data predicted by the classifier is used to train the class-conditional
GAN. When training class-conditional GAN with this classifier, the decision
boundary of the classifier falls to the local optima where the density of the data
is minimized. CGPGAN uses a classifier gradient penalty loss to the classi-
fier loss to prevent the classifier’s decision boundary from falling into a narrow
range of local optima. Classifier gradient penalty loss regulates the gradient of
the classifier’s output to prevent the gradient near the decision boundary from
becoming too large.

In this paper, we introduce a codebook architecture to improve the perfor-
mance of CGPGAN. Instead of directly inputting a categorical latent vector
into CGPGAN’s generator, the proposed architecture inputs the page vector of
the codebook corresponding to the index of the categorical latent vector. Page
vectors are simply trainable parameters that are updated with the CGPGAN
generator loss during the CGPGAN training. Therefore, unlike other genera-
tive models that use vector quantization, the proposed architecture does not
require autoencoder training and encoder inference to get embedded vectors of
real data.

2 Classifier Gradient Penalty GAN

In this section, we briefly describe about CGPGAN [2]. CGPGAN was pro-
posed for class-conditional data generation and clustering on unlabeled datasets.
Specifically, CGPGAN can be used under the following conditions:

1. The labels of all data are unknown.

2. Optimal categorical latent distribution is unknown.

3. Metric to measure the distance between the data is unknown.

CGPGAN uses a generator, discriminator, and classifier for training. The
following equations show the losses used to train CGPGAN.

Lq = λclsLcls + λcgpLcgp (1)

Ld = Ld
adv (2)

Lg = Lg
adv (3)

Lcgp = Ez,cf

[
∥∇G(z,cf )

(
(1−Q(G(z, cf )) · cf )2

)
∥22
]

(4)

Lcls = Ez,cf [−cf · log(Q(G(z, cf )))] (5)

Ld
adv = Ex,z,cf [Ad(D(x) · argmax onehot(Q(x)), D(G(z, cf )) · cf )] (6)

Lg
adv = Ez,cf [Ag(D(G(z, cf )) · cf )] (7)

2



Eqs. 1, 2, and 3 show classifier loss, discriminator loss, and generator loss,
respectively. Classifier Q is trained with classification loss Lcls and classifier
gradient penalty loss Lcgp. Discriminator D and generator G are trained only
with adversarial losses Ld

adv and Lg
adv, respectively. λcls and λcgp represent

classification loss weight and classifier gradient penalty loss weight, respectively.
Eqs. 4, 5, 6, and 7 show classifier gradient penalty loss, classification loss,

discriminator adversarial loss, and generator adversarial loss, respectively. Q,
D, and G represent classifier, discriminator, and generator respectively. z and
cf are continuous latent vector and categorical latent vector to generate fake
data point G(z, cf ). x represents a real data point.

In Eq. 6, argmaxonehot is a function that makes the value of the largest in-
dex in the vector 1 and the rest of the values 0 (e.g., argmaxonehot([0.3, 0.5, 0.2]) =
[0.0, 1.0, 0.0]). Ad and Ag represent adversarial functions for discriminator and
generator, respectively.

With these losses, the classifier Q is trained to predict the categorical latent
vector cf of the generated data G(z, cf ), and to converge to the point where the
decision boundary minimizes the probability density of the real data distribution
P (X). CGPGAN also trains a class-conditional GAN based on the labels of the
real data predicted by the classifier (i.e., argmax onehot(Q(x))).

Furthermore, CGPGAN updates the categorical latent prior P (C) with the
predicted categorical probability of the real data Q(x) during the training.

P (C)← update(P (C),Ex [Q(x)]) (8)

Eq. 8 shows updating categorical latent prior P (C) with a predicted categor-
ical probability of real data Ex [Q(x)]. Through Eq. 8, categorical latent prior
P (C) approaches predicted the categorical probability of real data. Moving
average functions, such as exponential moving average, can be used as update
functions.

However, updating categorical latent prior P (C) with Eq. 8 can cause the
prior probability to converge to a meaningless vector (i.e., P (C) approaches
the one-hot vector) early in the CGPGAN training. To prevent it, CGPGAN
applies probability normalization at the beginning of training.

c = [Q(x1), Q(x2), . . . , Q(xb)] (9)

prob normalize(c) = c− batch average(c) +
1

dc
(10)

Eqs. 9 and 10 shows the probability normalization of CGPGAN. In Eq. 9, c
is predicted probability batch of real data points x1, x2, . . . , xb. The batchaverage
function calculates the batch-wise average probability, and dc represents the di-
mension of the categorical latent vector. Therefore, batchaverage(probnormalize(c))

always become uniform distribution
[

1
dc
, 1
dc
, . . . , 1

dc

]
. Thus, c = [Q(x1), Q(x2), . . . , Q(xb)]

is replaced by prob normalize(c) at the beginning of the training.

3



3 Training CGPGAN with Codebook Architec-
ture

In this paper, we propose an architecture that uses codebooks to improve the
performance of CGPGAN. The proposed architecture simply replaces the cat-
egorical latent vector cf with the page vector of the codebook corresponding
to the index of the categorical latent vector, instead of directly inputting the
categorical vector cf to the generator. For example, if cf = [0.0, 1.0, 0.0], the
page vector of the 2nd index of the codebook would be input to the genera-
tor instead of the categorical latent vector cf . The codebook is updated with
generator losses during training, just like other trainable parameters of the gen-
erator. Therefore, one can think that the codebook is the trainable parameter of
the generator. We found that this simple method improves CGPGAN’s gener-
ated data quality (precision) and class-conditional data generation & clustering
performance.

4 Experiments

In this section, we compared the performance of Vanilla GAN with codebook
architecture, and CGPGAN with and without codebook architecture. AFHQ
dataset [9] resized to 256× 256 resolution was used as the training dataset.

Models are trained with NSGAN adversarial loss [1] (i.e., Ad and Ag) with
R2 regularization [5]. Equalized learning rate [6] were used for all trainable
parameters. Also, an exponential moving average of generator parameters with
decay rate = 0.999 was used for generative performance evaluation. The model
architecture is simply composed of CNNs.

In without codebook architecture, the dz-dimensional continuous latent vec-
tor and dl × dc shape multiple categorical latent vectors are the input to the
generator, where dl and dc represent label dimension and category dimension.
Then the input latent vector is projected to the 4×4×1024 shape feature maps.

In with codebook architecture, dz-dimensional continuous latent vector is
projected to 4 × 4 × 512 shape feature maps, then 4 × 4 × 512 shaped page
vectors are concatenated. The codebook is dl × dc × dp shape trainable matrix,
where dp represents the dimension of the page vector. It means that there are
dl × dc page vectors, and dp = 4× 4× 512/dl.

The following hyperparameters were used for the experiments:

Z ∼ N(0, I1024)

optimizer = AdamW


learning rate = 0.003

weight decay = 0.0001

β1 = 0.0

β2 = 0.99


batch size = 8

λr2 = 10

4



epoch = 120
activation function = Leaky ReLU

dl = 4
dc = 4

For CGPGAN, P (C) starts to be updated after epoch 50 (i.e., the probnormalize
function is disabled from epoch 50), and λcls = 1, λcgp = 10 were used for model
training.

FID [7] and precision & recall [8] were used for generative performance eval-
uation.

Figs. 1, 2, and 3 shows generated samples of Vanilla GAN with codebook
architecture, CGPGAN without codebook architecture, and CGPGAN with
codebook architecture, respectively.

First, in Fig. 1, the Vanilla GAN with codebook architecture failed to train.
The quality of the generated images is not bad, but there is almost no diversity
in the generated images (recall was 0.0000). In particular, Vanilla GAN with
codebook architecture generated the same image when the categorical latent
vectors are the same but continuous latent vectors are different. This seems
to be because the codebook architecture causes memorization of the generator,
which makes it vulnerable to mode collapse. This resulted in very low generative
performance for Vanilla GAN with codebook architecture.

In Fig. 2, one can see that both the continuous latent vector and categorical
latent vectors have an impact on the generated images in CGPGAN without
codebook architecture. However, the categorical latent vector did not have a
very meaningful effect. In CGPGAN without codebook architecture, it looks
like a continuous latent vector determines the species and pose of the animal,
and a categorical latent vector determines some of the pattern. However, the
categorical latent representation is so entangled that it is difficult for humans
to interpret. For example, a white dog may belong to columns 2, 3, or 6, but it
would be difficult for a human to determine exactly which category it belongs
to.

In Fig. 3, one can see that each image is of good quality and that both the
continuous latent vector and categorical latent vectors have a meaningful impact
on the generated images in CGPGAN with codebook architecture. For example,
images with the same categorical latent vectors are animals of the same species
with similar patterns. And images with the same continuous latent vector have
similar poses, backgrounds, and zooms. In CGPGAN with codebook architec-
ture, categorical latent representation is disentangled, so it can be interpreted
by humans. For example, a human can infer that lionesses belong in column 2.

The precision of CGPGAN with codebook architecture is 0.8124, which is
higher than CGPGAN without codebook, which is 0.7305. This means that the
quality of images generated by CGPGAN with codebook architecture is bet-
ter than that of CGPGAN without codebook. On the other hand, the recall
of CGPGAN with a codebook was 0.1772, which is lower than that of CGP-
GAN without a codebook. This means that the diversity of data generated by
CGPGAN with a codebook is less than that of CGPGAN without a codebook.

5



Figure 1: Generated samples of Vanilla GAN with codebook architecture.
Each column has the same categorical latent vectors, and each row has the
same continuous latent vector. FID:68.6567, Precision: 0.6300, Recall: 0.0000.

6



Figure 2: Generated samples of CGPGAN without codebook architecture. Each
column has the same categorical latent vectors, and each row has the same
continuous latent vector. FID: 10.7616, Precision: 0.7305, Recall:0.3060

7



Figure 3: Generated samples of CGPGAN with codebook architecture. Each
column has the same categorical latent vectors, and each row has the same
continuous latent vector. FID: 11.0781, Precision: 0.8124, Recall: 0.1772.

8



Still, there was little difference in the FID evaluation that represented overall
generative performance.

Note that dl = 4 and dc = 4, so there are 44 = 256 combinations of categor-
ical latent vectors. Therefore, there are more combinations of categorical latent
vectors than the samples in Figs. 1, 2, and 3.

5 Conclusion

In this paper, we introduced codebook architecture for CGPGAN. In the pro-
posed architecture, the generator takes the page vector of the codebook cor-
responding to the index of the categorical latent vector, instead of taking the
categorical latent vector directly. Unlike other vector quantization generative
models that use encoders to make codebooks, the codebook in our proposed
architecture is trained with generator loss like a trainable parameter of a gen-
erator.

In the experiments, the proposed architecture did not work with vanilla
GAN. Also, the proposed architecture reduced the diversity of the generated
data in CGPGAN. However, the codebook architecture improved the quality of
the generated data and disentangled the categorical latent distribution, which
allows humans to interpret it.

In conclusion, the proposed codebook architecture improved the class-conditional
data generation and clustering performance of CGPGAN.

References

[1] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., Bengio, Y.: Generative Adversarial Nets. In Com-
mun. ACM, vol. 63, no. 11, pp. 139-144, Nov. 2020. https://doi.org/10.
1145/3422622

[2] Jeongik Cho, ”Training Self-supervised Class-conditional GANs with Classi-
fier Gradient Penalty and Dynamic Prior,” https://vixra.org/abs/2307.
0121?ref=15805554

[3] Patrick Esser, Robin Rombach, Björn Ommer, ”Taming Transformers for
High-Resolution Image Synthesis,” https://arxiv.org/abs/2012.09841

[4] Aaron van den Oord, Oriol Vinyals, Koray Kavukcuoglu, ”Neural Discrete
Representation Learning,” https://arxiv.org/abs/1711.00937

[5] Mescheder, L., Geiger, A., Nowozin S.: Which Training Methods for GANs
do actually Converge? In PMLR, 2018. https://proceedings.mlr.press/
v80/mescheder18a.html

9

https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
https://vixra.org/abs/2307.0121?ref=15805554
https://vixra.org/abs/2307.0121?ref=15805554
https://arxiv.org/abs/2012.09841
https://arxiv.org/abs/1711.00937
https://proceedings.mlr.press/v80/mescheder18a.html
https://proceedings.mlr.press/v80/mescheder18a.html


[6] Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive Growing of GANs
for Improved Quality, Stability, and Variation. In ICLR conference, Vancou-
ver, Canada, Apr. 30-May 3, 2018. https://openreview.net/forum?id=
Hk99zCeAb

[7] Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.:
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash
Equilibrium. In NIPS, 2017. https://papers.nips.cc/paper/2017/hash/
8a1d694707eb0fefe65871369074926d-Abstract.html

[8] Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Im-
proved precision and recall metric for assessing generative models. In NIPS
proceedings, 2019. https://proceedings.neurips.cc/paper/2019/hash/
0234c510bc6d908b28c70ff313743079-Abstract.html

[9] Y. Choi, Y. Uh, J. Yoo, J. Ha, ”StarGAN v2: Diverse Image Synthesis
for Multiple Domains,” in CVPR 2020. https://openaccess.thecvf.

com/content_CVPR_2020/papers/Choi_StarGAN_v2_Diverse_Image_

Synthesis_for_Multiple_Domains_CVPR_2020_paper.pdf

10

https://openreview.net/forum?id=Hk99zCeAb
https://openreview.net/forum?id=Hk99zCeAb
https://papers.nips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://papers.nips.cc/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0234c510bc6d908b28c70ff313743079-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/0234c510bc6d908b28c70ff313743079-Abstract.html
https://openaccess.thecvf.com/content_CVPR_2020/papers/Choi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Choi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2020/papers/Choi_StarGAN_v2_Diverse_Image_Synthesis_for_Multiple_Domains_CVPR_2020_paper.pdf

	Introduction
	Classifier Gradient Penalty GAN
	Training CGPGAN with Codebook Architecture
	Experiments
	Conclusion

