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Abstract

We show that the Graph Isomorphism (GI) problem can be solved in polynomial
O(n3+n2m log(n+m)+m2n log(n+m)+m3 log(n+m)) time, on simple con-
nected graphs with n vertices and m edges. As fundamental part of the proof,
we introduce a novel method, named Symmetry Classi�cation, which computes
a canonical automorphism partition of a simple connected graph in polynomial
O(n2 + nm log n) time. The master algorithm reduces to bipartite graph iso-
morphism by transforming the input graph, if not bipartite, to its subdivision
graph and computes the canonical form of the latter; or of the former if already
bipartite. Canonical form is obtained by repeating the sequence of �rst applying
Symmetry Classi�cation method, then canonically selecting a vertex for indi-
vidualization, and last applying the classical 1-dimensional Weisfeiler-Lehman
algorithm, until a canonical discrete coloring is attained. Since both bipartite
and connected graph isomorphism are isomorphism complete we conclude that
GI lies in P.

Keywords: Algorithms, Graph Canonization, Graph Isomorphism, Bipartite
Graph Isomorphism, Graph Automorphism Partition, Polynomial Complexity

1. Introduction

1.1. Outline

This paper is organized as follows: In current section we introduce the basic
notation, de�nitions and tools that will be used. In section 2 we present a novel
method, which we name Symmetry Classi�cation, that computes a canonical
automorphism partition of a simple connected graph. In section 3 we present the
Master algorithm along with proofs of correctness and analysis of its complexity.
We conclude in section 4. In appendix A we include the listings of various
subroutines that are being referenced in the main algorithms of this paper. In
appendix B we showcase applications of theMaster algorithm in selected graphs.
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1.2. Basic de�nitions and tools

For the context of this paper let G = (V,E) be a simple graph with set of
vertices VG and set of edges EG. By simple we mean undirected with no loops
or multiple edges. We assume a normalized labeling of vertices {0, ..., |VG| − 1}.
The vertices adjacent to a vertex u ∈ VG form its open neighborhood NG(u). Any
subgraph induced by a subset of vertices S ⊂ VG is denoted as G[S]. We may
omit the subscript G in cases where context is clear. Throughout this paper
whenever we encounter lists of integers we assume that a sorted list obeys as-
cending ordering and the comparator between a pair of lists L = [x1, x2, ..., xk],
L∗ = [x∗

1, x
∗
2, ..., x

∗
l ] with cardinality k, l respectively is: L < L∗ when k < l,20

and L ≤ L∗ if there is some j ≤ k such that xi = x∗
i for i < j and xj < x∗

j .
The comparator between a pair of lists of [list of lists] is de�ned in a simi-
lar manner. All algorithm listings imply zero indexed lists. Two graphs G,H
are said to be isomorphic, G ∼= H, if there is a bijection f : VG → VH such
that if {u,w} ∈ EG ⇐⇒ {f(u), f(w)} ∈ EH . In this context f is an iso-
morphism from G to H. For a graph G any bijection A : VG → VG such that
if {u,w} ∈ EG ⇐⇒ {A(u), A(w)} ∈ EG is called automorphism. Mapping
each vertex to itself is the trivial automorphism. The Graph Isomorphism (GI)
problem asks to determine whether two given simple graphs are isomorphic.

De�nition 1.1. Given a graph G = (V,E), a set S ⊆ VG : |S| ≥ 2 along with
its elements, is/are symmetric, if for any two u, v ∈ S there is an automorphism
f : VG → VG : f(u) = v. A vertex w which is mapped to itself for every possible
automorphism is called asymmetric.

De�nition 1.2. Given a graph G = (V,E), vertices u, v are called pseudo-
similar if G[V \ u] ∼= G[V \ v] but u, v are not symmetric.

De�nition 1.3. A partition π of a set V is a set {V1, ..., Vk} of pairwise disjoint
non-empty subsets of V , such as ∪k

i=1
Vi = V . The sets Vi are called blocks of π.

A partition π is discrete if |π| = |V | and unit if |π| = 1. Each block of size 1 is
called trivial. Given a partition π, we write u ∼π v ⇐⇒ ∃B ∈ π : u, v ∈ B.

De�nition 1.4. A partition κ of V re�nes a partition π of V , if ∀u, v ∈ V :40

u ∼κ v ⇒ u ∼π v.

De�nition 1.5. Given a graph G = (V,E), a partition π of VG is stable if
∀B ∈ π, ∀u, v ∈ VG : u ∼π v ⇒ |N(u) ∩ B| = |N(v) ∩ B|. This means that
any two vertices of a non-trivial block have the same number of neighbors that
reside in any block.

Proposition 1 ([1], Proposition 3). Let G = (V,E) be a graph. For every
partition π of VG, there is a unique coarsest stable partition τ that re�nes π.

De�nition 1.6. Let G = (V,E) be a graph. A surjection c : VG → {1..k}, k ≤ n
is called k-coloring. Given a k-coloring c of G, we write Cc

i
= {u ∈ VG|c(u) = i}

and call it color class i. Likewise we denote the partition {Cc
i
, ..., Cc

k
} by πc. A k-

coloring is characterized respectively from the attributes i.e., discrete,unit,stable,
of its induced partition and vice versa. For brevity we may interchange naming
k-coloring with just coloring in the course of this paper.
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De�nition 1.7. Given two graphs G, H with respecting k-colorings cG, cH , an
isomorphism f from G to H is called color preserving for cG, cH , if ∀u ∈ VG ⇒
cG(u) = cH(f(u)).

De�nition 1.8. A coloring method is a method for obtaining a coloring cb of a
graph G, given an initial coloring ca.

De�nition 1.9. A coloring method is called canonical, if for any two isomorphic
graphs G and H with initial colorings cG

a resp. cH

a and isomorphism f : VG →60

VH , the following holds: if f is color preserving for cG

a and cH

a, then f is color
preserving for the resulting colorings cG

b
and cH

b
. Resulting colorings are also

called canonical colorings of G,H starting from cG

a resp. cH

a. If starting coloring
is the unit one, we simply call the resulting coloring a canonical coloring of a
graph.

De�nition 1.10. Given any two graphs G,H with initial k-colorings cG resp.
cH and an isomorphism f from G to H, we call Canonical Color Re�nement
(to be abbreviated as CCR) any canonical coloring method which implements
1-dimensional Weisfeiler-Leman algorithm [2], that can compute the coarsest
stable partitions πc∗G , πc∗H which re�ne πcG , πcH . Both resulting colorings c∗

G
, c∗

H

are unique 1 canonical l-colorings with k ≤ l starting from cG resp. cH .

Lemma 1.1 ([1], Theorem 9). For any graph G = (V,E) on n vertices and
m edges given a k-coloring c of G, there exists a Canonical Color Re�nement
algorithm that halts in O((n+m) log n) time.

De�nition 1.11. Given a graph G = (V,E) and a canonical stable coloring cG

of G, we call distinguished all vertices in trivial blocks.

De�nition 1.12. Given a graph G = (V,E) and a stable non-discrete partition
π = {B1, ..., Bl} ofG, we call individualization of any vertex u ∈ Bi : |Bi| > 1, the
process of transforming π into πu = {B1, ..., Bi \ {u}, ...Bl, {u}}, or equivalently
introducing a new color class q = l + 1 for {u}. By application of CCR on this80

q-coloring, we end up with a stable k-coloring ck where k ≥ q. We call ck the
individualized coloring of u on cl and denote it as Ind(u, cl).

De�nition 1.13. Given a simple graph G = (V,E) on n vertices, m edges and
a canonical discrete coloring cd of G, let G(cd) be an isomorphic copy of G, which
is computed by relabeling the vertices of G according to their order in cd. We
call G(cd) the canonical form of G, denoted as Canon(G). The list of sorted
open neighborhood label lists of each vertex of Canon(G) starting from 0 until
n − 1, is the certi�cate of G denoted as Cert(G). In case of vertices with zero
degree, open neighborhood lists are empty. The routine of computing Cert(G)
is described in 6.

Corollary 1.1.1. Given two simple graphs G,H, if their certi�cates match
then they are isomorphic.

Proof. By 1.13, since their certi�cates match their canonical forms are the same,
thus they are also isomorphic.
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De�nition 1.14. A bipartite graph is a graph whose vertices can be divided
into two disjoint and independent sets U1 and U2, that is, every edge connects a
vertex in U1 to one in U2. The routine which checks whether a simple connected
graph is bipartite is described in 4.

De�nition 1.15. An edge subdivision is the insertion of a new vertex vz in
the middle of an existing edge e = vxvy accompanied by the joining of the100

original edge endpoints with the new vertex, thus replacing edge e with two
edges e1 = vxvz and e2 = vzvy.

De�nition 1.16. Given a simple graph G = (V,E) on n vertices, m edges,
we call the subdivision graph S(G) of G, the graph obtained by sequentially
applying edge subdivisions 1.15 to all edges of G. Apparently S(G) contains
n+m vertices and 2m edges. The routine of computing S(G) is described in 5.

Corollary 1.1.2. Given a simple graph G = (V,E) on n vertices, m edges, its
subdivision graph S(G) is a bipartite graph.

Proof. Follows from 1.14,1.16 , since for S(G) the newly inserted m vertices and
existing n vertices from G form two disjoint independent sets, and all newly
derived edges share their endpoints between these two sets.

De�nition 1.17. Given a simple connected graph G = (V,E), a surjective
coloring c of G and a vertex u ∈ V , we call schema SC(u, c) of vertex u on c,
the output of the routine described in 3. The output is a list of sorted color lists
which represent all levels of a Breadth First Traversal of graph G (each list is
one level), with vertex u as root (level 1). Each level contains the colors of its
vertices stemming from coloring c.

De�nition 1.18. Given a simple connected graph G = (V,E) and a surjective
coloring c of G, let G[SC(u, c, l, l+ 1)] be the subgraph induced by the vertices
of levels l, l+1 of the schema SC(u, c) of a vertex u ∈ V . We implicitly reference120

the vertices of each level since schema is a Breadth First Traversal routine, but
doesn't contain vertices in its structure 3.

De�nition 1.19. Given two simple graphs G,H, their union will be a graph
U with set of vertices VG ∪ VH and set of edges EG ∪ EH .

2. Classi�cation of symmetries

In this section we introduce a novel algorithm called Symmetry Classi�cation
(to be abbreviated SYM ), which discovers the automorphism partition of a given
simple connected graph.

2.1. Symmetry Classi�cation Algorithm

A canonical stable coloring cstart of a simple connected graph G = (V,E)
and a surjection from each vertex u of G to a ranked integer value of the cer-
ti�cate of its open neighborhood's subgraph Cert(G[N(u)]), are given as input.
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Ranking is based on a given comparator. Equal ranked values imply isomor-
phism. We assume that certi�cates have been generated by the same algorithm
so that any comparison is relevant. Symmetry Classi�cation 1 consists of two
chained partition constructions and a �nal call to Canonical Color Re�nement
subroutine:

1. Construct a partition πseed = {B1, ..., Bl} such that for each vertex u, v
u ∼πseed

v ⇐⇒ cstart(u) = cstart(v) ∧ G[N(u)] ∼= G[N(v)]. Blocks of πseed

are ordered, based �rst on their color value and then on their certi�cate140

ranking (numerical ordering). The induced coloring cseed is named seed
coloring.

2. Construct a partition πschema = {B1, ..., Bk} such that for each vertex u, v
u ∼πschema

v ⇐⇒ SC(u, cseed) = SC(u, cseed). Blocks of πschema are ordered,
based on their schema value (list of [list of lists] comparator). The induced
coloring cschema is named schema coloring.

3. Invoke CCR subroutine with cschema as input and obtain a stable coloring
named symmetry coloring.

Algorithm 1 Symmetry Classi�cation (SYM)
Input:A simple connected Graph G on n vertices, m edges, a canonical stable coloring cs of G and a surjection
from each vertex u of G to a ranked value of the certi�cate of its open neighborhood's subgraph Cert(G[N(u)]).
Output: A canonical stable coloring of G (symmetry coloring), which represents the automorphism partition of G.

1: function SYM(G, cs, CertMap)

2: schemaMultiMap ← MultiMap{} ▷ The schema multimap

3: coloringMap ← Map{} ▷ The color map of vertices

4: color ← 0
5: for vertices in cs.colorClasses do ▷ Classify based on color from cs
6: if vertices.size == 1 then ▷ Trivial block
7: coloringMap(vertices[0]) ← color ▷ Trivial block inherited from input coloring

8: color ← color + 1
9: continue

10: end if

11: vertices.sortWith(v1, v2 → CertMap[v1] ≥ CertMap[v2]) ▷ Sort by certi�cate ranked value

12: coloringMap[vertices[0]] ← color

13: for i in 1 until vertices.length do

14: if CertMap[vertices[i]] > CertMap[vertices[i − 1]] then

15: color ← color + 1 ▷ Di�erent subgraph detected, new color assigned

16: coloringMap[vertices[i]] ← color

17: else

18: coloringMap[vertices[i]] ← color

19: end if

20: end for

21: color ← color + 1
22: end for ▷ Seed coloring calculated

23: for vertex in G.vertices do ▷ Compute Schema 3 of vertex based on seed coloring

24: schemaOfV ertex ← SCHEMA(G, coloringMap, vertex)

25: schemaMultiMap[schemaOfV ertex] ← vertex ▷ Add entry to multimap

26: end for

27: sortedSchemata ← sort(schemaMultiMap.keys) ▷ Sort schemata from multimap keys

28: coloringMap.clear() ▷ Reset coloring map for schema partition

29: color ← 0 ▷ Reset color pointer

30: for schema in sortedSchemata do ▷ Construct schema partition based on schema ordering

31: vertices ← schemaMap[schema] ▷ Get all vertices with this schema value

32: for vertex in vertices do

33: coloringMap[vertex] ← color

34: end for

35: color ← color + 1
36: end for ▷ Schema coloring calculated

37: return CCR(G, coloringMap) ▷ Apply CCR on schema coloring to obtain symmetry coloring

38: end function

Lemma 2.1. Given a simple connected graph G = (V,E) and an initial canon-
ical stable coloring c of G, the symmetry coloring cs induced by application of
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Symmetry Classi�cation 1 on c is stable and canonical.

Proof. Seed coloring 1 is canonical, because it (potentially) re�nes an initial
canonical coloring and every isomorphism maps vertices to vertices of the same
open neighborhood subgraph. Likewise schema coloring 1 is also canonical
because its is derived from seed coloring and by de�nition of Schema 3, as a
Breadth First Traversal method, every isomorphism maps vertices to vertices of
the same schema. Since schema coloring is canonical, application of Canonical
Color Re�nement on it, yields also a canonical stable coloring 1.10, which in
this context is the symmetry coloring.

Proposition 2. Given a simple connected graph G = (V,E) and an initial160

canonical stable coloring c ofG, the symmetry coloring cs induced by application
of Symmetry Classi�cation method 1 on c, classi�es vertices as such:

1. By the isomorphism of their open neighborhood subgraphs.

2. By the number of neighbors that have the same open neighborhood sub-
graph.

3. By their schema value.

4. By the number of neighbors that have the same schema value.

Proof. The construction of seed coloring is a re�nement of canonical stable
coloring c, by further classifying vertices within classes of c which have the same
open neighborhood subgraph. The construction of schema coloring classi�es
vertices based on their schema value on seed coloring so conditions (1) and(3)
of the corollary are met. Subsequent invocation of Canonical Color Re�nement
with schema coloring as starting coloring, leads to a stable coloring 1.10, which
from 1.5 satis�es all four the conditions of the corollary.

Symmetry coloring of graph → [[0, 1, 2, 3, 4, 5], [9, 10, 11, 12, 13, 14], [8], [6], [7]]

Schema of [0, 1, 2, 3, 4, 5] → [[1], [1, 1, 4], [1, 1, 1, 5], [3], [2, 2, 2, 2, 2, 2]]

Schema of [9, 10, 11, 12, 13, 14] → [[2], [2, 2, 3], [2, 2, 2, 5], [4], [1, 1, 1, 1, 1, 1]]

Schema of [8] → [[3], [2, 2, 2, 2, 2, 2, 5], [4], [1, 1, 1, 1, 1, 1]]

Schema of [6] → [[4], [1, 1, 1, 1, 1, 1, 5], [3], [2, 2, 2, 2, 2, 2]]

Schema of [7] → [[5], [3, 4], [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2]]

Figure 1: Schemata of all vertices on symmetry coloring
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Lemma 2.2. Given a simple connected graph G = (V,E) and a symmetry
coloring cs, it holds that G[SC(u, cs, l, l + 1)]] ∼= G[SC(v, cs, l, l + 1)]], ∀l ∈
{1, .., |SC(v, cs)| − 1}, ∀u, v in the same block of cs.

Proof. Let u, v any vertices of the same block of cs. For level 1 (root) and level 2
of SC(u, cs) and SC(v, cs), from 2 we have G[SC(u, cs, 1, 2)] ∼= G[SC(v, cs, 1, 2)]
(1), because level 2 is the open neighborhood of u and v. If level count of180

schemata is 2 then by (1) lemma holds. Let N(t, l1, l2) denote the open neigh-
borhood of vertex t in levels l1, l2. For any vertices a, b of level 2 of same
color c across both SC(u, cs), SC(v, cs), by 2 we have G[N(a)] ∼= G[N(b)] (2).
Let's assume that level count ≥ 3 and G[SC(u, cs, 2, 3)] ≇ G[SC(v, cs, 2, 3)] (3).
Condition (1) implies G[N(a, 1, 2)] ∼= G[N(b, 1, 2)] (4), because both a, b are
connected to the same set of colors in level 2, thus in level 3 also. Since levels
1 and 3 have no adjacent vertices the subgraphs G[N(a, 2, 3)], G[N(b, 2, 3)] be-
cause of (4) must be isomorphic in order to satisfy (2). But because of (3) there
must exist some vertices z, x of same color in level 2 of SC(u, cs), SC(v, cs) re-
spectively that G[N(z, 2, 3)] ≇ G[N(x, 2, 3)] which is contradicting. Same for all
remaining pairs of levels {(3, 4), ..(|SC(r, cs)| − 1, |SC(r, cs)|)}, r ∈ u, v of both
schemata.

Theorem 2.3. Given a simple connected graph G = (V,E) and an initial
canonical stable coloring c of G, the symmetry coloring cs induced by appli-
cation of Symmetry Classi�cation method 1 on c is the automorphism partition
of G.

Proof. By 2.2 for any two vertices u, v of the same block Bx we have that
G[SC(u, cs, 1, 2)] ∼= G[SC(v, cs, 1, 2)] (1). If levels are 2 then by (1) the fam-
ily of subgraphs {G[V \ u]}u∈Bx

are all isomorphic. Let's assume that level
count ≥ 3 and that for the union 1.19 of levels (1, 2) and (2, 3) it holds that200 ∪

2

l=1
G[SC(u, cs, l, l + 1)] ≇

∪
2

l=1
G[SC(v, cs, l, l + 1)] (2). Condition (2) implies

that for some vertices a, b of the same color c in level 2 it is G[N(a)] ≇ G[N(b)]
which is contradicting because of 2. If we continue taking the union of all sub-
sequent levels we end up again with the family of subgraphs {G[V \ u]}u∈Bx

being all isomorphic. The last step is to prove that vertices of the same block
are not pseudo-similar 1.2 which is a direct consequence from the fact that they
have the same schema 2.
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Symmetry coloring of graph → [[0, 7, 8, 19, 20, 31, 32, 39], [9, 18, 21, 30], [1, 6, 33, 38], [10, 29],

[12, 15, 24, 27], [3, 4, 13, 14, 25, 26, 35, 36], [11, 28], [17, 22], [16, 23], [2, 5, 34, 37]]

Figure 2: Schemata (Breadth First Traversal) of symmetrical vertices 18 and 30 (second block
of symmetry coloring) of the same graph depicting the isomorphism of their neighboring levels
induced subgraphs. By taking the union of all pairs of consecutive levels induced subgraphs
we end up with 2 isomorphic graphs G[V \ 18], G[V \ 30].

Lemma 2.4. Given a simple connected graph G = (V,E) on n vertices, m
edges, Symmetry Classi�cation Algorithm 1 takes O(n2 + nm log n) time.

Proof. Sorting all vertices by the ranked value of the certi�cate of their open
neighborhood subgraphs requires O(n log n) time. Constructing the seed color-
ing requires O(n) time. Computing schemata of all vertices requires O(n(n+m))
time. Populating the multimap with schemata for all vertices as keys requires
O(nm) time, due to O(m) time for hash computation. Sorting all schemata can
take up to O(nm log n) since each schema has O(m) size. Retrieving all ver-
tices by their schema from multimap will require O(nm). Building the schema
coloring takes O(n). Finally executing Canonical Color Re�nement requires
O((n+m) log n) 1.1. So overall complexity is O(n log n)+O(n)+O(n)+O(n(n+
m))+O(nm log n)+O(nm)+O(nm)+O((n+m) log n) = O(n2+nm log n).

3. The Master Algorithm220

The Master Algorithm 2 accepts a simple connected graph G = (V,E) on n
vertices and m edges as input, and calculates the certi�cate of the subdivision
graph S(G) 1.1.2, or of G if it is already bipartite. The reduction to bipartite
graph isomorphism is justi�ed by the fact that ranking of certi�cates of open
neighborhood subgraphs in a bipartite graph is computed in O(m) time, since
every subgraph consists of disconnected vertices with zero edges. Therefore their
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ranked value is equal to the degree of each vertex. The construction of seed col-
oring in 1 for the case of reduction to bipartite could be omitted, because the
degree invariant is already covered by CCR. We choose to include it for clar-
ity, because it doesn't a�ect the complexity of the algorithm. Since bipartite
graph isomorphism is isomorphism complete [3] the only penalty involved is an
increase in the number of vertices and edges up to n + m and 2m, in case G
is not already bipartite. The Master Algorithm starts by applying a CCR on
the bipartite graph in order to obtain a canonical stable coloring ck. If ck is
discrete the algorithm returns the certi�cate of the reduced (or not) graph and
halts. In any other case it iteratively applies the sequence Symmetry Classi�-
cation-Individualization-CCR until a discrete coloring is attained. The choice
of which vertex to individualize is performed by selecting any vertex from the
minimum ordered color class of the canonical automorphism partition derived
by Symmetry Classi�cation that either isn't trivial or that is trivial but not240

already trivial in the starting (individualized) coloring of each round.

Algorithm 2 Master Algorithm (MA)
Input:A simple connected graph G on n vertices, m edges.
Output: Cert(S(G)) or Cert(G), if G is bipartite.

1: function MA(G)

2: g ← G ▷ The graph to process. Initially set to G

3: if !ISBIPARTITE(G, 0) then ▷ Check if G is bipartite 4

4: g ← SUBDIV ISION(G) ▷ Compute subdivision graph S(G) 5

5: end if

6: certRanking ← Map{} ▷ vertices to ranked values of Open Neighborhood Subgraph surjection

7: for vertex in g do

8: certRanking[vertex] ← vertex.degree ▷ Bipartite graph open neighborhood subgraphs are trivial

9: end for

10: cx ← CCR(g, cunit) ▷ Run CCR with unit coloring

11: while true do
12: if cx is discrete then ▷ If coloring is discrete break from loop

13: break

14: end if

15: autPartition ← SY M(g, cx, certRanking) ▷ Calculate automorphism partition on current coloring 1

16: vind ← −1 ▷ Vertex for individualization variable

17: for colorClass in autPartition.colorClasses do ▷ Avoid individualizing already trivial vertex of cx
18: if !colorClass.isTrivial
19: || (colorClass.isTrivial && !cx.colorClasses[cx(colorClass[0])].isTrivial) then

20: vind ← colorClass[0] ▷ Select �rst vertex from color class

21: break ▷ break from loop

22: end if

23: end for

24: cx ← Ind(vind, cx) ▷ Compute individualized coloring of selected vertex vind
25: end while

26: return CERTIFICATE(g, cx) ▷ Return certi�cate 6

27: end function

Theorem 3.1. Given a simple connected graph G = (V,E), the output obtained
by applying Master Algorithm 2 on G is an invariant to test isomorphism.

Proof. Since bipartite graph isomorphism is isomorphism complete [3], an in-
variant for subdivision graph S(G) 1.1.2 is also valid for G. If Canonical Color
Re�nement, when initially invoked, induces a discrete coloring, then this is
canonical 1.10. In any other case for each round we select any vertex from the
minimum ordered class of symmetries that either isn't trivial (1) or is trivial
but not already trivial in the current coloring (2). Symmetry Classi�cation gen-
erates a canonical automorphism partition πaut 2.1 2.3 which implies that both
(1) and (2) will be deterministically derived, because πaut will order all distin-



Graph Isomorphism in Polynomial time

guished vertices also in a canonical way. Invoking Symmetry Classi�cation in
each round on an individualized coloring, even if its de�nition implies a canon-
ical coloring of G starting from unit 1, produces the automorphism partition of
a graph Gind which is derived from G, by arti�cially making the individualized
vertex uind distinct (e.g. connecting a complete graph on n vertices to uind),
thus its output is valid for our canonicity context. Since in all cases we obtain
a canonical discrete coloring, from 1.1.1 we conclude that Master Algorithm
generates a valid invariant to test isomorphism.

Theorem 3.2. Given a simple connected graph G = (V,E) on n vertices, m260

edges, Master Algorithm 2 takes O(n3 + n2m log(n + m) + m2n log(n + m) +
m3 log(n+m)) time.

Proof. Checking if graph is bipartite requires O(n+m) time. Computing sub-
division graph S(G) requires O(n+3m) time. Since subdivision graph S(G) has
n+m vertices and 2m edges we consider that all calculations are performed on
S(G). Calculating ranking of open neighborhood graphs of all vertices requires
at most O(n + 3m). Invoking CCR requires at most O((n + 3m) log(n + m))
1.1. Symmetry Classi�cation, individualization selection and CCR (individual-
ized colorings) can be invoked at most n + m − 1 times which takes O((n +
m − 1)((n + m)2 + (n + m)2m log(n + m)) 2.4 + O((n + m − 1)(n + m)) +
O((n+m− 1)(n+ 3m) log(n+m)). Computing the certi�cate of discrete col-
oring takes O(n + 3m). So in total we have O(n + m) + O(n + 3m) + O(n +
3m) +O(n+3m) +O((n+m− 1)(n+m)) +O((n+m)(n+3m) log(n+m)) +
O((n+m− 1)((n+m)2 + (n+m)2m log(n+m)) = O(n3 + n2m log(n+m) +
m2n log(n+m) +m3 log(n+m)).

Theorem 3.3. Graph Isomorphism (GI) problem lies in P.

Proof. Follows from 3.1, 3.2 and because connected graph isomorphism is iso-
morphism complete [3].

4. Conclusion

We have presented a new algorithm that computes an invariant to test graph280

isomorphism in polynomial time. The main new contribution was the introduc-
tion of Symmetry Classi�cation algorithm which discovers the automorphism
partition of the graph. Future work may include deeper analysis of the com-
plexity, regarding various classes of graphs and comparison with other practical
isomorphism algorithms [4]. In the same direction it is worth examining whether
the structural results of this paper could provide a path for improving e�ciency
of Babai's Quasipolynomial Algorithm [5].
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Appendices

A. Listings of subroutines used by the main algorithms

Algorithm 3 Compute Schema of a vertex on a surjective coloring
Input:A simple connected graph G, a surjective coloring cx of G and a vertex u from a block of cx.
Output: A list of sorted lists representing a Breadth First Traversal of G with u as root. Each level list contains
the colors of its vertices stemming from cx.

1: function schema(G, cx, u)

2: schema ← List{} ▷ A jagged list containing the schema of the color class of u

3: visitedV ertices ← Set{} ▷ Keep track of visited vertices

4: bftQueue ← Queue{} ▷ Queue to perform the Breadth First Traversal

5: visitedV ertices.add(u) ▷ Initialize structures with u

6: bftQueue.add()u)

7: while bftQueue.isNotEmpty do

8: levelSize ← bftQueue.size ▷ Size of the current level

9: levelColorList ← List{} ▷ List that saves the current level

10: while levelSize ̸= 0 do

11: vertex ← bftQueue.pop()

12: levelColorList.add(cx(vertex)) ▷ Map vertex to its color from cx

13: for neighbor in neighborhood(G, vertex) do

14: if !visitedV ertices.contains(neighbor) then

15: bftQueue.add(neighbor)

16: visitedV ertices.add(neighbor)

17: end if

18: end for

19: levelSize ← levelSize − 1
20: end while

21: schema.add(sort(levelColorList)) ▷ Sort color list and add new level

22: end while

23: return schema
24: end function

Algorithm 4 Check if graph is bipartite
Input:A simple connected graph G on n vertices, m edges and the root vertex to start.
Output: A decision whether G is bipartite.

1: function isBipartite(G, root)

2: edgeCount ← G.edges.length

3: vertexCount ← G.vertices.length

4: if 4 ∗ edgeCount > ( vertexCount
2

)2 then ▷ Check edge, vertex condition if G is bipartite

5: return false

6: end if

7: colorMap ← Map{} ▷ Color map of 0-1 values

8: bftQueue ← Queue{} ▷ Queue to perform the Breadth First Traversal

9: bftQueue.add(root) ▷ Initialize structures

10: colorMap[root] ← 0

11: while bftQueue.isNotEmpty do

12: vertex ← bftQueue.pop()

13: color ← colorMap[vertex]

14: for neighbor in neighborhood(G, vertex) do

15: if color == colorMap[neighbor] then ▷ If colors match graph is not bipartite

16: return false

17: else

18: colorMap[neighbor] ← |color − 1| ▷ Assign di�erent color

19: bftQueue.add(neighbor)

20: end if

21: end for

22: end while

23: return true
24: end function
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Algorithm 5 Compute Subdivision graph
Input:A simple connected graph G on n vertices, m edges and the root vertex to start.
Output: The subdivision graph S(G).

1: function subdivision(G)

2: subdivision ← SimpleGraph{} ▷ The empty subdivision graph

3: visitedEdges ← Set{} ▷ Keep track of visited edges of G

4: for vertex in G.vertices do

5: if !subdivision.containsV ertex(vertex) then

6: subdivision.addV ertex(vertex)

7: end if

8: for neighbor in neighborhood(G, vertex) do

9: if !subdivision.containsV ertex(neighbor) then

10: subdivision.addV ertex(neighbor)

11: end if

12: if !visited.contains(Edge(vertex, neighbor)) then

13: subdivisionvertex ← V ertex{} ▷ New vertex to be added in subdivision graph

14: subdivision.addV ertex(subdivisionV ertex) ▷ Add new vertex

15: subdivision.addEdge(Edge(vertex, subdivisionV ertex)) ▷ Create two new edges

16: subdivision.addEdge(Edge(subdivisionV ertex, neighbor))

17: visited.add(Edge(vertex, neighbor)) ▷ Mark edge of G as visited

18: end if

19: end for

20: end for

21: return subdivision ▷ Return subdivision graph on n + m vertices, 2m edges

22: end function

Algorithm 6 Compute Certi�cate of Graph
Input:A simple graph G on n vertices, m edges and a canonical discrete coloring cd.
Output: The certi�cate Cert(G).

1: function certificate(G, cd)

2: gCopy ← SimpleGraph{} ▷ The empty copy of graph G

3: for vertex in G.vertices do

4: gCopy.addV ertex(cd(vertex)) ▷ Add relabeled vertices based on cd
5: end for

6: for vertex in G.vertices do

7: for neighbor in neighborhood(G, vertex) do

8: gCopy.addEdge(cd(vertex), cd(neighbor)) ▷ Add relabeled edge endpoints based on cd
9: end for

10: end for

11: certificate ← List{} ▷ The list of sorted open neighborhood lists

12: for vertex in gCopy.vertices do ▷ Collection starts from vertex 0 until n − 1

13: neighbors ← sort(neighborhood(gCopy, vertex)) ▷ sorted open neighborhood labels list of vertex

14: certificate.add(neighbors) ▷ Add list to certi�cate

15: end for

16: return certificate ▷ Return certi�cate of G

17: end function

B. Application of Master Algorithm in selected Graphs

Below we showcase the application of Master Algorithm for some example
graphs. The comparators used for sorting operations adhere to what is described
in 1.2. For brevity we omit including the computation of subdivision graphs
and the ranking of certi�cates for open neighborhood subgraphs. We use abbre-
viations for Canonical Color Re�nement (CCR) and Symmetry Classi�cation
(SYM) subroutines. Canonical Color Re�nement subroutine is implemented as
de�ned in [1].

B.1. Miyazaki Graphs

Miyazaki [6] graphs are regular and form special cases of Cai�Fürer�Immerman
construction based on Fürer gadgets[7].300
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Figure 3: Miyazaki M1 graph G

Listing 1: Application of Master Algorithm on Miyazaki graph G

[0]. Subdivision of input graph computed.

[0]. Ranking of open neighborhood subgraphs computed.

[1]. CCR→[[40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,

64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,

89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]]

[1]. SYM→[[42, 58, 60, 82], [41, 57, 59, 62, 80, 81, 85, 94], [40, 44, 54, 56, 61, 83, 95, 99], [63, 78,

79, 84], [43, 55, 65, 93], [49, 51, 68, 70, 72, 74, 88, 91], [64, 92], [48, 69, 89, 97], [66, 67, 75,

90], [0, 7, 8, 19, 20, 31, 32, 39], [9, 18, 21, 30], [1, 6, 33, 38], [10, 29], [12, 15, 24, 27], [3,

4, 13, 14, 25, 26, 35, 36], [11, 28], [17, 22], [76, 86], [16, 23], [46, 52, 77, 87], [2, 5, 34,

37], [45, 47, 50, 53, 71, 73, 96, 98]]

[1]. Individualize 42 for next round.

[2]. CCR→[[40, 95], [0, 32], [42], [19, 7, 39, 31], [82, 58], [1, 33], [21], [85, 41], [84], [22], [86],

[23], [87, 46], [2, 34], [96, 71, 45, 47], [60], [20, 8], [59, 62], [44, 61], [9], [63], [3, 35, 25,

13], [48, 97, 69, 89], [4, 36, 26, 14], [24, 12], [66, 67], [49, 68, 70, 88], [11], [64], [10], [65,

43], [50, 98, 51, 53, 72, 73, 74, 91], [5, 37, 27, 15], [52, 90, 75, 77], [16, 28], [76, 92], [17,

29], [55, 93, 78, 79], [18, 6, 38, 30], [80, 81, 83, 99, 54, 56, 57, 94]]320

[2]. SYM→[[40, 95], [0, 32], [42], [7, 19, 31, 39], [58, 82], [1, 33], [21], [41, 85], [84], [22], [86],

[23], [46, 87], [2, 34], [45, 47, 71, 96], [60], [8, 20], [59, 62], [44, 61], [9], [63], [3, 13, 25,

35], [48, 69, 89, 97], [4, 14, 26, 36], [12, 24], [66, 67], [49, 68, 70, 88], [11], [64], [10], [43,

65], [51, 72, 74, 91], [50, 53, 73, 98], [15, 27], [5, 37], [75, 90], [52, 77], [16], [76], [17],

[78, 79], [55, 93], [18, 30], [6, 38], [57, 80, 81, 94], [54, 56, 83, 99], [28], [92], [29]]

[2]. Individualize 40 for next round.

[3]. CCR→[[95] , [0], [42], [19, 7, 39, 31], [82, 58], [1], [21], [41], [84], [22], [86], [23], [87, 46],

[2, 34], [96, 71, 45, 47], [60], [20], [62], [44], [9], [63], [3, 35, 25, 13], [48, 97, 69, 89], [4,

36, 26, 14], [24, 12], [66, 67], [49, 68, 70, 88], [11], [64], [10], [43], [50, 98, 51, 53, 72, 73,

74, 91], [5, 37, 27, 15], [52, 90, 75, 77], [16, 28], [76, 92], [17, 29], [55, 93, 78, 79], [18, 6,

38, 30], [80, 81, 83, 99, 54, 56, 57, 94], [40], [32], [33], [61], [65], [8], [59], [85]]

[3]. SYM→[[95] , [0], [42], [7, 19, 31, 39], [58, 82], [1], [21], [41], [84], [22], [86], [23], [46, 87],

[2, 34], [45, 47, 71, 96], [60], [20], [62], [44], [9], [63], [3, 13, 25, 35], [48, 69, 89, 97], [4,

14, 26, 36], [12, 24], [66, 67], [49, 68, 70, 88], [11], [64], [10], [43], [51, 72, 74, 91], [50, 53,

73, 98], [15, 27], [5, 37], [75, 90], [52, 77], [16], [76], [17], [78, 79], [55, 93], [18, 30], [6,

38], [57, 80, 81, 94], [54, 56, 83, 99], [40], [32], [33], [61], [65], [8], [59], [85], [28], [92],

[29]]

[3]. Individualize 7 for next round.

340

[4]. CCR→[[95] , [0], [42], [19], [58], [1], [21], [41], [84], [22], [86], [23], [87, 46], [2, 34], [96, 71,

45, 47], [60], [20], [62], [44], [9], [63], [3, 35, 25, 13], [48, 97, 69, 89], [4, 36, 26, 14], [24,

12], [66, 67], [49, 68, 70, 88], [11], [64], [10], [43], [51, 72, 74, 91], [27, 15], [90, 75], [28],

[92], [29], [55], [6], [54], [40], [32], [33], [61], [65], [8], [59], [85], [7], [82], [80], [38],

[93], [99], [39], [83], [31], [56], [94], [30], [79], [81], [17], [76], [78], [18], [57], [16], [52,

77], [5, 37], [50, 98, 53, 73]]

[4]. SYM→[[95] , [0], [42], [19], [58], [1], [21], [41], [84], [22], [86], [23], [46, 87], [2, 34], [45, 47,

71, 96], [60], [20], [62], [44], [9], [63], [3, 13, 25, 35], [48, 69, 89, 97], [4, 14, 26, 36], [12,

24], [66, 67], [49, 68, 70, 88], [11], [64], [10], [43], [51, 72, 74, 91], [15, 27], [75, 90], [28],

[92], [29], [55], [6], [54], [40], [32], [33], [61], [65], [8], [59], [85], [7], [82], [80], [38],

[93], [99], [39], [83], [31], [56], [94], [30], [79], [81], [17], [76], [78], [18], [57], [16], [52,

77], [5, 37], [50, 53, 73, 98]]

[4]. Individualize 46 for next round.

[5]. CCR→[[95] , [0], [42], [19], [58], [1], [21], [41], [84], [22], [86], [23], [87], [2], [45, 47], [60],

[20], [62], [44], [9], [63], [3, 25], [48, 89], [4, 26], [24, 12], [66, 67], [49, 88], [11], [64],

[10], [43], [51, 74], [27, 15], [90, 75], [28], [92], [29], [55], [6], [54], [40], [32], [33], [61],

[65], [8], [59], [85], [7], [82], [80], [38], [93], [99], [39], [83], [31], [56], [94], [30], [79],

[81], [17], [76], [78], [18], [57], [16], [52], [5], [50, 53], [46], [34], [96, 71], [35, 13], [97,

69], [68, 70], [36, 14], [72, 91], [98, 73], [37], [77]]360

[5]. SYM→[[95] , [0], [42], [19], [58], [1], [21], [41], [84], [22], [86], [23], [87], [2], [45, 47], [60],

[20], [62], [44], [9], [63], [3, 25], [48, 89], [4, 26], [12, 24], [66, 67], [49, 88], [11], [64],

[10], [43], [51, 74], [15, 27], [75, 90], [28], [92], [29], [55], [6], [54], [40], [32], [33], [61],

[65], [8], [59], [85], [7], [82], [80], [38], [93], [99], [39], [83], [31], [56], [94], [30], [79],
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[81], [17], [76], [78], [18], [57], [16], [52], [5], [50, 53], [46], [34], [71, 96], [13, 35], [69,

97], [68, 70], [14, 36], [72, 91], [73, 98], [37], [77]]

[5]. Individualize 45 for next round.

Calculation completed after 5 rounds.

Discrete coloring→[[95] , [0], [42], [19], [58], [1], [21], [41], [84], [22], [86], [23], [87], [2], [47],

[60], [20], [62], [44], [9], [63], [3], [48], [4], [12], [66], [49], [11], [64], [10], [43], [51],

[27], [90], [28], [92], [29], [55], [6], [54], [40], [32], [33], [61], [65], [8], [59], [85], [7],

[82], [80], [38], [93], [99], [39], [83], [31], [56], [94], [30], [79], [81], [17], [76], [78], [18],

[57], [16], [52], [5], [50], [46], [34], [96], [35], [97], [68], [36], [91], [98], [37], [77], [45],

[25], [89], [88], [24], [67], [70], [13], [71], [69], [14], [72], [73], [15], [74], [75], [26],

[53]]

Certificate→[[41, 42], [2, 7, 40], [1, 41], [49, 55, 61], [48, 54], [18, 30, 40], [7, 8, 47], [1, 6], [6,

9], [8, 10, 20], [9, 11], [10, 12, 71], [11, 72], [14, 71, 82], [13, 83], [16, 45], [15, 17, 18],

[16, 19], [5, 16], [17, 20, 46], [9, 19], [22, 26, 82], [21, 23], [22, 31, 70], [25, 26, 76], [24,380

27], [21, 24], [25, 28, 87], [27, 29], [28, 30, 44], [5, 29], [23, 32], [31, 33, 78], [32, 34], [33,

35, 97], [34, 36], [35, 37, 52], [36, 38], [37, 39, 57], [38, 48], [1, 5], [0, 2, 47], [0, 43, 44],

[42, 45], [29, 42], [15, 43, 46], [19, 45], [6, 41], [4, 39, 66], [3, 56], [54, 65], [52, 53, 55],

[36, 51], [51, 54], [4, 50, 53], [3, 51], [49, 57, 58], [38, 56], [56, 59], [58, 60, 61], [59, 62],

[3, 59], [60, 63, 64], [62, 67], [62, 65], [50, 64, 66], [48, 65], [63, 68, 81], [67, 69], [68, 70,

99], [23, 69], [11, 13], [12, 73, 90], [72, 74], [73, 75, 76], [74, 77], [24, 74], [75, 78, 79], [32,

77], [77, 80], [79, 81, 94], [67, 80], [13, 21], [14, 84, 85], [83, 98], [83, 86], [85, 87, 88],

[27, 86], [86, 89], [88, 90, 91], [72, 89], [89, 92], [91, 93, 94], [92, 95], [80, 92], [93, 96, 97],

[95, 98], [34, 95], [84, 96, 99], [69, 98]]

B.2. Strongly Regular Graphs

A strongly regular graph G is a simple graph de�ned by the tuple (n, d, l,m)
where n is the number of vertices, d is the number of neighbors for each u ∈ V ,
l is the number of common neighbors for each pair of adjacent vertices and m
the number of common neighbors for each pair of non-adjacent vertices.

Figure 4: Strongly regular graph G of the family (16,6,2,2).

Listing 2: Application of Master Algorithm on Strongly regular graph G

[0]. Subdivision of input graph computed.

[0]. Ranking of open neighborhood subgraphs computed.

[1]. CCR→[[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,400

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], [0,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]]

[1]. SYM→[[16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,

40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63], [0,

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]]

[1]. Individualize 16 for next round.

[2]. CCR→[[17, 22], [0, 1], [16], [8, 11], [60, 61, 62, 63], [2, 3], [5, 6], [19, 20, 23, 24], [42, 43, 45,

46], [12, 13, 14, 15], [4, 7, 9, 10], [18, 21, 25, 26], [48, 49, 38, 54, 39, 55, 56, 57], [36, 40,

41, 44], [51, 52, 58, 59], [50, 37, 53, 47], [27], [32, 34, 28, 30], [33, 35, 29, 31]]

[2]. SYM→[[17, 22], [0, 1], [16], [8, 11], [60, 63], [61, 62], [2, 3], [5, 6], [19, 20, 23, 24], [42, 43,

45, 46], [12, 13, 14, 15], [4, 7, 9, 10], [18, 21, 25, 26], [38, 49, 54, 57], [39, 48, 55, 56], [36,

40, 41, 44], [51, 52, 58, 59], [37, 47, 50, 53], [27], [28, 30, 32, 34], [29, 31, 33, 35]]
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[2]. Individualize 17 for next round.

[3]. CCR→[[22] , [0], [16], [8, 11], [60, 61, 62, 63], [3], [5, 6], [19, 20], [42, 43, 45, 46], [12, 13, 14,

15], [4, 9], [18, 21], [38, 54, 39, 55], [36, 41], [51, 52, 58, 59], [37, 53], [27], [32, 34], [33,

35], [17], [1], [2], [28, 30], [29, 31], [7, 10], [25, 26], [48, 49, 56, 57], [40, 44], [50, 47],

[23, 24]]

[3]. SYM→[[22] , [0], [16], [8, 11], [60, 63], [61, 62], [3], [5, 6], [19, 20], [42, 46], [43, 45], [13,420

15], [12, 14], [4, 9], [18, 21], [38, 54], [39, 55], [36, 41], [52, 58], [51, 59], [37, 53], [27],

[32, 34], [33, 35], [17], [1], [2], [28, 30], [29, 31], [7, 10], [25, 26], [49, 57], [48, 56], [40,

44], [47, 50], [23, 24]]

[3]. Individualize 8 for next round.

Calculation completed after 3 rounds.

Discrete coloring→[[22] , [0], [16], [11], [60], [3], [6], [20], [45], [12], [4], [18], [38], [36], [51],

[37], [27], [32], [33], [17], [1], [2], [30], [29], [10], [26], [57], [44], [50], [24], [8], [58],

[53], [35], [31], [47], [7], [28], [25], [48], [40], [5], [19], [42], [41], [23], [9], [21], [55],

[34], [15], [61], [63], [46], [52], [59], [43], [14], [56], [54], [62], [13], [39], [49]]

Certificate→[[20, 21], [2, 7, 11, 19, 42, 47], [1, 20], [31, 32, 33, 34, 35, 55], [9, 61], [16, 17, 18, 19,

33, 49], [7, 8, 13, 27, 29, 53], [1, 6], [6, 9], [4, 8, 12, 31, 39, 51], [11, 12, 13, 15, 17, 62],

[1, 10], [9, 10], [6, 10], [30, 61], [10, 30], [5, 21], [5, 10], [5, 30], [1, 5], [0, 2, 25, 29, 38,

45], [0, 16, 22, 23, 34, 37], [21, 24], [21, 30], [22, 25, 26, 27, 28, 58], [20, 24], [24, 50], [6,

24], [24, 30], [6, 20], [14, 15, 18, 23, 28, 54], [3, 9], [3, 46], [3, 5], [3, 21], [3, 36], [35, 37,

38, 39, 40, 63], [21, 36], [20, 36], [9, 36], [36, 41], [40, 42, 43, 44, 45, 56], [1, 41], [41, 61],

[41, 46], [20, 41], [32, 44, 47, 48, 49, 59], [1, 46], [46, 50], [5, 46], [26, 48, 51, 52, 53, 55],

[9, 50], [50, 57], [6, 50], [30, 57], [3, 50], [41, 57], [52, 54, 56, 58, 59, 60], [24, 57], [46,

57], [57, 61], [4, 14, 43, 60, 62, 63], [10, 61], [36, 61]]440

B.3. Frucht Graph

A Frucht Graph [8] has no symmetric vertices, thus possesses only the trivial
automorphism (identity or rigid graph).

Figure 5: Frucht graph G

Listing 3: Application of Master Algorithm on Frucht graph G

[0]. Subdivision of input graph computed.

[0]. Ranking of open neighborhood subgraphs computed.

[1]. CCR→[[12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29], [0, 1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11]]

[1]. SYM→[[19] , [21], [20], [24], [26], [17], [15], [13], [12], [4], [3], [9], [8], [6], [2], [1], [0],

[5], [7], [25], [23], [18], [10], [29], [27], [11], [28], [14], [22], [16]]

[1]. Individualize 19 for next round.

Calculation completed after 1 rounds.

Discrete coloring→[[16] , [4], [19], [11], [29], [1], [5], [21], [22], [6], [23], [7], [13], [25], [0],

[14], [10], [2], [17], [15], [3], [20], [27], [18], [9], [26], [28], [8], [24], [12]]

Certificate→[[1, 5], [0, 2, 7], [1, 20], [4, 15, 26], [3, 16], [0, 19, 29], [7, 8, 21], [1, 6], [6, 9], [8,

10, 28], [9, 11], [10, 12, 13], [11, 14], [11, 27], [12, 15, 29], [3, 14], [4, 22, 23], [18, 19,460

23], [17, 20], [5, 17], [2, 18, 21], [6, 20], [16, 24], [16, 17], [22, 25, 26], [24, 27], [3, 24],

[13, 25, 28], [9, 27], [5, 14]]

B.4. Bipartite Graphs

Figure 6: Bipartite graph G
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Listing 4: Application of Master Algorithm on bipartite graph G

[0]. Graph ([0, 1, 2, 3, 4, 5, 6, 7, 8], [{0,5}, {0,6}, {0,7}, {1,6}, {2,7}, {3,5}, {3,6}, {3,7}, {3,8},

{4 ,8}]) already bipartite.

[0]. Ranking of open neighborhood subgraphs computed.

[1]. CCR→[[4], [5], [0], [3], [6, 7], [1, 2], [8]]

[1]. SYM→[[4], [5], [0], [3], [6, 7], [1, 2], [8]]

[1]. Individualize 6 for next round.

Calculation completed after 1 rounds.

Discrete coloring→[[4], [5], [0], [3], [7], [1], [8], [6], [2]]

Certificate→[[6], [2, 3], [1, 4, 7], [1, 4, 6, 7], [2, 3, 8], [7], [0, 3], [2, 3, 5], [4]]
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