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Abstract:

In order to strictly prove the hypotheses and conjectures in Riemann's 1859 paper "The Number of
prime Numbers not greater than x" from a purely mathematical point of view, and to strictly prove the
generalized hypotheses and conjectures, this paper studies the relationship between symmetric and
conjugate zeros of Riemann {(s) function and Riemann &(t) function by using Euler's formula,it is
found that the symmetry and conjugation of the nontrivial zeros of the Riemann {(s) function are
consistent, and the zeros of the Riemann &(t) function are symmetric and non-conjugated, it is proved
that the zeros of the Riemann &(t) function must be all real numbers,the Riemann hypothesis and the
Riemann conjecture are completely correct.
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I.Introduction

The Riemann hypothesis and the Riemann conjecture is an important and famous mathematical
problem left by Riemann in his 1859 paper "On the Number of primes not greater than x", which
is of great significance to the study of the distribution of prime numbers and is known as the
greatest unsolved mystery in mathematics. After years of hard work, | solved this problem and
rigorously proved that both the Riemann conjecture and the generalized Riemann conjecture are
completely correct. The Polignac conjecture, the twin prime conjecture, and Goldbach's conjecture
are also completely correct. It would be nice if you understood Riemann's conjecture thoroughly
from the outset of his paper "On Prime Numbers not Greater than x" and were completely
convinced of the logical reasoning behind it. You need to do this before you read my paper. The
following is about the first half of Riemann's paper "On the Number of primes not Greater than x",
which | have explained and derived, which is the premise and basis for your understanding of
Riemann's conjecture.

In 1859, Riemann was admitted to the Berlin Academy of Sciences as a corresponding member,
and in order to express his gratitude for the honor, he thought it would be best to use the
permission he received immediately to inform the Berlin Academy of a study on the density of the
distribution of prime numbers, a subject in which Gauss and Dirichlet had long been interested. It
does not seem entirely unworthy of a report of this nature.

Riemann used Euler's discovery of the following equation as his starting point:
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Where p on the left side of the equation takes all prime numbers, n on the right side takes all
natural numbers, and the function of the complex variable s represented by the two series above
(when they converge) is denoted by £(s). That is, to define a function of complex variables:

4s) = T = Tlpea o).

The two series above converge only if the real part of s is greater than 1,is also say when

Re(s)>1,then Y., %and ]_[I‘f:l(l_;p_s) converge only.if s=1,then Z;’l‘;l%:%Jr; ; 1
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for example s= -1,then it does not satisfy the condition that Re(s)>1. So you need to find an
expression forC (s) function a that is always valid for any s. In modern mathematical language,
that is, to carry out an analytical extension of a complex function {(s), and the best way to analyze
the extension is to find a more extensive and effective representation of the function such as an
integral representation or an appropriate function representation.Therefore, we want to define a
new function, this new function also {(s) to represent, this new function of the independent

variable s is not only full Re(s)>1, but also satisfy Re(s)<1(s#1), and the function image is

smooth, every point on the function image can find its tangent slope, that is, the function
everywhere can find the derivative. However, it is no longer called the Euler zeta() function, but
the Riemann zeta() function. Riemann used the integral to express the function £(s). In this paper,
I have added another complex variable to express the Riemann function £(s).

Because TI1(s) = I'(s +1) = sI'(s) , where TI(s) is the factorial function, I'(s) is the Euler gamma

function,l“(s):focO x5~1 e7Xdx, Let the variable x— nx(n€ Z*) in the integral symbol,then

® -1 - e —1,5—1= ® - -1 -
J, x)*7Te™d(nx) =n [~ e™™ n*'x*"'=n® [~ e™™ x57'=I'(s)=TI(s-1),50
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That's exactly what Riemann says in his paper, he says he's going to use
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Since n is all positive integers, we need to assign ), to e™™* and %on both sides of the equation,

S0
— _ — _ — -2 -2 _ 1 _ e X _ 1
Y e =142 e ™ —1=(l+te X+e F+re H+ ) —1= P _1_1—e—"_ex—1 ,
. £ =X — _ M(s-1) I(s-1)
The common ratio q satisfies 0<q=]e™*|<=1(0<=x- +») , —— = ———0o—,
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fooe—nxxs—l — -1
0

nS

o0 x5~ 1dx

, this is exactly what Riemann found in his paper.

,can get TI(s — DE(s)=;
Now consider the following integral

f( x)S~ 1dX

-x)5~1dx

According to modern mathematical notation, the integral should be denoted as fc( w0 Or

considering that the complex number is generally represented by z, the integral should be denoted

as [, L , Its integral path proceeds from +co to +o on the forward boundary
of a region containing the value 0 but not any other singularities of the integrable

function, where the integral path C is shown in Figure 1 below.

Figure 1
To obtain the value of this integral, we assume that there is a complex number of arbitrarily small

moduli &, and that the moduli |6| of ,|6|—0,

Because (—Z)° = eS'"=%) and In(-Z)= In(Z)+mi or In(—Z) = In(Z) — mi, so

(-2)S"YdzZ _ 8 (-Z)S~ 1dz o0 (=Z)S~1dZ 00 (-2)571dzZ_ (8 (-Z)SdZ +00 (—Z)SdZ
f f f + kf |8]-0 _f f

eZ-1 o  eZ-1 8 eZ-1 eZ-1 +o0 (eZ-1)Z 5 (eZ-1)Z

DL _ s g-misiy [ eSm(Z)dz (-Z)dzZ
+kf|5|—>0 (eZ-1)Z =(e )fﬁ (eZ- 1)Z f|5|—>0 (eZ-1)Z

The definition of trigonometric functions of complex variables is given by Euler's formula
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. eiz_g-iz . . ensi_e—nsi si i L. . ensi_e—nsi
sin(z)= , if z=ms ,then sin(mns)= —— 50 e™l-¢ =2isin(ns), i=———— .so
2i 2i 2sin(ms)
(C27NZ _ msi_ g-msiy (0 eNPdz (-2)%dZ . o .
Je = = (e ) Js — f|8|—>0(el—1)z , if & is a real number and the

absolute value [3| of 5, [5] —0,

then [ CZ2 _ 0 the nJf. (Z) —2|S|n(ns)f

x5~1dx h
|5|_,0( 7_ 1)z X1 (XE R).t en

-2)°'az

(
2isin(ms) fC eZ-1

x5~1dx
=7 —— (x €R), We got I(s — 1){(s) = [~ (x €R) before,

s—1

so 2sin(ms) ‘ix. Where we agree that in the many-valued function

(—x)571, the value of In(—x) is real for negative x, thus obtaining 2sin(ms) I1(s — 1){(s) =

ifoo(x)

[o¢]

~ (x € R).This equation now gives the value of the function ¢(s) for any
complex variable s, and shows that it is single-valued analytic, and takes a finite value

for all finite s except 1, and zero when s is equal to a negative even number.The right side

of the above equation is an integral function, so the left side is also an integral function,IT(s —-1) =
I'(s),and the first-order poles of I'(s) at s = 0,-1,-2,-3,... cancels out sin(rs)'s zero. When the real
part of s is negative, the above integral can be performed not along the region positively
surrounding the given value, but along the region negatively containing all the remaining complex
values.See Figure 2 below, where the radius of the great circle C 'approaches infinity and thus
contains all poles of the integrand, i.e. , all zeros of the denominator e* — 1, nxi (n is an integer),
and the following calculation applies Cauchy's residue theorem.

Figure 2

Since the value of the integral is infinitesimal for modular infinite complex numbers, and in this

(4)
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Since the value of the integral is infinitesimal for modular infinite complex numbers, and in this
region the integrand has a singularity only if x is equal to an integral multiple of 2xi , the integral
is equal to the sum of the integrals negatively around these values, but the integral around the
value n2ri(n € R") is equal to (—n2mi)s~1(—2ri)(n € R*).The residue of the integrand at
n2mi(n # 0) is equal to

(=x)s1 _=xst _ LNS—
[W]x:nzﬂ_[e—x]xznZni_(nznn)s 1(n * 0)-
So we get

2sin(rs)[1(s — 1)s)=(2m)s ¥ ns~((—i)5~1+i571) ™ (Formula 3),

It reveals a relationship between {(s) and {(1-s), using known properties of the function I1(s), that
is, using the coelements formula of the gamma function I'(s) and Legendre's formula. It can also
be expressed as:

S
r(g)n_EZ(s) is invariant under the transformation s—1-s.
based on euler's e*=cos(x) + isin(x) (x € R), can get

ei(_5)=cos(_2—n) +isin(_7n) =0-i=-i,

ei(E)=cos(g)+isin(g)=0+i=i ,
then

T
2

(=51 4571 = (=) (=05 (D1 (Do =(—) e (F 4 D)o
iei(_g)s-iei(g)s :i(cos_T“SHsin_T“S)-i(cos?ﬂsin?)=icos(?)—icos($)+sin(?)+sin(?)

=Zsin(?) (Formula 4).

According to the property of M(s-1)=I(s) of the gamma function,and
Yo n571=g(1-s)(n € Z* and n traves all positive integer,s € C,and s # 1),
Substitute the above (Formula 4) into the above (Formula 3), will get

2sin(ms)l(s){(s)=(2m )37 (1 — s)2 sin? (Formula 5),
according to the double Angle formula sin(ns)=25in(?)cos(?), we Will get

{(1-5)=2'"5n ‘%os(?)l’(s)((s)(sec and s# 1) (Formula 6),
Substituting s—=>1-s, that is taking s as 1-s into Formula 6, we will get
Z(s)=2Sﬁs‘1sin(?)F(1-s)Z(1-s)(sEC and s# 1) (Formula 7),

This is the functional equation for (s) (s € Cand s # 1). To rewrite it in a symmetric form, use
the residual formula of the gamma function

T

r(z)r(1-z)= SineZ)

(Formula 8)
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and Legendre's formula

7, Z 1, 17 L
FE)rE+)=2""m2r(z) (Formula 9),

Take z=§ in (Formula 8) and substitute it to get

. TS _ TT
sm(;)— —1"(%)1"(1—2) (Formula 10),

In (Formula 9), let z=1-s and substitute it in to get

1 1-s

[(1-s)=2"Sm zr(T)r(l-g) (Formula 11)

By substituting (Formula 10) and (Formula 11) into (Formula 7), can get
S . s _1=s 1-s

o ZF(E)Z(S):IT 2 I'(T)Z(l-s)(sec and s+ 1),

also

S
r(g)n_EZ(s) is invariant under the transformation s—>1-s,

And that's exactly what Riemann said in his paper.That is to say:

F(%)H_ZZ(S) is invariant under the transformation s>1-s,
also

H(% — 1)n_§((s)= H(? — 1)n‘? {(1-s)(seCand s# 1),
or

T Os)=n 2 T9(L-s)(s € C and s # 1)(Formula 2),

Then Z(s)=25ﬂ5‘15in(?)r(1—s)Z(1—s)(sEC and s# 1)(Formula 7) .

This property of the function induces me to introduce H(%—l) instead of I1(s —1) into the general

. 1 . . . . .
term of the series Z;’f’:lg, from which we obtain the function a very convenient expression

for{(s), which we actually have

=85 (E - 1) e = Iy e~y 3dx.

ns o \2
To derive the above equation, let's look at l'[(;hl):F( %):foOO 2L e*dx ,in
1‘[(%—1):1“(3): Iy x2~' e*dx, replace x— n?mx as follows, then
H(%—l):F(S):me(nznx )Z_l e " Mgx=nS. 02, 2. 0! fooo g~ mx x_gd(nznx)=
-2

S 1.2 0 _ .2 _S S f0 _,2 _S
n®.n 2zt n?om [ e ™™ X 2dx=n®. w2 [ e™™ ™ x7zdx , S0

I (E - 1) = fooo e Xy 3dx |

ns 2

(6)
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So, if we call Y4 e_nZ“X=ljJ(x), get immediately
%H G — 1) T =f0°° g~ mx x_gdx=f0°°(zg°:1 e‘“z“x)x_g dx=f0oo l]J(X)X_%dX.

According to the Jacobi theta function

G(X) — Z?:—oo e—nznx =e_OZ“X+ZZ;°:1 e_nznx =1+2(e—nx 4 @ ATX | @-IMX | o—16mX ),

Easy to see ((x) = Y%, e '™ = 801

2

The transformation formula of theta function is derived as foIIows:e(i):\/; 0(x).
Let the first class of complete elliptic integrals k,k' is called modulus and complement of Jacobi
elliptic functions or elliptic integrals, respectively.
_ e de
k - k(k)_foz [(1—1(2—Si1'129) ’
Lyl [ de
k— k(k) _foz l(l—k ’—ZSinze) ’
let t = k'/ k ,then get
\/% =0(1)=1+2(e™™ + e~ 4 eI 4 @716TT 4 ...,
The modulo k and the complement k' are interchangeable

&:e (l):]_.}.z(e—n/r + e—4n/r 4 e—9‘l'[/‘t + e—16‘l'[/‘t 4 )’
\' b1 T

Compare the two formulas to obtain 9(%):/?9(1). It was first obtained by Cauchy using Fourier

analysis, and later proved by Jacobi using elliptic functions.
We have again

s 1,1

I1 (g - 1) s Us) = floo Y(x) XE_ldx+f100 q;(i) X7 dx+ Efo (X§ —Xg_l)dx

_ 1

0 S_q s
plorn +f1 P(x) (xz "+x 2 )dx,

Let's look at the last part of the equation, if s—1-s, then

1 1 _ 1 1
s(s=1)  (1-s)(1-s—-1)  (1-s)(-s) (s—1)s '

S 1+s 1-s 14+(1-s) —1-s 2-5s 1+s S

-1, — — - - =—1
Xz +X 2 =X2 “+X 2 =X 2 +X 2=X 2 +X2 7,S0

S
[T(3—1)nz¢(s) isinvariant under the transformation s—1-s.
2

Riemann then derived the function equation for {(s) again, which is simpler than the previous
derivation using the circum-channel integral and residue theorems.

If we introduce auxiliary function function ®(s)=[] G - 1) T 2 {(s).
This can be succinctly written as ®(s) = ®(1- s), But it is more convenient to add the factor s(s —1)

to @(s), which is what Riemann does next, i.e. (To keep with Riemann'’s notation, the number

™
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factor 2 is introduced): 7(s)=2s(s 1) I1(% — 1) eI (10s).
Because factor (s —1) cancels out the pole of {(S) at s=1, factor s cancels out the pole of F(%) ats

=0, and {(S)'s trivial zeros -2, -4, -6,...,and the rest of the poles of F(%) cancel out, so {(S) is an

integral function and is zero only at the nonnormal zero points of {(S). Note that since sub s(s —1)
obviously does not change under s —1-s, there is a function equation &(s) = £(1- S).

Now suppose s=%+ti(t €Candt#0), [I (2)(3 —1)11‘% U(s)=¢(t), thus get
E(t) =§ -(t2 + i)ffo Y(x) X5 cos(% tlnx )dx

Or
e L
oo 20’ _2 1
&) =4/, %x + cos(; tinx)dx .
The function [] (%)(5—1)11_5 U(s)=&(t) defined by Riemann is essentially the same as the function

E(s)= %s(s -DI1 G - 1) 11_% I'( %)Z(s)commonly used today. Because

M(2)=r(E + D=3r(3),s0ll (2) -1 (=T (D72 {(8)=2s(s ~Dnz T(DYE)=E(E).

The only difference is that Riemann takes t as the independent variable, while &(s), which is now
commonly used, still takes s as the independent variable, and s and t differ by a linear

1 1
transformation: s=E+ti, that's a 90 degree rotation plus a translation of E.In this way, the line
1
Re(s)= > in the complex plane of s corresponds to the real axis in the t plane, and the zero of the

1
zeta function on the critical line Re(s)= 3 corresponds to the real root of the function &(t).Note

that in Riemann's notation, the functional equation &(s) = £(1- s) becomes &(t) = (-t), that is,
E(t) is an even function, so its power series expansion is only an even power, and the zeros are
symmetrically distributed with respect tot = 0.

In addition, it is also clear from the above two integral representations that &(t) is an even

1
function, since COS(E tlnx) is an even function of t.

3
For all finite t, function &(t) =% -(t2 +%)f1oo P(x) X 4 COS(%tlnX)dx or function E(t) =

3
0 2’ 1
4f1 %X 4cos(%t1nx)dx is finite in value,

And can be expanded to a power of t? as a rapidly convergent series, because for an s value
with a real part greater than 1, the value of In{(s) = —) In(1 —p~%) is also finite.It is same

true for the logarithm of the other factors of &(t), so the function &(t) can take zero only if the
1 1.
imaginary part of t lies betweenz and _EI' That is, A can take a zero value only if the real part of

s lies between 0 and 1. The number of roots of the real part of the equation &(t) between O and T

(®)



The proof of the Riemann conjecture

is approximately equal to N(T)= %In% — % + 0(InT), approximately to (%In% —%)(this

result of Riemann's estimate of the number of zeros was not strictly proved until 1859 by
Mangoldt).This is because the value of the integral fdlnE_,(t) (after omitting small quantities of

order %) approximately equal to (Tln% — T)i. The value of this integral is equal to the number

of roots of the equation in this region multiplied by 2mi(this is the application of the amplitude
Angle principle).In fact, Riemann found that the number of real roots in this region is
approximately equal to this number, and it is highly likely that all the roots are real. Riemann
naturally hoped for a rigorous proof of this, but after some hasty and unsuccessful initial
attempts, Riemann temporarily set aside the search for proof because it was not necessary for
the purposes of Riemann's subsequent studies. What Riemann wrote down is the famous

Riemann conjecture, the most famous conjecture in mathematics!

According to Riemann's hypothesis in the paper : s=%+ti(t € Candt # 0), then the Riemann
conjecture is equivalent to that for ((s)=0, its complex roots s (except for negative even numbers)
must all be complex numbers satisfying only S:%+ti(t € Rand t # 0), and they all lie on the

-, . . e 1
critical boundary of the vertical real number axis satisfying Re(s)=5. These complex roots s

(except negative even numbers) are called nontrivial zeros of Riemannn{(s)(n € R* and s #
1 and s#—2n functions.
Let's call the prime counting function T(x)(x € R*), the name of this function has nothing to do

with PI. According to the prime number theorem,t(x) =~ & (x € R").The number of primes less

than or equal to 1 is 1, the number of primes other than 1 is 0,s0 m(1) = 0.The primes less than or
equal to 2 are 1 and 2, the number of primes other than 1 is 1,50 m(2) = 1, The primes less
than or equal to 3 are 1, 2, 3, and the number of primes other than 1is 2, so m(3) = 2. The
primes less than or equal to 4 are 1, 2, 3, and the number of primes other than 1 is 2,50 ©(4) = 2.

The primes less than or equal to 5 are 1, 2, 3,5, and the number of primes other than 1 is 3,50

m(5)=3.50 n(6) =3 ,m(7) =4 ,n(11)=5,m(13) =6, ... ,andso on. If we get a simple

expression to calculate the prime number counting function, it will lead to amazing results, which
will have great significance for the theory and application of mathematical distribution and the
development of the mathematical discipline.

Riemann improved the prime counting function, and the prime counting function Riemann
obtained was called J(x)(x € R*). The relationship between J(x)(x € R*) and (x) =

ﬁ (x € R") is as follows:
100 = T 25 (x0) = &) — 27 (x2) - 21 (36) = 11 () + 2)()-.x € R"n € RY)

The relationship between J(x)(x € R*) and {(s)(s € Cand s # 1) is as follows:

©)
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Ang(s)=J;" JGOx~s71dx,

p(n) is called the Mobius function.

The Mobius function p(n) has only three values, which are 0 and plus or minus 1, if n is
ok Divisible by the square of any prime number, that is, an exponent of one or more
prime factors other than 1 in the prime factorization of n. If the power is raised to the
second or higher power, then p(n)=0. If n is not divisible by the square of any prime
number, that is to say, the exponent of any prime factor other than 1 in the prime
factorization of n has the degree 1, then let's count the number of prime factors. If there
are an even number of prime factors, then p(n)= 1. If the number of prime factors is
odd, then p(n)=-1. This also includes the case of n=1, since 1 has no prime factors other
than 1, then the number of prime factors of 1 other than 1 is 0, and 0 counts as an even
number, so p(1)=1. In the above expansion, as n(n € R*) increases, %(n € R*) becomes
smaller and smaller, x%(ne R*) also gets smaller and smaller, The n(n € R*and n -
+ooth term is going to get smaller and smaller. It shows that the largest contribution to
the value of m(x) is the first term J(x).

Now let's look at the following formula from Riemann:

dt _ +
Dt In2 (x € RY),

J(®) = Li(X)-X, Li(x?)+ [

among , Li(x)=fg(l‘1—tt(x € RY),
J(x) is called a step function, it equals zero where x equals zero, that is, J(0)=0, and then
as the value of x increases, every time it passes through a prime number (such as

2,3,5,...). The value of J(x) increases by 1. Every time it square a prime number (4,9,25),

the value of J(x) increases by % Every time it pass through the third square of a prime

(10)



The proof of the Riemann conjecture

number (such as 8,9,25,...) The value of J(x) increases by 1/3. Every time it pass 4 squares
of a prime number (say, 16,81,256,625,...) , the value of J(x) increases by 1/4. And so
on,every time it passes a prime number to

xn (n € Rt , n - +oo,xis a prime number) sthe value of J(x) increases %(n € R*and n -
4+ .You can think of it as that every time it passes a prime number to xnn€R+ , n>+o0,x
is a prime number, J(x) increases 1nn€R+and n—+oo.

Obviously, this function is closely related to the distribution of prime numbers. If you look at
the right-hand side of the equation, the first term is called the logarithmic integral
function Li(x) = foxsl—tt(x € R*), When x is sufficiently large, Li(x) ~ &(x €RY),n(x) =
Li(x) ~ ﬁ (x € R*, xis sufficiently large).Let's look at the second item Li(x?) (x ERY,pE€ C)
p is a complex number other than a negative even number, p is called the nontrivial zero of
the ¢(s)(neR*ands# lands# —2n) function by Riemann. pisdenotedas:p =0+
it (o ERtE R). On the real number line, the Riemann {(s)(s € C,ands # 1ands #
—2n function has no zeros except for negative even numbers, So p is definitely not a real
number other than a negative even number, so x°(peCx€eR*,andp # landp #
—2n,neR+ is definitely not a real number other than a negative even numberas also. So
how do we compute Li(x) (x €ERY,p€Candp+#1landp # —2n,n € R+)? Just extend the

domain resolution of Li(X)=fX£(x€ R*) to all complex numbers except divided by

0 Int
1.Riemann proved that the non-trivial zero p of the Riemanni(p)(p € R* ands #
1 and p#—2n,neR+function must satisfy 0<Re(p)<1. The vertical strip of width 1 on the

complex plane is called the critical strip. and the line perpendicular to the real number

axis satisfying Re(s)= %(s €C ands# 1ands # —2n,n € R*) is called the critical

(11)
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boundary, that is, the center line of the critical band. Riemann guessed that the
non-trivial zeros of the Riemann {(s)(s € R* and s # 1 and s # —2n,n € R* )function all lie
on the critical boundary, which is a very surprising conclusion.

If the real part of the nontrivial zero of the Riemann {(s)(s € R* ands # 1ands # —2n,n €
R+ function takes random values between 0 and 1, then the probability that it reaches
exactly % should equal 0, which Riemann thought was 100%. If the Riemann conjecture
is strictly true, then the occurrence of prime numbers or the distribution of prime
numbers is not random at all, but occurs in a definite way, and there must be a deep
reason behind this. The proof of the prime number theorem is an intermediate product
in the process of studying Riemann conjecture. In 1896, Hadamar and De la Vabsan
proved that the nontrivial zero p of the Riemannn{(p)(p € R* ands # 1and p # —2n,n €
R+ function has no zero when Re(p)=0 and Re(p)=1, thus easily proving the prime
number theoremt(x) = %(x € RY).

The prime number theoremn(x) ~ %(x € R*)holds, showing that for the prime counting
function m(x), the largest part of its value comes from the logarithmic integral function
Li(x)=f;31—tt(xe R*) while the minor part of its value comes from Li(x?) (xe Rt ,p€
R+ and s#1 and p#—2n ,n€R+,since the calculation of xInxxeR+ is simple, but for the
accurate calculation of the prime counting function m(x), the calculation of the
non-trivial zero p of the Riemann {(p)(p € R* ands # 1and p # —2n,n € R*) function is
very important, and the strict proof of the Riemann conjecture is very important. In

1921, the British mathematician Hardy proved that the Riemanni(s)(s € R* ands #

1 and s#—2n,neR+ function has infinitely many nontrivial zeros on the critical
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boundary. But this conclusion is actually quite different from the Riemann conjecture,
because the fact that there are infinitely many nontrivial zeros on the critical boundary
does not mean that all zeros are on the critical boundary. Just as a line segment has an
infinite number of points, but a line segment has an infinite number of lines, the
percentage of Hardy's proof is almost zero compared to the number of all nontrivial
zeros. It wasn't until 1942 that mathematicians pushed this percentage significantly
higher than zero. That year, the Norwegian mathematician Selberg proved that the
percentage was greater than zero, but did not give a specific value. In 1974, the
American mathematician Liesen proved that at least 34% of nontrivial zeros lie on the
critical boundary. In 1980, Chinese mathematicians Lou Shituo and Yao Qi proved that
35% of nontrivial zeros lie on the critical boundary. In 1989, the American
mathematician Conrey proved that 40% of nontrivial zeros are located on the critical
boundary. The calculation of the nontrivial zeros of the Riemann {(s)(s € R* and s #
1 and s#—-2nneR+ function is more complicated. Graham calculated the first 15
nontrivial zeros of the Riemann {(s) function, and after 25 years, another 138 nontrivial
zeros were calculated. Since then, the calculation of the nontrivial zeros of the
Riemann-g(s) function has stalled because of the clumsy methods and the lack of
computers to assist it. After the calculation was halted for seven years, the deadlock was
broken, and German mathematician Siegel found in Riemann's manuscript that
Riemann was far ahead of the time 70 years of clever algorithm, so that the calculation
of non-trivial zero points was suddenly bright. In honor of Siegel, this algorithm formula

is also known as the Riemann-Siegel formula, and Siegel himself won the Fields Medal
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for it. A mathematician's manuscript is worth far more than an antique. Since then, the
non-trivial zeros of the Riemann {(s) function have been computed much faster. Hardy's
students pushed the calculation of the non-trivial zeros of the Riemann Z(s) function to
1041, the father of artificial intelligence Alan Turing pushed the calculation of the
non-trivial zeros of the Riemann {(s) function to 11,041, and later with the application of
computers, the calculation of the non-trivial zeros of the Riemann-{(s) function from 3.5
million to 300 million, 1.5 billion. 850 billion, and now 10 trillion, of these nontrivial
zeros lie on Riemann's critical boundary. The Riemann conjecture stands firm. It has
been inferred that the nontrivial zeros of the Riemannn {(s)(s € Rt ands # 1ands #
—2n,neR+ function are symmetric with respect to the real number axis. Although this
guess is correct, it needs to be rigorously proved, otherwise such a guess has no
meaning. In the following paper, I give a strict proof of this conjecture, and give a strict
proof of Riemann conjecture, which is indeed true. Riemann guess is equivalent
10 (s)=(s)=0(s € Cand s # 1) and {(1 — s)={(s)=0(s€C and s# 1)are both established.

7(1 —s)={(s)=0(s€C and s# 1) can be deduced by Z(s)=25ns'1Sin(n7s)r(1-s)l(1-s)(sEC and s# 1)
when {(s)=0 , and {(s)={(s)=0(s€C and s# 1) can be deduced by 2(s)=U(s)(s€C and s# 1)
when {(s)=0. 7(s)={(35)(s€C and s# 1) must use euler's formula

e'*=cos(x)+isin(x)(x€R) and eZ=cos(Z)+isin(2)(zeC) and amplitude Angle principle (after index
was extended to general real Numbers), and strict proof. If we want to solve the
Riemann conjecture, the proof of it must follow such principles and methods, otherwise

it may not be correct.

I .ConclusionReasoning
Femma 1:
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Yoein3=[[,(1 —p~°)~!(s € Z* ands# 1, n€ Z* and n goes through all the positive integers,
p € Z* and p takes all the prime numbers),this formula was proposed and proved by the Swiss
mathematician Leonhard Euler in 1737 in a paper entitled "Some Observations on Infinite Series",
Euler's product formula connects a summation expression for natural numbers with a
continuative product expression for prime numbers, and contains important information about
the distribution of prime numbers. This information was finally deciphered by Riemann after a
long gap of 122 years, which led to Riemann's famous paper "On the number of primes less than
a Given Value ™. In honor of  Riemann, the left end of the Euler product formula was named
after Riemann, and the notation {(s)(s € Cand s # 1) used by Riemann was adopted as the

Riemann zeta function .

X
Because e =limy_,q (1 + i) =ZI°1°:0$ ~2.7182818284... , e is a natural constant, | use " x "

for Multiplication, then based on euler's e*=cosx+isin(x)(x€ER) and the principle of amplitude
Angle,get (e3)?=(cos(3) + isin(3))%=cos(2X3)+isin(2x3)=cos(6)+isin(6),

because e®=cos(6)+isin(6),

o)

(e3i)2= e6i ,

In general, (eP)°= eP*Ci(beR , c €R) is established,the angle principle is extended to the case
where the exponent is a real number.
SO0 when x>0(x&R),suppose e¥=x(e=2.7182818284... ,x e is a natural constant,x€R and x>0,

yER),then y=In(x)(x>0),based on euler's e*= cos(x)+isin(x)(xER),will get

eVl = e®i=cos(Inx)+isin(Inx)(xER and x>0).

Suppose tER and t # 0, now let’s figure out expression for x'(x€R and x>0, t€R and t # 0) is
xU=(e¥)t=(e¥)t=(cos(Inx) + isin(Inx))t(x > 0).

Suppose s is any complex number, and Suppose s=c+ti(c €R,tER and t # 0,s€C),then let's find
the expression of x5(x€R and x>0, s€C),

You can put s=g+ti(c ER,tERand t # 0,s€C) and x'=(e¥)t=(e¥")'=(cos(Inx) + isin(Inx))*(x >
0) into x5(x > 0) and you will get

xS = x(@+t) = xxt = x9 (cos(Inx) + isin(Inx))* = x? (cos(tlnx) + isin(tlnx))(x > 0), if You put
s=0-ti(o €R, tERandt # 0) and x'=(e¥)t=(e¥)t=(cos(Inx) + isin(Inx)){(x > 0) into x°you
will get

x5 = x(@~ = x7(x%)~1 = x9(cos(Inx) + i sin(Inx)) "t = x (cos(tlnx) — isin(tInx))(x > 0) .
Then

c1l vl vl ©«1 1. - 1
) = z ns z ns Z o+t Z(F X F) - nzzl(n ) (cos(In(n)) + isin(In(n)))*

Z(n‘”(cos(ln(n)) + isin(In(n)))~)

Z(n“’(cos(tln(n)) — isin(tln(n)))
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(s € Cand s# 1, n€ Z* and n goes through all the positive integers),or

&(s) =
[Tp= 1( s )= Il (1 - p~*)t= [[p=1(1—p™7~ it = = [lp=1(1 - g+n) L= = [Ip=[1 -

1
(cos(Inp)+isin(Inp))t

(™) 17 = [Tp=1[1 — (p~")(cos(tinp) — isin(tlnp)) ]~

(s€eCands# 1, p € Z* and p goes through all the prime numbers).
And

=1 cos(ln(n)) + isin(ln(n)))_t

= Z(n“’(cos(ln(n)) + isin(In(n)))")
n=1

= Z(n“’(cos(tln(n)) + isin(tln(n)))
n=1

(s €eCands# 1, ne Z* and n goes through all the positive integers),
or

® = M=) = M= = pH) 7 == (1 - p~ T =[5, (1 - a_n) t=

oo . 1 [o'e) B
1_[ 1-(p™) (cosnp) = 1sm(lnp))t 1_[ 1 — (p~?)(cos(tlnp) + isin(tlnp)) ]2

:1 =1
(s€eCands# 1, p € Z and p goes through all the prime numbers).
And

1

(1 —5) = ¥y = = Tt oo = e (077h) — =

(cos(In(n))+isin(In(n)))~t
Y& (Y (cos(In(n)) + isin(In(n)))*) = X3, (n°~1)(cos(tin(n)) + isin(tin(n)))
(s €eCands# 1, ne Z* and n goes through all the positive integers),
Or
If ke R, then

Cgye L e 1w (ok 1 _
g(k S)_anlnk—S z:n=1nk“"ti Zn:l(n )(cos(ln(n))+isin(1n(n)))—t

Yo 1(n?7¥)(cos(In(n)) + isin(In(n)))*) = ¥¥_;(n7¥)(cos(tin(n)) + isin(tin(n)))
(s € Cands# 1, ke R, ne Z* and n goes through all the positive integers),

and
Ck—s)= H§=1(ﬁ ) = Ilpe(1— psyTt = [lp=1(1— poktth)=1 = [Tp=1[1—

(p°~*)(cos(tlnp) + isin(tlnp)) ]*

(s €Cands# 1,k € R,p € Z* and p goes through all the prime numbers).
So

X=n"?(cos(tln(n)) — isin(tln(n))),

Y=n"?(cos(tln(n)) + isin(tln(n))),
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G=[1 — (p~9)(cos(tlnp) — isin(tlnp)) ]2,

H=[1 — (p~9)(cos(tlnp) + isin(tlnp)) ]2,

X and Y are complex conjugates of each other, that is
X=Y, and

G and H are complex conjugates of each other, that is

G=H, so {(s)=Xi1— = Niei X =1, G(s€ Cand s # 1), and {E)=Xi,— = X, Y =

[l[p=1H(s€Cand s # 1),
50 {(s)={(5)(s € Cand s = 1),

and only wheno = % then {(1 —s)=((s)(s€Cand s # 1),

and only wheno = ]E((k € R), then{(k —s)=((s)(s€Cand s # 1,k € R),s0

only k=1 then

(1 —-5)=C(s) =C(k—s)(seCand s+ 1,KER),

only k=1(k € R)is true, and when {(s)=0, then

(1 —s)=C(k—s) =((s)=C(s)=0(s € Cand s # 1,k € R).

According {(1-s)=21"5n _SCOS(%S)T(S)C(S)(S € Cand s # 1 )obtained by Riemann,so when {
(s)=0 then {(1-s)=((s)=0(s&C and s#1 ) .Beacause only when a=%, the next three equations

{(o+ti)=0, {(1-0-ti)=0, and {(o-ti)=0 are all true,so only s-—+t| (tERand t#£0) is true.

_ Voo - 1 _
(S) - Zn 15 ns - Zn 1n0+“ Zn 1( nti) - Zn:l(n )(cos(ln(n))+isin(ln(n)))t -

Yoo (n79(cos(In(n)) + isin(In(n)))™Y) =
Ln=1(n"(cos(tin(n)) —isin(tin(m))) = [lpm(G—= - )= Tpea(1=p™)™" = [Ip=(1 -

1
(cos(Inp)+isin(Inp))t

PP = (-5 = Tl - 67

(p~?)(cos(tlnp) — isin(tlnp)) "' (s € Cand s # 1,t € Cand t #
0, p is prime number ,and p # 1).

17 =Tlp=all -

When o=1, then if 1 — —cos(tlnp) +i- sm(tlnp) #0 then((s) = Yor1— = =[lp=1G—=) #

1- p-s
0.if1— icos(tlnp) # 0 and isin(tlnp) # 0,then sin(tlnp) # 0 and icos(tlnp) # 1,then
t# l];—z (K€ Z, p is prime number ,and p # 1) and cos(tlnp) # p(t € Rand t# 1), so if
p > 1 (pis prime number,and p # 1)then t# ;—Z(ke Z,p is prime number,and p # 1) and

cos(tlnp) # p(p is prime and p>1), or p = 1, then |t| # |ll;—1;| # +oo(k€ Zandp = 1) and

cos(tinl)=1,t € Randt# 1. Soif ¢ =Re(s)=1 and t+ ;—Z(ke Z,andp # 1) and

(17)
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-1
andt € Rand t # 0, then {(1 + ti) = [[74[1 - %cos(tlnp) +i%sin(tlnp) ] #

0(s € Cand s # 1).When s=1+ti(t € Rand t # 0) then

-1
(@ +t) =TIpm[1 - %cos(tlnp) +i%sin(tlnp) ] #0(teCand t+0).And when

Re(s)=1 and p=1(p is prime number), then (1 + ti) =
1
np)—isin(tlnp))

oo 1 _ [oe] .. - )
=[T51 Gop=)=TTpalL — cos(tinp) +isin(tinp) | ™ = 15 =5 cosa

o 1 _ 1 .
[Tp=1 - Deos@nDsn@nyy - o0 +oo(teCand t+0) ,then ((1+ti)#0—

+oo(t € Cand t # 0), diverges ,without zero ,so {(1 + ti)(t € Cand t # 0 ). When ¢=0,

1
1-p~S

then if 1 — cos(tlnp) +isin(tlnp) # 0 then {(s) = Z{‘f:l% = [Ip=1( )#0.if 1—
cos(tlnp) # 0 and sin(tlnp) # 0 ,thentlnp # km(k € Z) and cos(tlnp) # 1 ,then t=#

;—Z(ke Zandp # 1) and cos(tlnp) #1, SO p>1,thent# E—Z(keZandp #1) and
cos(tinp) # 1(p # 1) ,0r p =1 then |t| || # +oo (ke Zandp=1) and [t| = +oo0
,t € Rand t # 0,then {(0 + ti) = [[7~4[1 — cos(tlnp) +isin(tinp) | 1z O(teRand t #

0). So when Re(s)=0 and p=1,then (0 + ti)=[]%;[1 — cos(tinp) +isin(tlnp) ] ~* # 0.
And when o =Re(s)=0 and p=1, then [[p=;[1— (p~®)(cos(tlnp) — isin(tlnp)) ]™* =

o 1 _TT100 1 _l .
Hp:l 1—(p~°)(cos(tlnp)—isin(tinp)) _Hp=1 1-(1-9)(cos(tln1)—isin(tln1)) 0 = +oo,theng (0 + t) #

0 > +oo(te Rand t =+ 0), diverges, without zero. S0 {(0 + ti) # O(te Rand t# 0). Itisa
fact that the non-trivial zeros of the Riemann {(s) function (meaning zeros other than negative
even numbers) exist, Riemann proved that the real part Re(s)(s € Cands # 1) of the
nontrivial zero s of the Riemann {(s)(s € Cand s # 1) function must satisfy Re(s)e[0,1]. It is
not easy to calculate the non-trivial zeros of the {(S)(s € Cand s = 1) function by hand, and

Riemann calculated a dozen of them, all of which have a real part Re(s) equal to % so the

non-trivial zeros of the Riemann ((s)(s € Cand s # 1) function (meaning zeros other than
negative even numbers) exist.,and the real part Re(s)(s € Cand s # 1) of the nontrivial zero s
of the Riemann {(S)(s € Cands # 1) function must satisfy Re(s)e(0,1).When s=1+ti(t €

Rand t # 0), Rs(s)= o=1,then’(s) = ¢(1 + ti)zngzl(l_;p_s)z M2, (1 — p~5) =18, (1 —

1
(cos(Inp)+isin(Inp))t

p~1-ti)-1 - M1 — (p™Y) 171 = TI5=1[1 — (p~Y)(cos(tinp) —

1

. 1 _ Hoo 1 1 —1= o
isin(tlnp)) |7 = [IpZ4[1 5 cos(tlnp) +i 5 sin(tlnp) | [Ip=1 [1—%cos(tlnp)]+i%sin(tlnp)

O(seCand s#1,teCand t+ 0,p € Z* and p tranves all prime numbers),When
the independent variable s is extended from a positive integer to a general complex number, in

(18)



The proof of the Riemann conjecture

the Euler product formula, the numerator of every product fraction factor is 1, and the
denominator of every product fraction factor is a polynomial related to the natural logarithm

function. Whenp € Z* and p traves all prime numbers,then {(1+ti)#0(t € Rand t # 0),

indicating that the number of primes not greater than x is finite. From the analytic extended
Euler product formula, we can see that for positive integers not greater than X, every increase
of a prime p will increase a fraction factor related to In(p) in the Euler product formula,

indicating that the probability that there is a prime p near x (that is, x=p) is about % , that

L1 .
IS e If we use m(x) to represent the number of primes not greater than x, then for a

positive integer p not greater than X, the probability that it is prime is approximately %
nx 1 . X o X . .
then > e mX) = oo’ mX) = "o is the expression for the prime number theorem.

As Riemann said in his paper, n takes all the positive integers, so n=1,2,3... ,Let's just plug in all
the positive integers to Znis.

Obviously,

U(s)=C(o+ti)= Zﬁ =Y. X=[ 17°cos(tIn1)+ 27°cos(tin2)+ 3~°cos(tin3)+ 4~°cos(tin4)+...]-i[1~°sin(

tin1)+ 27%in(tIn2)+ 37%sin(tIn3)+ 4~ °sin(tin4)+...]= U-Vi(s € Cand s # 1,t € Cand t # 0),
U=[ 17°cos(tIn1)+ 27°cos(tIn2)+ 3~°cos(tin3)+ 4~°cos(tind)+...],

V=[179in(tIn1)+ 27%sin(tIn2)+ 3~ %sin(tIn3)+ 4~ %sin(tin4)+...],

then

U(s)=C(o-t)=Y % =Y. Y=[ 17°cos(tin1)+ 27°cos(tIn2)+ 3~°cos(tIn3)+ 4~°cos(tIn4)+...]+i[1~°sin(t

In1)+ 27%in(tin2)+ 37%sin(tIn3)+ 4~ °sin(tin4)+ ...]= U+Vi(s € Cands # 1,t € Cand t # 0),
U=[ 17°cos(tIn1)+ 27°cos(tIn2)+ 3~°cos(tin3)+ 4~°cos(tind)+...],

V=[17%in(tIn1)+ 27%sin(tIn2)+ 37 °sin(tIn3)+ 4~ %sin(tin4)+...],

{1 —s) = XY (cos(tlnx) + isin(tlnx)) =[ 1°~tcos(tin1)+ 2°~1cos(tIn2)+ 3°~1cos(tin3)+
4°~1cos(ting)+...]+i[1° tsin(tin1) + 2° sin(tln2) + 3° sin(tln3) + 4°~sin(tln4)

+.]J(seCands # 1,t € Cand t # 0),50 only when 0=% and {(s)=0(s € Cand s # 1),then it

must be true that {(1-s)=((s)=0(s € Cand s # 1).
{(s)(seCands#1) and {(s)(s € Cands # 1) are complex conjugates of each otherthat is

{(s)=((s) (s € Cands # 1),

if {(s)=0(s € Cand s # 1), then must {(5)=0(s € Cand s # 1), and so if {(s)=0(s € Cand s # 1),
then it must be true that {(s)=((s)=0(s € Cand s # 1).

According to Riemann's paper "On the Number of primes not Greater than x", we can obtain an

expression {(1-s)=21"51 _SCOS(?)F(S)(:(S)(S € Cand s # 1) in relation to the Riemann {(s)

(s € C and s # 1)function, which has long been known to modern mathematicians, and which |
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derive later. According {(1-s)=21"5nt _SCOS(?)F(S)C(S)(S € Cand s # 1 )obtained by
Riemann,so when ( (s)=0 then {(1-s)={(s)=0(s€C and s#1 ) eacause only when 0'=%, the next three
equations {(o+ti)=0, {(1-0-ti)=0, and {(o-ti)=0 are all true,so only s=%+ti (tER and t#0) is true.And

when {(s)=0 then accroding 7(1-s)=((1 — §)=0=((1—s)=((s)=@=0(s € Cand s # 1),is also say

Us)=Us)=U(1-5)=L(1-s)=0(s € Cand s # 1),then only {(o+ti)={(o-ti)= 0 is true.Since Riemann has
shown that the Riemann (s) (s€ Cands# 1) function has zero, that is, in

{(1-5)=21"51 _SCOS(?)F(S)Z(S) (s€Cands #1),{s)=0(s € Cand s # 1) istrue, so when {(s)=0,

In the process of the Riemann hypothesis proved about {(s)=Z(1-s)= {(s)=0(s € Cand s # 1), is
refers to the {(s)(s € Cand s # 1) is a functional numbe. Does (s)={(1-s)= {(s)(s € Cand s #
1) mean the symmetry of the {(s)(s € Cand s # 1) function equation? Does that mean the

symmetry of the equation s=s=1-s? Not really. In my analyst, {(s)(s € Cands # 1) . {(1-s)(s €

Cands# 1) and I(s)(s € Cands # 1) function expression are both from Y, n™5=
[I,(1 —p ) Y(s€e€c and s¥1, neZ*and n goes through all the positive integers, p €
Z* and p goes through all the prime numbers), so according to Y51 n™% = [[,(1 — p (s €
¢ and s# 1, n€ Z* and n goes through all the positive integers, p € Z* and p goes through all
the prime numbers),{(s)(s € C and s # 1)function of the independent variable s, the relationship
between 5 and 1-s only C%=3 kinds, namely s=S or s=1-s or s=1-s. As follows:according
U(s)=t(1-s)=0(s € Cand s # 1) and {(s)={(s)=¢(1-s)=0(s € Cand s # 1),then only s=s or s=1-s or

s=1-s ,so S€R, or o+ti=1-0-ti ,or o-ti=1-0-ti, so s € R,or 0=%and t=0,0or o =% andt €R and
1
t# 0,50s ER, or s=§+0i ,or s=§+ti(t €Rand t # 0), because Z(E) — +00,{(1) » +o0, (1) is
. 1. . 1
divergent, Z(E) is more divergent,so drop s=1 and S=E.

According the equation §(s) = %s(s—l)[‘(%)n_ EZ(S)(S € Cands # 1) obtained by Riemann, so

s
2

— S
¢(s)=¢(1—s)(seCands # 1), because l"(%) = F(%) ,and T 2=TC 2 , and because

Us)=({G)(s€Cand s#1) , so £(s)=E(S)(s € Cand s # 1).So when {(s)=0(s € Cand s #

1) ,then §(s)=0(1—s)=1{(s) =0(s€Cands # 1) and §(s)=§(1 —s)=¢(s)=0(s € Cand s #
1) must be true, so the nontrivial zeros of the Riemann {(s)(s € Cand s # 1) function and the
nontrivial zeros of the Riemann &(s)(s € Cand s # 1) function are identical, so the complex

root of Riemann &(s)=0 (s € Cand s # 1) satisfies s=%+ti(t€R and t # 0). According to the

Riemann function H%(s—l)rt_%((s):&(t)(t €Candt#0,s € Cands # 1) defined by Riemann
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S
and he Riemann hypothesis s=%+ti(t € Cand t # 0), because s#1, and H% #0, mz2+#0,s0

H%(s—l) T[_; #o0, and when §(t)=0(te Candt# 0), then ]’[2 (s-1)11_§ ((%+ti)=§(t)=0 (te

) _ 0
nz(s—l)n‘z n (s-1)mz

Candt#0,s€Cands#1), and C%+ti)= s=0(teCandt#0,s €

Cands # 1),s0 tERand t # 0. So the root t of the equations H%(s-l)n_gl(%ﬂi)=E(t)=0(t €

o d(XZ‘iJ (X)) -

Candt#0,s€eCands#* 1) and 4f cos( tlnX)dX §t)=0(teCandt#0,s €

Cands # 1) and

o _3
E,(t)%—(t2 + %)L Y(x) x 4 cos(%tlnx )=0(te Candt# 0,s € Cand s # 1)must be real and
t+0.

Riemann got []3(s-1)m2(s)=5(t) (t € Cand t # 0,5 € Cand's # 1) and  &()—3 -
o _3
(t? + i)f1 P(x) x + cos(%tlnx) dx(t€ Candt# 0,s € Cand s # 1) in his paper,or

H%(S-l)‘r[_%C(s)=§(t) (teCandt+#0,se Cands # 1) and

mw T3 cos( tlnx)dx(t € Candt # 0,s € Cand s # 1),because the root of

&0=4],
{G+ti)=0(t € Cand t # 0) is the root of H%(s—l)n_%g(%ﬂi )=E()=0(t € Cand t # 0,5 € Cand s #
1), and because the root of Q(%+ti)=0(t € Cand t # 0) is the root of

© d(X2LP X))

1‘[ (s-1)m~ zg( L +ti)= 4 4cos( tlnx) dx=¢(t)=0 (t € Cand t # 0,s € Cand s # 1),

and because the root of g(%+ti):0(t € Cand t # 0) is the root of
o0 _3
é(t)=%-(t2 + %)f1 Y(x)x 2cos thnx )=0(t €Candt#0,s € Cands # 1), so the roots of

equations H%(s—l)n‘i(%ﬂi)=§(t)=0(t €Candt#0,s€Cands # 1)

°°d(Xz‘*’( )

and 4 X« cos( tlnx)dx=¢(t)=0(t € Cand t # 0,s € Cand s # 1) and J;(t)——-(t2

o 3
i)f1 P(x) x ¢+ cos(%tlnx)=0(t € Candt# 0,s € Cands # 1) must all be real numbers, and the

1. . .
roots are the same number , because the root of C(E+t|):0(t €Candt#0)iss = %+t|(t €Randt #

0),50 when {(s)=0(s € Cands # 1)and &(t)=0(t € Candt+ 0), the real part of the root of
E(t)=0(t € Cand t # 0) must be between 0 and T , and the real roots of £(t)=0(t € Cand t # 0) has
the same number of complex roots of £(t)=0(t € Cand t # 0). So when {(s)=0(s € Cand s # 1) and
E(t)=0(t € C and t # 0), the number of roots of (t)=0(t € C and t # 0) must be approximately equal
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T, T T .
to Elnﬁ o all the roots of &(t)=0(t € C and t # 0) are real numbers, so the Riemann

hypothesis and the Riemann conjecture are perfectly valid. Because the number of roots t of C(% +
1 1

it) =Y, (n"z(cos(tln(n)) — isin(tln(n))) = ¥, (n"2(cos(In(n?)) —isin(In(n*))) =0 is

the number of roots of

o _3 L
E(t)%-(t2 + i)f1 Y(x) x 4 cos(%tlnx )=0. Because when t=0, then ( (%) is divergent, when

In(n*) €[0, 2n] , the numbers of the root t of

63 +it) = X2, (n "2 (cos(tin(n)) — isin(tin(n))) =

Z{'{’zl(n_%(cos(ln(nt)) — isin(In(n"))) =0 is ln%— 1,s0 when t€(0, T] , the numbers of
the root t of § (2 +it) = 5%, (n"Z(cos(tIn(n)) ~ isin(tin(n))) = ¥51(n 2 (cos(In(n’)) ~

isin(In(n®))) =0 is N=n; x n, = ——x (In_—— 1),
Formula 2

Let's say | have any complex number Z=x+yi(XeR , yeR), and | have any complex number
s=o+ui(oc €ER , UER).We use r(reR,andr>0) to represent the module |Z| of complex Z= x+yi

(XER , y€ER), and ¢ to represent the argument Am(Z) of complex Z=x+yi(x€ER , YER).That is

1
|Z|=r, then r= (x* + y?)z,

X

50 Z=r(Cos(¢p)+iSin(p)) and e=larccos( 7 )|,.and (-, ], then p=Am(Z).
(x2+y2)2

Base on x3=x°x"=x%(cos(Inx) + i sin(Inx))"=x°(cos(ulnx) + isin(ulnx)) can get

r$=r°r% = r°(cos(Inx) + isin(Inx))" =r°(cos(ulnx) + isin(ulnx)) (r>0), then

f(Z,5)=z5=(r(cos(¢) + isin(¢))° " =(r(cos(¢p) + isin(¢))°r(cos(¢) + isin(p))* =

r°(cos(o@) + isin(c@)) (r(cos(¢) + isin(¢@))*™ = r°(cos(o@) + isin(op))r*i(cos(¢) +
isin(@))ui = ra(cos(o@)+isin(o@))(cos(ulnr)+isin(ulnr)) (cos(uep)+isin(up))i

=r°(cos(pep) + isin(pg))(cos(ulnr) + isin(ulnr))(cos(ue) + isin(ue))

=r°(cos(p@ + ulnr) + isin(pep + ulnr))(cos(up) + isin(uep))’ .

Beacuse of

7=

eln|Z|+iAm(Z)=eln|Z|eiAm(Z)=eln|Z|(cos(Am(Z))+isin(Am(Z)))=r(cos(Am(Z))+isin(Am(Z

))),s0 InZ=In|Z|+iAm(Z) (—mt<Am(Z)<= ).

Suppose a>0,then a*=el"@* = exIna  then zS=¢sInz,
Suppose any complex Number Q= cos(ue) + isin(u¢), and Suppose
any complex y= i, then InQ=In|Q|+iAM(Q) ( —m<AmM(Q)<= ).
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Because 0<=|sin(ue)|<=1,
SO

If —m<up<= m,then Am(Q)=ue and — <AM(Q)<=m ;

If up>m, then Am(Q)=u@-2kn(ke Z+) and — n<AM(Q)<=m ;

ifup < —m,then Am(Q)=u@+2kn(k € Z*) and — n<Am(Q)<= . Then

If Am(Q)=ue, then

(cos(ug) + isin(ug))' = Q¥ = e¥InQ = WUn|Q+AM(Q) =gi(o+iAM(Q) =g,
then

f(Z,5)=z%=r°(cos(o@ + ulnr) + isin(c¢ + ulnr))(cos(ue) + isin(ue))!
=r°(cos(o@ + ulnr) + isin(o@ + ulnr))(cos(ue) + isin(uep))!

=e " "°r°(cos(pe + ulnr)+ie "Pr°sin(pe + ulnr),
1
Substituting r= (x? + y?)z into the above equation gives:
o 1
f(Z,5)=z5=e""?(x? + y?)2z(cos(p@ + uln(x? + y?)z))

o 1
+ieTUP(x% + y?)2(sin(o@ + uln(x? + y?)2)) .

If Am(Q)= ug-2kn(k € Z*),then
(Cos(u(p) + jsin(u(p))i = Qw = e¥InQ _— (U (n|Q+iAm(Q)) =gi(o+i(u@—2km)) —o2km—u@ , then

f(Z,5)=z%=r°(cos(o@ + ulnr) + isin(c¢ + ulnr))(cos(ue) + isin(ue))!
=r°(cos(o@ + ulnr) + isin(co@ + ulnr))(cos(ue) + isin(up))!
=e?KT-U®ro(cos(o@ + ulnr)+ie?k™"Ursin(c@ + ulnr).

1
Substituting r= (x% + y?)z into the above equation gives:
o 1
f(Z,5)=z5=e?k""u® (x? + y2)2(cos(o@ + uln(x? + y?)2))

P 1
+ie2KT-u@ (x2 4 y2Y2(sin(o@ + uln(x? + y?)2)).

If Am(Q)=up+2kn(k € Z*), then
(COS(U(p) + isin(u(p))i — Ql]J — el]Jan — e11J(lr1|Q|+iAm(Q)):ei(0+i(u<p+2k1'r)):e—zkﬂ—u(p ,then

f(Z,5)=z5=r°(cos(o¢ + ulnr) + isin(ce + ulnr))(cos(ue) + isin(ug))!
=r°(cos(o@ + ulnr) + isin(o@ + ulnr))(cos(uep) + isin(uep))!
=e~2KT-UP 0 (cos(o¢ + ulnr)+ie 2K %sin (o + ulnr).

1
Substituting r= (x% + y?)z into the above equation gives:
o 1
f(Z,5)=z5=e~2K™"u® (x2 4 y2)2(cos(o@ + uln(x? + y?)z))

. 1
+je—2kn-u@ (XZ + yZ)E(sin(G(p + uln(X2 + y2)5 ).

Reasoning 1:
For any complex number s, when Rs(s) > 0 and (s # 1),and if s=o+ti(c €R,tER and t # 0,s€C),

(23)



The proof of the Riemann conjecture

then according to Dirichlet N(s), then the relationship between the Riemannn {(s)(s&€C and

Rs(s)>0 and s#1) function and the Dirichlet n(s)(s&C and Rs(s)>0 and s#1) function is :
because

n(s)=———+———+———+ .(seCandRs(s)>0and s# 1),

((S)Z% > §+E ;+—+ .(seCandRs(s)>0and s# 1), SO

2 2 2 2 1 1 1 1 1 1 2
I’](S)—Z(S)=— ;+E+E+.”) = —; F+;+§+E+;+§+u-): —;«S)(SE

Cand Rss>0and s#1 , then
2 =S
n(s) =1—;Z(s) = (1 -2"7%T(s)(s € CandRs(s) > 0and s # 1), then

~ (seCandRs(s) > 0and s # 1) and n (s)=(1- 217 ) ¢(s)(s € C and Rs(s) >

oo (_1)
n (s)= Zn:l
Oand s#1, {sis the Riemann Zeta function, n(s) is the Dirichlet n(s) function,

nes) o -1 (-t
a-21-5) ~ (1- 21 s)y<n=1" ps T (1-21-9)

so Riemann {(s) = [TI,(1 = p~*)~' (s € Cand Rs(s) >

0 ands # 1, ne Z*,p € Z*,s €C, n goes through all the positive integers, p goes through all

the prime numbers). Let's prove that {(s) and Z((s) are complex conjugations of each other.

an

1)n

=[ 17%cos(tIn1)— 27%cos(tIn2)+ 37 cos(tIn3)—4~? cos(tIn4)-...]-i[17%sin(tin1)— 27%s

in(tln2)+ 37%sin(tin3) — 47 %sin(tin4)+...]= U-Vi,

1)n

an

=[ 17%cos(tIn1)—27%cos(tIn2)+ 377 cos(tIn3)—4~ cos(tIn4)-...]+i[177sin(tIn1)— 27°¢

sin(tln2)+ 37 %sin(tIn3)—4"7sin(tin4)+...]= U+Vi,

_4\n-1
¥, D o[ 1971 cos(tinl) — 29~ cos(tin2)+ 37~ cos(tin3) —4~7 cos(tind)-...]+i[ 17 sin(tin1)

nl-s

— 27%in(tIn2)+ 37%sin(tIn3)— 47 %sin(tIn4)+...],

oo 1 nk - =[ 19K cos(tin1) — 29 K cos(tin2)+ 37 K cos(tIn3) =47 X cos(tInd)-...]+i[ 17 Ksin(tln

— 2% Ksin(tIn2)+ 39 Ksin(tIn3) — 47 Ksin(tin4)+...],
(s€Cands # 1,n € Z* and n traves all positive integer, k € R),
because ,

(_1)n—1 ) (_1)n—1
(1-217%) (12"

’

Hp(l - P_S)_1=Hp(1 - p—§)—1

(seCands# 1,p € Z* and p traves all prime numbers),
SO
(24)
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-yt o
(1-21-%) (1-21-%) ’

SO

(=n"~ 1200 (GO L GO L 1200 - 1)“ 1
(1—-21—s)<n= 1 s (1-21-%) 3 ,

—1)h-1 e _1\h—1 —
S p-p) = S, a-p

(1-217%) ,
_ oo( 1)n—1 . (_1)11—1 _ —sv—1
Z(S) (1- 21 $) ns - (1-21-9) Hp(l p ) ’

. 1 . (_1)11—1 . (_1)11—1 =
Z(S)=(1_21_§) Y=l i T [I,(1—p~®) l(seCands#1,n€

Z* and n traves all positive integer,p € Z* and p traves all prime numbers),
so

only Z(s)=@ (se€Cands % 1),

so
pl_s-p(l_a_ti)-pl_“p_ti— 1=9(cos(Inp) + isin(Inp)) ~*=p'~(cos(tlnp) — isin(tlnp)),
p'~s = pt ot = pt=opt = pl=7(p) = p'~?(cos(Inp) + isin(Inp))* = (p*~*(cos(tlnp) +
isin(tlnp)) ,(s € Cands # 1,t € Cands # 0,p € Z*)

then

1
(cos(tlnp)—isin(tlnp))

p~®=p~("D=p=opt = (p=7(cos(tlnp) + isin(tinp))

(s€Cands # 1,te Cands # 0,p € ZV),

o

(1 — p~379)=1-(p°*(cos(tlnp) + isin(tlnp)) =1 — p°~* cos(tlnp) — ip°~tsin(tinp),
(1- p_(g))=1-(p‘”(cos(tlnp) + isin(tlnp)) =1 — p~? cos(tlnp) — ip~?sin(tlnp),
(s€Cands# 1,teCandt#0,p € Z"),

p—(1—S)=p(—1+o+ti):p¢7—1pti — pzr ( o— 1(cos(t1np) + 151n(tlnp))

> 1) -[ 19 1cos(tln1)— 29~ 1cos(tin2)+ 39~ 1cos(tIn3) —4°~1cos(tin4)-...]+i[ 1~ Lsin(tIn1)
— 29 Lsin(tin2)+ 37~ 1sin(tin3) — 47~ 1sin(tin4)+...],
Yo, 1) [ 179 cos(tin1)— 27 cos(tIn2)+ 37 cos(tind)—4~ cos(tind)-.. J+i[ 1~ sin(tin1) — 2~°

5|n(tln2)+ 37%sin(tin3)—4"7sin(tin4)+...]
(s€Cands # 1,t € Cands # 0,n € Z* and n traves all positive integer),

1
when 0=>,
then
. 1 n-1
n= 1( nl) s _Zn 1
1—-p =) =1 - p-S)(s €Cands # 1,p € Z%),
and

(1-p @) ~"l=1-pS)'(s€Cands # 1,p € Z*),
M1 —p~ @) =[[,(1 - p)"' (s € Cands # 1, and p traves all prime numbers,k € R),

1)1‘1 1

(seCands # 1,n € Z* and n traves all positive integer,k € R),
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(1 —p @)1 =[[,(1-pS)'(se€Cands # 1,p € Z* and p traves all prime numbers,k €

R),

and

D"l DM EDM e (DM

(1-25) Zn:l nl-s (1_21_5) Zn:l s ’

(—1)n—1 _ _(1_5) 1 (_1)n—1 _ —5v—1
(1-29%) Hp(l p ) - (1_21_5) Hp(l P )

(s€eCands# 1,teCandt+ 0,n € Z* and n traves all positive integer,p €

Z* and p traves all prime numbers),

And
-1 n-1 1 _
11 - =L o1 - p @),
. (-1n-t —5\—
<(5)=(1_21_§)Hp(1_p S) 1 ’
(G D e =t

Z(l - S)= (1_25) ZI’]=1 nl-s ’

oD g (DT
Z(S)=(1_21_§) n=1"_3

(seCands # 1,p € Z" and p travesall prime numbers,n €
Z* and n traves all positive integer),

1
so when 0=, then

Only Z(1 —s)={(s)(s € Cand s # 1)must be true.

—1\yn—-1
Sy S = 19 ¥ cos(tin1) — 27 K cos(tin2)+ 37~ cos(tin3) —4° ¥ cos(tind)-...}+i[ 17 sin(tin1)

— 297 Ksin(tin2)+ 39 Ksin(tin3) — 49 Xsin(tin4)+...],

_4yn-1
v, E0 [ 179 cos(tin1)—2~ cos(tIn2)+ 377 cos(tIn3)—4 ™ cos(tind)-...]+i[1 7 Sin(tin1)— 27 7si

nS

n(tin2)+ 37 %sin(tin3)—4"sin(tin4)+...],

pX=s=pk-o-th=pk-op-ti-pk=0(co5(Inp) + i sin(Inp)) ~*=p*¥~? (cos(tlnp) — isin(tlnp)),

p'~% = pl=7*D = pl=opt = pl=7(pf) = p'~?(cos(Inp) + isin(Inp))* = (p'~7(cos(tinp) +
isin(tlnp)),

(seCands # 1,p € Z and p traves all prime numbers,n €

Z* and n traves all positive integer,k € R),

Then

—(k=5) _py (—k+0+ti) _no—Kkti — Lok 1 (oK ‘o
p p PP = P osanp) isimcanpyy ~ P (cos(tinp) +isin(tinp)),

p~®=p~(@"=p=opt = (p=7(cos(tinp) + isin(tinp)),

p~&=9)=(p?~K(cos(tlnp) + isin(tlnp)),

(s€ Cands # 1,p € Z" and and pis a prime number k € R),

o

(1 — p~®=9))=1-(p®K(cos(tlnp) + isin(tlnp)) =1 — p®~¥ cos(tlnp) — ip® Ksin(tlnp),
(1 — p~%)=1-(p~? (cos(tlnp) + isin(tlnp)) =1 — p~° cos(tlnp) — ip~sin(tinp),

(s€ Cands # 1,p € Z" and and pis a prime number k € R),

So
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when a=l§(k€R) then

n _1yn-1
Yne1 (nll)k+s 21010:1( D (seCands # 1,k € R,n € Z* and n traves all positive integer),

(1-p & )=1-pS)(seCands # 1,k € R,p € Z" and p is a prime number),
and (1 —p & 9)"1=(1 —p~%)~Y(sECand s#1,kER, pEZ" and p is a prime number)),

(1 —p &N 1=[[,(1-p¥)*,(seCands# 1,p € Z" and p traves all prime numbers,n €
Z* and n traves all positive integer, k € R),

and

1 o (DT

( 1)11 -1
(1_21—k+5)2n 1 nk—s (1 21 S)Zn 1

(seCands # 1,p € Z* and p traves all prime numbers,n €
Z* and n traves all positive integer,k € R),
and

1 —(k=5)\ —
Z(k_s)_(l( 21) Ks) Mp(1 —p~ &™),
1 —S\—
(®= s M- p 5™

1 o (-t
{(k— S)=(1_21—k+5) Zn=1( nk)_s (s€Cand s# 1,k €R),

< 1 [es) (_1)n—1
Z(S)=(1_21_§) ne1—— 5 (s€Cand s# 1),

(seCands # 1,p € Z and p traves all prime numbers,n €
Z* and n traves all positive integer,k € R),

so when a=l§(kER) then only g(k —s)={(s)(s€Cand s# 1))(s € Cands # 1,k € R).

According the equation Z(1-s)=21"51t _SCOS(?)F(S)Z(S)(S € Cand s # 1) obtained by
Riemann,since Riemann has shown that the Riemann {(s) function has zero, that is, in
Y1-5)=21"3 ‘SCos( 2)1(s)Z(s) (s € Cand s # 1), {(s)=0(s € Cand s # 1) is true.

When {(s)=0(s € Cand s # 1), then only {(k—35)= {(s)=0(s € Cand s # 1), and

When {(s)=0(s € Cand s # 1),then {(k —s)={(s)=0(s € Cand s # 1). And because

when {(s)=0(s € Cand s # 1), then only {(1 —s)={(5)=0(s € Cands # 1), whichis {(k—s) =
{(s)(s€ Cands # 1,k € R),so only k=1 be true. According {(s)={(1-s) (s € Cand s # 1)=0 and
{(s)=U(s)=(1-s)=0(s € Cand s # 1),then s=s or s=1-s or s=1-s ,so0 SER, or g+ti=1-o-ti ,or

o-ti=1-0-ti, so s € R,or a:% and t=0,or o =% andt €R and t# 0, so t € R, or s:%+0i ,or
s=%+ti(t €Rand t # 0), because ZG) — 400,{(1) = 4+, (1) is divergent, C(%) is more
divergent,so drop them.Beacause only when crz%,the next three equations, (o + ti)=0,

{(1 — o —ti)=0, and ((o-ti)=0 are all true, because ZG) — +00,{(1) » 400, {(1)is
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divergent, Z(%) is more divergent, so drop s=1 and s=§, so only s=%+ti(tER and t # 0,s€C) is
true.Since Riemann has shown that the Riemann {(s)(s € Cand s # 1) function has zero,

that is, in {(1-s)=21"5n ‘SCos(n?S)r(s)Z(s) (seCands#1), {s)=0(s € Cands # 1) is true.

According the equation §(s) = %s(s-l)l"(%)n_ EZ(S)(S € Cand s # 1) obtained by Riemann, so

s
2

&(s)=%(1—s)(seCands # 1), because F(g) = F(g) , and ™ z=T 2 , and because

Z(s)=@(s€c and s# 1), so E(s)=@(sec and s# 1). So when {(s)=0(s € Cand s # 1) ,then

§(s)=0(1 —s) = {(5) = 0(seC and s# 1) and &(s)=&(1 —s)=§(s)=0(s€C and s# 1) must be
true , so the zeros of the Riemann {(s) function and the nontrivial zeros of the Riemann &(s)(s€eC
and s# 1) function are identical, so the complex root of Riemann &(s)=0(s€C and s+ 1)

satisfies s=%+ti(t€R and t # 0), according to the Riemann function Hz(s-l)n_E((s )=¢(t)(s€C and

s# 1,t € Cand t # 0) and he Riemann hypothesis s=%+ti(t € Cand t # 0), because s#1, and

H% #0, n_z #0,s0 H%(s-l)n_z # 0(s€Cand s# 1), and when §(t)=0(t € C and t # 0), then
O] _ 0
s - S
Ge-Dm 2 [Ls-1)n 2

=0(seCands# 1,s € Cand t # 0),so tER and t # 0. So the root t of the equations

[13(s-2)m2q(3+ti)=€(t)=0(sEC and s# 1,t € Cand t = 0), and {(3+ti)=

H%(S-1)1‘[_§Z(§+ti)=§(t)=0(S€C ands# 1,t € Candt # 0) and

3
oo 2y’ _1
4f1 @X 4 cos(%tlnx)dx=£(t)=0(sEC ands# 1,s € Cand t # 0)and

o _3
E(t)=§ -(t%2 + ifl P(x) x 4cos(§tlnx )=0(s€C and s# 1,t € Cand t # 0) must be real and t #
0.If Re(s)=§ (k € R),then {(k-s)=2K"5t ‘%os(?)r(s)l(s)(sec ands# 1) and

E&(k—s) = %s(s-k)l‘ G) ™ gi(s)(s € Cands # 1,k € R) are true, so when {(s)=0(s € Cand s #
1) ,then {(s)=¢(k—s) ={(s) = 0(s€C and s+ 1,s € C)and &(s)=&(k — s)=E(s)=0(s€C and
s# 1,s € C) must be true, and s=§+ti (k€R , tER and t # 0) must be true,

then

[13(s-k)m~2g(5+i)=(t)=0(s€C and s 1,t € Cand t # 0,k € R), and {(x-+i)=

H0) == 0 s=0(s€Cands# 1,t € Candt # 0,k € R),so tER and t # 0. So the root t
-kn2 [E(s-lnz

of the equations Hg(s-k)n_gl(gﬂi)=E(t):0(s€C and s#¥ 1,t € Candt # 0,k € R) must be real

and t # 0. But the Riemann {(s)(s€C and s# 1)function only satisfies
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{(1-5)=21"51 _SCOS(?)F(S)Z(S)(SEC ands# 1)and &(s) = %s(s—l)l‘(%)n_ 2((5) (seCands# 1), is

also say that only {(1-s)=21"5m _SCOS(?)F(S)((S)(SEC and s# 1) is true, so only Re(s)=1—(=% is true,

so only k=1 is true.The Riemann hypothesis and the Riemann conjecture must satisfy the
properties of the Riemann {(s)(s€C and s# 1) function and the Riemann §(s)(s€C and s# 1)
function, The properties of the Riemann {(s)(s€C and s# 1) function and the Riemann &(s)(s€eC
and s# 1) function are fundamental, the Riemann hypothesis and the Riemann conjecture must
be correct to reflect the properties of the Riemann {(s)(s€C and s# 1) function and the Riemann
£(s)(s€eCand s# 1) function, that is, the roots of the Riemann &(t)(tEC and t+ 0)function can

. 1 .
only be real, that is, Re(s) can only be equal to 2 and Im Im(s) must be real, and Im(s) is not

equal to zero.So the Riemann hypothesis and the Riemann conjecture must be correct.
For any complex number s, when Rs(s) is any real number, including Rs(s)>0 and(s #
1)and Rs(s) < 0 and s # 0), then

Riemann {(s) function is C(s)=25ns_1sin(%s)r(1-s)C(l-S)(sEC and s# 1). Suppose
s=o+ti(o ER,tER and t # 0,5€C),let's prove that {(s)(s€C and s# 1) and {(5)(s€C and s+ 1) are
complex conjugations of each other and get the equation C(s):zsns‘lsin(“?s)r(l-s)C(l-s)(sec

and s# 1).

Reasoning 2:

The reasoning in Riemann's paper goes like:

2sin(rs)[1(s — DYs)=(2m)s ¥ ns 1 ((—i)5~1+i5"1) ™ (Formula 3),

based on euler's e*=cos(x) + isin(x) (x € R) can get
ei(_5)=cos(i) +isin(_—ﬂ) =0-i=-i,
2 2
ei(E)=cos(§)+isin(g)=0+i=i ,
then
(=051 4871 = (=)~ (—i)5+ () 1 (D5=(—D) el () 4 1)
iei(_E)s-iei(E)s :i(cos_T“SHsin_T“S)-i(cos?ﬂsin?)=icos(?)—icos($)+sin(?)+sin(?)
=Zsin(?) (Formula 4).

According to the property of M(s-1)=I(s) of the gamma function,and
Yo n571=g(1-s)(n € Z* and n traves all positive integer, s € C,and s # 1),

Substitute the above (Formula 4) into the above (Formula 3), will get

2sin(ms)r(s)g(s)=(2m )S¢(1 —s)2 sin? (Formula 5),
If | substitute it into (Formula5), according to the double Angle formula sin(ns)=25in(?)cos(?),

we Will get {(1-s)=21"51t _Scos(?)r(s)l(s)(sec and s# 1) (Formula 6),
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1-s _
because m 2 # 0 # 0 and F(%) # 0,50 when {(s)=0(s € Cands # 1), then {(1-s)=0(s €

Cands # 1),
Substituting s—>1-s, that is taking s as 1-s into Formula 6, we will get

Z(s)=2Sns'1sin(?)l'(1—s)l(1-s)(sEC and s# 1) (Formula 7),

This is the functional equation for {(s) (s € Cand s # 1). To rewrite it in a symmetric form, use

the residual formula of the gamma function 13]

s
sin(mZ)

r(z)yr(1-z)= (Formula 8)
and Legendre's formula

7, Z 1, i 7 L
FE)rE+)=2""m2r(z) (Formula 9),
Take z=§ in (Formula 8) and substitute it to get

. TS _ T
sm(?)- —1‘(3)1"(1—2) (Formula 10),

In (Formula 9), let z=1-s and substitute it in to get
s —t_1-s s
M1-s)=2"°m zr(T)r(l-E) (Formula 11)
By substituting (Formula 10) and (Formula 11) into (Formula 7), we get
S . s S
i ZF(E)Z(S):IT 2 I'(T)Z(l-s)(sec ands# 1),
also

S
F(Z)n_EZ(s) is invariant under the transformation s—>1-s,

And that's exactly what Riemann said in his paper.
That is to say:

F(Z)H_EZ(S) is invariant under the transformation s>1-s,
also

H(% _ 1)11—2((5): H(? — 1)n‘? {(1-s)(sEC and s# 1),
or

T O)s)=n 2 T9¢(1-s)(s € Cand's # 1)(Formula 2),

Then Z(s)=25n5‘1Sin(?)r(1-s)Z(1-s)(s€C ands= 1),

under the transformation s—>1-s ,will get

s (s

ans—lsin($)r'(1—s)

{(1-5)=2'"5n ‘%os(?)l’(s){(s)(sec and s# 1) (Formula 1). Then {(1-3)=

i)

ans—lsin($)l"(1—s

and s# 1), when {(s)=0 , then if {(1-S)= ) (s€Cand s# 1) is going to make

sense, then the denominator ans‘lsin(?)l“(l-s) #0, Clearly indicates 2% # 0(s€C and
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s# 1), ™71 # 0(s€C and s# 1), ['(1-s) # 0(s€C and s# 1), so Sin(ﬂ?s) can not equal to zero,
S0 Sin(?) # 0(s€C and s+ 1), so s# 2n(n € Z*), and s# —2n(nn € Z*) , and s# 0. So when

{(s)=0, then (1 —s) = {(s)={(s) =0(s€C and s# lands # 2n ands # —2nand s #

0,n€ezZ").
Because

L(s, X(n))=X(n){(s)(s € Cand s # 1,n € Z, and n goes through all the positive integer) and
L(1 —s, X(n))=X(n){(1-s)(s€C and s+ 1, n € Z* and n goes through all the positive integer) ,

and according to Z(s)=25115‘15in(?)l’(l-s)((l—s)(sec and s# 1) (Formula 7), so

only L(s, X(n))=25ns‘15in(“?s)r(l-s)L(l —s, X(n))(s€ Cands # 1,n € Z* )(Formula 12).

According to the property that Gamma function [(s) and exponential function are nonzero, is also
— 1-s s 1-s _

that F(%)i O,andm 2z # 0, according to 11_51"(2) ((s)=n_Tr(¥)((1-s)(sEC and s# 1)

(Formula 2),
Mathematicians have shown that the real part of the complex independent variable s of the
Riemann ¢(s)(s€C and s# 1)function will have zero only if 0<Re(s)<1 and Im(s)# 0, so we agree

nes) 1 o (G N G Vi
(1-21-s) ~ (1-21-5)<N=1 s T (1-21-s)

on Riemann {(s) = [l,(1—=p*) ' (s€Cand0 <

Rs(s)<lands# landIm(s) #0, neneZ*,peneZ*,seC, n goes through all the
positive integers , p goes through all the prime numbers).

According the equation Z(1-s)=21"5m _Scos(?)l'(s)l(s)(sec and s# 1) obtained by Riemann,since
Riemann has shown that the Riemann {(s)(s€C and s# 1) function has zero, that is, in

{(1-5)=2"5n ‘Scos(?)l'(s)l(s) (seCand s# 1), so {(s)=0(s€C and s 1) is true, and so we agree on
7(1-s)= 21751t =S cos( ? )F(s)Ys) (s€ Cand 0 < Rs(s) < lands# landIm(s) # 0 ,n€ Z*,p€

Z*,s €C, n goes through all the positive integers, p goes through all the prime numbers).

According to the property that Gamma function I'(s) and exponential function are nonzero, is also

1-s

that ()% 0,and ™z # 0,

So when {(s)=0(s€C and s# 1), then {(1-5)=0(s€C and s# 1), also must {(s)=((1-5)=0(s€C and
s= 1).

. 1\X w 1
Because e=limy_, (1+5) =i, ~2.7182818284...,

elZ_e—lZ

And because sin(Z)= , Suppose Z=s= g+ti (¢ ER,tER and t # 0), then

2i
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A eis_e—is ei(t‘r+ti)_e—i(o'+ti)
sin(s)=——— = . )
21 21

) oiS_g—i5  gi(0—th)_g=i(o—t)
sin(s)= 2 2i !

according x5 = x(@*h = x7x% = x7(cos(Inx) + i sin(Inx))* = x? (cos(tlnx) + isin(tlnx))(x > 0),
then

eS=e(*t=e’etize(cos(t) + isin(t)) = e?(cos(t) + isin(t)),

els=el(@+=e%(cos(it) + isin(it)) = (cos(o) + isin(a))(cos(it) + isin(it)),

el = el("=e(cos(—it) + isin(—it)) = (cos(o) + isin(o))(cos(it) — isin(it)),

e 1s=e71(0+t)=¢=91(cos(—it) + isin(—it)) = (cos(o) — isin(c))(cos(it) — isin(it)),

e = e~il0=t=e=9i(cos(it) + isin(it)) = (cos(o) — isin(c))(cos(it) + isin(it)),
28=2(0+t)=202t=20(cos(In2) + isin(In2))*=2(cos(tln2) + isin(tln2)),
25=2(p~t)=202-ti=29(cos(In2) + isin(In2))~t =27 (cos(tln2) — isin(tln2)),

8 =0~ =~ Inti=gP =1 (cos(Inm) + i sin(Inm))t=n""!(cos(tlnm) + isin(tlnm)),

8~ l=n(e- 1=t =g~ 1q~ti=o=1(cos(Inm) + i sin(Inm)) ~'=2°"1(cos(tlnm) — isin(tlnm)),

So

S_ S—1_.S—
25=2s, 57 l=qs—1 |

and

eiS_g=is  @i5_ga-i5

2i 2i !
So

sin(s)=sin(s) ,

and

. TS\ . Tt_§
sm(;)—sm( > ) .
And the gamma function on the complex field is defined as:
_(T®s-1 -t
M(s)=f, t"te 'dt,

Among Re(s)>0,this definition can be extended by the analytical continuation principle to the
entire field of complex numbers, except for non-positive integers,
So

M(s)=T'Gs) ,

and

M1-s)=T(1—5s) When 7(1-5)=7(1 —5)=0=((s)={(1-s)=0(s€C and s# 1), and according

Z(s)=2Sns‘lsin(?)r(l-s)l(l-s)(sEC and s# 1), thenOnly Z(s)=®=0(sec and s# 1),is also say
Us)=T(5)=C(1-s)=0(s€C and s# 1). so only {(o+ti)=(o-ti)=0 is true.According the equation
U1-s)=2""5nt _Scos(?)r(s)l(s) (s € C,and s # 1)obtained by Riemann,since Riemann has

shown that the Riemann {(s)(s € C,and s # 1) function has zero, that is, in
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U1-5)=21"5n ‘Scos(%s)r(s)l(s)(s €Cands # 1), {s)=0(s € C,ands # 1) is true, so when

{(s)=0(s € C,and s # 1), then only {(s)={(1-s)=0(s € C,and s # 1) is true.in the process of
the Riemann hypothesis proved about {(s)={(1-s)= {(s)=0, is refers to the {(s) is a functional
number? It's not. Does {(s)={(1-s)={(s)(s € C,and s # 1) mean the symmetry of the {(s)
function equation? Does that mean the symmetry of the equation s=s=1-s? Not really. In my

analyst, {(s). Z(1-s) and {(s) function expression is the same, are Yoo, n~5(n€ Z* and n traves all

positive integer, s € C,and s # 1), so according

to Yo, n° (n € Z* and n traves all positive integer, s € C,and s # 1),{(s)(s € C,and s # 1)
function of the independent variable s, the relationship between s and 1-s only C3=3 kinds,
namely s=s or s=1-s or s=1-s. As follows:

According {(s)={(1-s)=0(s € C,and s # 1) and (s)={(s)=¢(1-s)=0(s € C,and s # 1),then only

s=s or s=1-s or s=1-s ,s0 SER, or o+ti=1-o-ti ,or o-ti=1-o-ti, so s € R, or a=%and t=0,0r
o= % andt €R and t# 0,s0s €R, or s=%+oi ,or s=%+ti(t €R and t # 0),because ((%) -
+00,l(1) -» 4o, {(1) is divergent, {(%) is more divergent,so drop them.Beacause only when
p=% ,the next three equations, {(c + ti)=0, ¢{(1 — o —ti)=0, and ((o-ti)=0 are all true, because
(G) — +00,7(1) » +oo, {(1) is divergent, C(%) is more divergent,so only s=21+ti(teR andt #

. 1 . . . .
0) is true, or say only s=5+t| (teR and t # 0,s€C) is true.Since Riemann has shown that the

Riemann {(s)s € C,and s # 1 function has zero, that is, in {(1-s)=21"5nt “cos(?)r(s)l(s)(s €
Cands # 1), {(s)=0(s € C,and s # 1) is true.

According the equation §(s) = %s(s—l)l" G) m 2{(s)(s € Cand s # 1) obtained by Riemann, so

£(s)=€(1 —s)(s € C,and s # 1), because F(§)=F(§), and T §=1I_§ , and because Z(s)=@(s €

C,ands#1) , so & (s)= @(5 €Cands# 1) So when {s)=0 (s€ C,ands# 1) ,then

§(s)=0(1—s)=1{(s) =0(se€Cands # 1)and §(s)=&(1 —s)=&(s)=0(s € C,and s # 1) must
be true , so the zeros of the Riemann {(s) function and the nontrivial zeros of the Riemann
&(s)(s € C,and s # 1) function are identical, so the complex root of Riemann &(s)=0(s €

C,ands # 1) satisfies s= % +#i(t€ER andt+#0) .According to the Riemann function
H% (s-1)mz2¢s )=¢(t) (teCandt+0,seCands+ 1) and he Riemann hypothesis
s=§+ti(tec and t # 0), because s#1, and H% #0, T 2% 0, so H%(s-l)ﬂ_E #0, and when

£(t)=0, then H%(s-l)n%((%ﬂi):ﬁ(t):o, and
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((%+ti)= 5 5 = 0 s=0 , so tERandt+ 0. So the root t of the equations

Mis-Dn2 T2

© GI(XZLIJ &)

H%(s-l)n_§((§+ti) &(t)=0 and 4f Ta cos( tlnx)dx— &(t)=0 (t€ Candt # 0)and

E(t)=% -(t2 + %)floo‘li(x) X_Z cos(%tlnx)=0(t € Candt # 0) must be real and t+#0. If
Re(s)= g (k € R),then {(k-s)=2K"5m *cos(?)l’(s)((s)(s €Cands# 1,keR) and §(k—>5s) =

%s(s—k)F(%)n_ EZ(S)(S € C,and s # 1,k € R)are true, so when {(s)=0(s € C,and s # 1,then
0(s)=¢(k—s)=10(s) =0(s € C,and s # 1,k € R)and &(s)=&(k —s)=§(s)=0(s € Cand s #

1,k € R) must be true, and s=§+ti (keR,t€ER and t #) must be true, then

T35k 2¢(S+ti)=€(t)=0(keR,teR and t # 0,k € R), and

3O 0
H(S k)’l‘[Z H(s KT 2

Z(§+ti) s=0(k€R,teERand t# 0,s € Cands # 1),so tERandt # 0. So

S
the root of the equations H%(s-k)n_il(gﬂi)=E(t)=0(k€R,teR andt# 0,s€Cands # 1)
must be real and t# 0 . But the Riemann {(s) function only satisfies

U1-s)= 2175 ~s cos( > )r(s)Ys)( s € Cands # 1 )and &(s) == s(s 1) F( udl 2((5)(5 €
Cands # 1), is also say that only Z(1-s)=21"5nt _Scos(?)r(s)l(s)(s € Cands # 1)is true, so

only Re(s =—== (k € R) is true, so only k=1 is true.The Riemann hypothesis and the Riemann

conjecture must satisfy the properties of the Riemann {(s)(s € C,and s # 1) function and
the Riemann §&(s)(s € C,and s # 1) function, The properties of the Riemann {(s)(s €
C,and s # 1) function and the Riemann &(s)(s € C,and s # 1) function are fundamental,
the Riemann hypothesis and the Riemann conjecture must be correct to reflect the
properties of the Riemann {(s)(s € C,ands # 1) function and the Riemann§(s)(s €
C,and s # 1) function, that is, the roots of the Riemann §(t)(t € C,and t # 0) function can

only be real, that is, Re(s) can only be equal to %, and Im(s) must be real, and Im(s) is not

equal to zero.So the Riemann hypothesis and the Riemann conjecture must be correct.
Riemann found in his paper that

I1 G - 1) 2 U(s) = f1°° P(x) Xg_ldx+f1OO q;(i) X7 dx+ %fol(x% —xg_l)dx

1+s
f P(x) (xz X 2 )dx(s € Cand s # 1)(s€Cand s# 1), Because and

1
s(s 1) s(s—1)

S 1+s
floo l|J(X)(XT1+X_T)dx are all invariant under the transformation s—>1-s If | introduce the

auxiliary function Y(s)=[] G — 1) m 2{(s)(s € C,and s # 1),So | can just write it as
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U(s)=y(1-s). But it would be more convenient to add the factor s(s — 1)to Y(s) and introduce

the coefficient %, which is exactly what Riemann did, is that to take

S
&(s) = %s(s—l)F G) 1 2{(s)(s€ Cand s # 1).Because the factor (s-1) cancels out the first pole of
U(s) at s=1, And the factor s cancels out the pole of FG) at s=0, and s is equal to -2, -4,
-6,...,the rest of the poles of FG) cancel out . So &(s)is an integral function.And the factor
s(s — 1) obviously doesn't change under the transformation s— 1 —s,so we also have the

function &(s)=&(1—s)=0(s€Cands# 1), base on (1-s)=2175m S cos( ? )E(s)Us)( s €

Cands # 1). At the same time, according to {(1-s)=2175Tr ‘Scos(?)l'(s)l(s)(s €Cands # 1),

if {(s)=0 (s€C and s# 1),then must {(1-s)=0 (s€C and s# 1), is that to say {(s)={(1-s)=0(s€C and

s# 1). According to Riemann's hypothesis s=%+ti(tEC,andt¢ 0), s and t differ by a linear

. . . 1 . 1.
transformation . It's a 90 degree rotation plus a translation of 7 So line Re(s)= S in the s plane
corresponds to the real number line in the t plane,the zero of Riemann {(s)(s € Cand s # 1) on

- . 1 .
the critical line Re(s)= > corresponds to the real root of (t)(teCandt# 0). In Riemann

function £(t)(t € Cand t # 0), the function equation £(s)=£(1 —s)(s € Cand s # 1)becomes
equation &(t)=t(—t)(t€ Candt # 0) is an even function, an even function is a symmetric
function, it’s zeros are distributed symmetrically with respect to t=0 The function &(t)(t €

C,and t # 0) designed by Riemann and Riemann's hypothesiss = %+ titeCandt# 0,s €

C,ands # 1) and &(s)=£(1 —s)(s € Cand s # 1)are equivalent to {(t)=E(—t)(t€ Candt #
0).So the function £(s)(s € Cand s # 1) is also an even function.The zero points on the graph
of an even function £(s)(s € Cand s # 1) with respect to the coordinates of its argument on
the real number line equal to some value are symmetrically distributed on the line perpendicular

to the real number line of the complex plane. When &(t)=0(t € Candt # 0) , is also that

E(D)=E(—t)=0(t € Cand t # 0),the zeros of &(t)(t € Candt # 0)are symmetrically distributed
with respect to t equals 0.When §(s)=0(s € Cand s # 1),is also that &(s)=£(1 —s)=0(s €
Cands # 1),the zeros of £(s)(s € Cands # 1) are symmetrically distributed with respect to

point (%,Oi) on a line perpendicular to the real number line of the complex plane.So
when £(s)=£(1 —s)=0(s € Cands # 1), s and 1-s are pair of zeros of the function &(s)(s €
Cands # 1) symmetrically distributed in the complex plane with respect to point (%, 0i) on a

line perpendicular to the real number line of the complex plane.When {(s)=0(s€C and s# 1), then
{(1-s)=0(s€C and s# 1) , is aslo that {(s)={(1-s)=0(s € Cand s # 1). We find {(s)={(1-s)=0(s €
Cands # 1) and £(s)=£(1 —s)=0(s € Cand s # 1) are just the name of the function is
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- . . . 1.
idifferent,the independent variable s is equal to E+t|(tEC,sEC),that means that the zero

arguments of function {(s)(s € Cand s # 1) and function &(s)(s € Cands # 1) are exactly the
same,so the zeros of the {(s)(s € Cand s # 1) function in the complex plane also correspond to

the symmetric distribution of point (5’ 0i) on a line perpendicular to the real number line in the

complex plane, so When {(s) = {(1 —s) = 0(s € C,and s # 1),s and 1-s are pair of zeros of the
function ¢(s)(s € Cand s # 1) symmetrically distributed in the complex plane with respect to

. 1. . . .
point (E’ 0i) on a line perpendicular to the real number line of the complex plane.We got

Z(_s)=((§)(s=a+ti, o € R, t ERand t # 0) before,When t in Riemann's hypothesis

s=%+ti(teC,s€C and t # 0) is a complex number, and s=§+ti=p+yi , then s in ((_S)=Z(§)(s=a+ti, o€

R, teRand t # 0) is consistent with s in Riemann's hypothesis s=§+ti(tEC,sEC and t # 0).If

U(s)=0(s)=0(s=p+ti,p €R, tERandt +# 0),Since s and s are a pair of conjugate complex
numbers,So s and S must be a pair of zeros of the function {(s)(s € Cands # 1) in the
complex plane with respect to point (a,0i) on a line perpendicular to the real number line.s is a
symmetric zero of 1-s, and a symmetric zero of s. By the definition of complex numbers, how
can a symmetric zero of the same function {(s)(s € Cand s # 1) of the same zero independent
variable s on a line perpendicular to the real number axis of the complex plane be both a
symmetric zero of 1-s on a line perpendicular to the real number axis of the complex plane with

. 1 . . - . . .

respect to point (E' 0i) and a symmetric zero of s on a line perpendicular to the real number axis
. . . 1

of the complex plane with respect to point (0,0i)? Unless o and S are the same

. 1 - . . . o
value, lsalsothat(i:E, and only 1-s=s is true, and 1-s=s is wrong.Otherwise it's

impossible,this is determined by the uniqueness of the zero of the function {(s)(s € Cands #
1) on the line passing through that point perpendicular to the real number axis of the complex
plane with respect to the vertical foot symmetric distribution of the zero of the line and the real
number axis of the complex plane,only one line can be drawn perpendicular from the zero
independent variable s of the function {(s)(s € Cands # 1) to the real number line of the
complex plane, the vertical line has only one point of intersection with the real number axis of
the complex plane. In the same complex plane, the same zero point of the function {(s)(s €
Cands # 1) on the line passing through that point perpendicular to the real number line of the
complex plane there will be only one zero point about the vertical foot symmetric distribution of
the line and the real number line of the complex plane.Because @:Z(E)(s:cﬂti,a ER,
t ERand t # 0), then if {(o + ti)=0, then {(o — ti)=0, and because {(s)={(1 — s)=0(s€C and
s# 1), then {(1-0-ti)=0, and because {(s)={(1—s)=0(s € Cands # 1), then {(1-0-ti)=0.
The next three equations, {(o + ti)=0, {(¢o — ti)=0, and {(1-0-ti)=0, are all true, so only 1-o=0

1
is true,only s=5+ti(t€R and t # 0) is true.Since the harmonic series ¢(1) diverges, it has been

proved by the late medieval French scholar Orem (1323-1382).The Riemann hypothesis and the
Riemann conjecture must satisfy the properties of the Riemann {(s)(s € Cand s # 1) function
(36)
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and the Riemann §(s)(s € Cand s # 1) function, The properties of the Riemann {(s)(s€C and
s# 1) function and the Riemann &(s)(s€C and s# 1) function are fundamental, the Riemann
hypothesis and the Riemann conjecture must be correct to reflect the properties of the Riemann
(s)(s€C and s# 1) function and the Riemann £(s)(s€C and s# 1) function, that is, the roots of

the Riemann &(t)(t€C and t# 0) function must only be real, that is, Re(s) can only be equal to %,
and Im(s) must be real, and Im(s) is not equal to zero.So the Riemann hypothesis and the

Riemann conjecture must be correct. Riemann got H%(s-l) m 2{(s)=E(t) (tER and t # 0,
o _3
s€Cands # 1),and E(t)% -(t2 + i)f1 Y(x)x 2cos G tlnx ) dx(tERand t # 0,s€Cand s # 1) in

his paper, or ]_[%(s-l)n%{(s)i(t)(tER andt+# 0,s€Cands # 1) and

w«mwan

&(t)= 4f T3 cos( tinx)dx(t e Randt# 0,s € Cands # 1) M Because

Z(%+ti)=0(t€R and t # 0), so the roots of equations Hz(s-l)n_g Z(%+ti )=¢(t)= O(tER and t #

w«mwwn -

0,seCands # 1) and 4f cos( tlnx)dx=¢(t)= O(tERand t # 0,seCand s # 1) and

I _3
E(t)=% (% + i)f1 ¥Y(x) x 4cos(%tlnx)=0(te Randt#0,s€Cands# 1) must all be real

numbers. When ((s)=0(s € Cands # 1) and §(t)=0(t € Cand t # 0), the real part of the
equation §(t)=0(t€C) must be real between 0 and T. Because the real part of the equation &(t)=0

. T, T T .
has the number of complex roots between 0 and T approximately equal to Zranr o [ ,This

result of Riemann's estimate of the number of zeros was rigorously proved by Mangoldt in 1895.
Then,when ((s)=0(s€C and s# 1) and §(t)=0(t € C and t # 0), the number of real roots of the
real part of the equation §(t)=0(t € C and t # 0) between 0 and T must be approximately equal

T T T
to —In———"
2T 2T 2T

,50 when the Riemann {(s)(s€C and s# 1)function has nontrivial zeroes, then
the Riemann hypothesis and the Riemann conjecture are perfectly valid.

x5~ 1dx
eX—1

According to the Zsin(ﬂs)l'[(s—l)((s)=f(:;O Riemann got in his paper and the

{(1-s)=21"51t ‘Scos(?)l'(s)l(s)( s € Cands # 1), We know that the Riemann {(s)(s€C and s#1)

function is a two-to-one mapping, or even a many-to-one mapping deterministic universal
function, or a one-to-two mapping, or even a one-to- many mapping deterministic universal
function. If we consider the Riemann {(s)(s€C and s #1) function as a general complex number
whose domain includes real numbers, then s=-2n(n is a positive integer) is the only class of real
zeros of the Riemann {(s)(s€C and s#1) function at the root, If we consider the Riemann {(s)(seC
and s#1) function as a general complex number whose domain does not include real numbers,

then s=%+ti(tER and t#0) is the only class of complex zeros of the Riemann {(s)(s€C and s#1)

function at the root, so the zero real root of the Landau-Siegel function L(f,1)(8 €R) does not
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exist.

Definition:

Assuming that a(n) is a uniproduct function, then the Dirichlet series Y. 52, a(n)n™S (s €

Cands # 1,n € Z* and n goes through all the positive numbers) is equal to the Euler product

[I,P(p, s)(s € Cands # 1,p € Z* and p goes through all the prime numbers) .Where the

product is applied to all prime numbers p, it can be expressed as: 1+a(p)p~S+a(p?)p~25+..., this
can be seen as a formal generating function, where the existence of a formal Euler product
expansion and a(n) being a product function are mutually sufficient and necessary conditions.
When a(n) is a completely integrative function, an important special case is obtained,where

P(p, s)(s€ Cands # 1,p € Z* and p goes through all the prime numbers) is a geometric

series, and P(p, s)=#p)p_S
(s€ Cands # 1,p € Z* and p goes through all the prime numbers).When a(n)=1,it is the
Riemann zeta function, and more generally the Dirichlet feature.
Euler's product formula: for any complex number s,
Rs(s) > 1ands # 1,then Y72, n™5 =
[, - p~S) (s € Cands # 1,p € Z* and p goes through all the prime numbers,n €
Z* and n goes through all positive numbers), and when Rs(s) >

1 Riemann Zeta function ¢ (s) = ¥5-;n™° = [[,(1 —=p~*)™* (s € CandRs(s) > Oands #

1,n€ Z*,p € Z*,s €C, n goes through all the positive numbers, p goes through all the prime
numbers).
Riemann zeta function expression:
{(s)=1/15+1/25+1/35+...41/m® (m tends to infinity, and m is always even).
(1)Multiply both sides of the expression by (1/25),
(1/23)q(s)=1/15(1/25)+1/25(1/25)+1/35(1/25)+...+1/m®5(1/25)=1/25+1/45+1/65+...+1/(2m)3
This is given by (1) - (2)
Us)-(1/2%)Ys)=1/15+1/25+1/35+..41/m®-[1/25+1/45+1/65+...+1/(2m)®]
The derivation of Euler product formula is as follows:
Us)-(1/2%)Ys)=1/15+1/35+1/55+...+41/(m — 1)5.
Generalized Euler product formula:
Suppose f(n) is a functionthat satisfies f(n, )f(n,)=f(n;n,) and Y, |f(n)| <+ o (n; and n, are
both natural numbers), then}.,, f(n)=[T,[1 + f(p) + f(p?) + f(p*)+...].
Proof:
The proof of Euler product formula is very simple, the only caution is to deal with infinite series
and infinite products, can not arbitrarily use the properties of finite series and finite products.
What | prove below is a more general result, and the Euler product formula will appear as a
special case of this result.
Dueto Yo, |f(n)| < +o, so 1+ f(p) + f(p?) + f(p3)+... absolute convergence.Consider the
part of p<N in the continued product (finite product),Since the series is absolutely convergent
and the product has only finite terms, the same associative and distributive laws can be used as
ordinary finite summations and products.
Using the product property of f(n), we can obtain:
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[Tp<n[1 + f(p) + f(p?) + f(p3)+...]=Y, f(n).The right end of the summation is performed on all
natural numbers with only prime factors below N (each such natural number occurs only once in
the summation, because the prime factorization of the natural numbers is unique).Since all
natural numbers that are themselves below N obviously contain only prime factors below N, So
% 'f(n) = X<y f(n) + R(N)Where R(N) is the result of summing all natural numbers that are
greater than or equal to N but contain only prime factors below N.From this we get: Hp<N[1 +
f(p)+f(p2)+f(p3)+..]=n<AV f(n) + R(N).For the generalized Euler product formula to hold, it is
only necessary to prove lim,_,4 R(N)=0,and this is obvious,because |R(N)|

< Tpan If)] ,and X, [f(m)] <+ o sign of

limp_, e Ynen [F(N)] =0,thus lim,,_, ., R(N)=0.Beacuse 1 + f(p) + f(p?) + f(p3)+..=1 +
f(p)+f(p)?+f(p)3+...=[1 — f(p)]~ 2, so the generalized Euler product formula can also be written
as:

2nf(m) =TIp[1 - f(p)]~1.In the generalized Euler product formula, take f(n)=n"%,Then
obviously Y, |f(n)| < + oo corresponds to the condition Rs(s)>1 in the Euler product formula,
and the generalized Euler product formula is reduced to the Euler product formula.

From the above proof, we can see that the key to the Euler product formula is the basic property
that every natural number has a unique prime factorization, that is, the so-called fundamental
theorem of arithmetic.

For any complex number s, X(n) is the Dirichlet characteristic and satisfies the following

properties:

1: There exists a positive integer q such that X(n+qg)= X(n);
2: when n and q are not mutual prime, X(n)=0;

3: X(a). X(b)= X(ab) for any integer a and b;
Reasoning 3:
If 0 < Re(s) < 1then
X
L(s, X(n))=2§=1% (neZ,,p €Z,,s ECands* 1, ngoes through all the positive numbers, p

goes through all the prime numbers, X(n)ER

1

and (X(n) # 0),a(n) = a(p)=X(n) ),P(p, S)=— =

).

Next we prove the generalized Riemann conjecture when the Dirichlet eigen function X(n) is any

real number that is not equal to zero,
and

n(s)=Xn= (_1):_1 (s € CandRs(s) > 0and (s # 1))and (ns)=(1-2175)(s)(s € C and Rs(s) >

nes) 1 -t (-pnt

0 ands # 1), {(s) is the Riemann {(s) = 12" (1_21_5)2{?:1 PO ST [I,(1 -

p~3) 1 (s € CandRs(s) > 0ands # 1, n€ Z* and n goes through all the
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positive integers, p € ZTand p goes through all the prime numbers), so

w X . _ 1
GRH(s, X(n) )=L(s, X(n) )= anl? = anla(n)n S = Hp P(p,s) = Hp(m)( ne
Zt,p € Z*,seCand s# 1, n goes through all the positive integers, p goes through all the prime
numbers, X(n)ER and (X(n) # 0),a(n) = a(p)=X(n) ),P(p, s)=1_a(;)p_s).

1
(cos(tlnp)+isin(tlnp))

a(p)p~® =a(p)p° = a(p)(p~°(cos(tlnp) — isin(tlnp))(s € Cands # 1,t €

Cand t#0),

(1—a(p)p™) =1- a(p)(p~?(cos(tlnp) — isin(tlnp))
a(p)p~° cos(tlnp) + ia(p)p~°sin(tlnp)(s € Cands # 1,t € Cand t # 0),

1
[N
|

1
(cos(tlnp)—isin(tlnp))

a(p)p~S=a(p)p° =a(p)(p~°(cos(tlnp) + isin(tlnp))(s € Cands # 1,t €

Candt=+0),
(1 —a(p)p~5)=1-a(p)p~° cos(tlnp) — ia(p)p~®sin(tlnp)(s € Cands # 1,t € Cand t # 0) ,
because

(1—a(p)p™®)=1—a(p)pS(s€ Cands # 1,p € Z* and p is a prime integer ),

SO

(1—a(p)p®)=(1 —a(p)pS)"1(s€Cands # 1,p € Z* and p is a prime number ),

SO

[Tp(1 —a@)p~) *=[1p(1 —a(p)p™)~*
(s€ Cands # 1,p € Z* and p goes through all the prime numbers)) .

becuse L(s, X(n))=Y 5=, a(m)n™ = [[,(1 —a(p)p~) "' (s € Cand s # 1)and

L(, x(m)=Xi= a(m)n~s = [[,(1 —a(p)p™®) "' (s € Cand s # 1),

(s € Cands # 1,n € Z* and n goes through all the positive integers, p €
Z* and p goes through all the prime numbers)). For the Generalized Riemann function

o X o - o
L(s, X(n))=2n=1? = Zn=1a(mn™ =] 1-a(p)p~*

(X(n)eR and (X(n) #0,a(n) =a(p)= X(n) ),P(p,s)=

1
=———,s€Cands# 1,n€
1-a(p)p

Z* and n goes through all the positive integers, p €
Z* and p goes through all the prime numbers)) .so L <s, X(n)>=L <§, X(n))

(s € Cands # 1,n € Z* and n goes through all the positive integers).

a(p)p'*=a(p)p 7P =a(p)p'"x " =a(p)p'~?(cos(Inp) + isin(Inp))~* =a(p)p' 7 (cos(tinp) —
isin(tlnp))(s€C and s#1,teC and t+0)

(seCands# 1,teCandt# 0,,p € Z" and p goes through all the prime numbers),

a(p)p'~® = a(p)pt-7® = a(p)p'~7p" = a(Pp' 7 (p") =
a(p)p*~?(cos(Inp) + isin(Inp))t=a(p)p'~? (cos(tlnp) — isin(tlnp))(s € Cands # 1,t € Cand t #
0,p € Z* and p goes through all the prime numbers),
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then

_ 1
a(p)p~@~ = a(p)p !

(cos(tlnp)—isin(tlnp))

= a(p)(p°*(cos(tlnp) + isin(tlnp)) (s € Cand s #

1,teCandt= 0,p € Z* and p goes through all the prime numbers),
(1-a(p)p™ ™) =1- a(p)p?~* (cos(tnp) + isin(tinp))
a(p)p°~? cos(tlnp) —a(p)p? lisin(tlnp)

(seCands =+ 1,teCandt+ 0,p € Z" and p goes through all the prime numbers, ),

(1 - a(p)p_g) =1- a(p)(p~?(cos(tlnp) + isin(tlnp)) = 1-
a(p)p~? cos(tlnp) —ia(p)p ?sin(tlnp) (s € Cands # 1,t e Candt # 0,p €

1}
[EnN
|

Z* and p goes through all the prime numbers),

When a% , then

(1-a(p)p @) =(1—a(p)pS)(s € Cands # 1),
(1—a(E)p N *=(1- a(p)p‘g)_l(s € Cands # 1),

SO
[,(1 —a(p)p~ @) =[[,(1 —a(p)p~*)"*(s € Cand s # 1),

becuse L(1 —s, X(n))=[1,(1 —a(p)p~ @ 9)"* and L(5, X())=[1,(1 —a(p)p~®)~*, n€ Z*,p €

Z*tseCands# 1, ngoes through all the positive integers, p goes through all the prime

1

numbers, X (n)eRand (X(n) # 0),a(n) = a(p)=X(n) ),P(p, s)=m.

o)
Only

L(1 —s, X(n)=L(, X(n))(s € Cand s # 1,n € Z* and n goes through all positive integers),
and

Only L(1 =5, X(n))=L(s, X(n))(s€ Cand s # 1)

(s € Cands # 1,n € Z* and n goes through all positive integers),

Because L(s, X(n))=X(n){(s) (s ECand # 1, n€ Z* and n goes through all the
positive integers), and L(1 —s, X(n))=X(n){(1-s)(s EC and # 1, n€ Z* and n goes through

all the positive integers), so When only 0:%, it must be true that L(s, X(n))=L(s, X(n))(s €C

and # 1,n€ Z* and n goes through all the positive integers),and it must be true that

L(1—s, X(n))=L(, X(n))(s ECand s # 1,n€ Z* and n goes through all the

positive integers),Suppose k€ R,

a(p)p*~s =a(p)p® 77" =a(p)p*~7x~" =a(p)p*~?(cos(Inp) + isin(Inp))~* =a(p)p*~?(cos(tinp) —
isintlnp (s€C and s#1,teC and t#0,keR),

a(p)p*~*=a(p)p*-7*M=a(p)p*~7pt=a(p)p*~? (p") = a(p)p"~?(cos(Inp) + isin(Inp))‘=
a(p)(p*~?(cos(tlnp) + isin(tlnp)) (s € Cands # 1,t € Cand t # 0,k € R),

(41)



The proof of the Riemann conjecture

then

a(p)p~&-9=a(p)pk !

(cos(tlnp)—isin(tlnp)) 4

(p)

(p° ¥(cos(tlnp) + isin(tlnp))(s € Cands # 1,t € Cand t # 0,k € R),
(1—aPp~*) =1- (a(p)p”~*(cos(tlnp) + isin(tinp))
a(p)p° ¥ cos(tlnp) — ip’ Xsin(tlnp)(s € Cands # 1,t € Candt # 0,p €
Z* and p is a prime numeber,k € R),

(1—a(p)p™) =1- (a(p)p~? (cos(tlnp) + isin(tlnp)) = 1-
a(p)p~? cos(tlnp) —ia(p)p~?sin(tlnp)(s € Cands # 1,t € Cand t # 0, p is a prime numeber),

1}
[EnN
|

When a=§(ke R),

then
(1—a(p)p~®)=(1 —a(p)p™)(s € Cand s # 1,p € Z* and p is a prime integer, k € R),

(1—a(p)p~*)~1=(1 - a(p)p‘g)_l(s € Cands # 1,p € Z* and p is a prime integer, k € R),

o)
[1,(1 — a(p)p~®)=[],(1 — a(p)p~*)"* (s € Cand s # 1)(s ECand
# 1,k € R,p € Z* and p goes through all the prime numbers, k € R) ,

becuse L(k —s, X(n))=Hp(1 - a(p)p_(k_s))_1 (s € Cands # 1,pisaprime numeber,k €
R),
and L(s, x(n))=[],(1 — a(p)p*)(s€Cands # 1,n €

Z*,n goes through all positive integers,p €
Z* and p goes through all the prime numbers), for the generalized Riemann

function L(s, X(n))(s €Cand # 1,n€ Z* and n goes through all the positive integers, p €
Z* and p goes through all the prime numbers, X(n)€R and x(n) # 0, a(n) =

a(p)=x()),P(p , s)=

SO

Only L(k —s, X(n)>=L (E, X(n))

)-

1-a(p)p~*

(s€Cands# 1,n € Z*and n goes through all positive integers, k € R),
and

Only L (k -5, X(n)>=L <s, X(n)),
(s€Cand s# 1) seCand s# 1,n € Z* and n goes through all positive integers, k € R),

And because Only L (1 —s, X(n)>= L <§, X(n))

(s€Cand s# 1,n € Z* and n goes through all positive integers),so only k=1 be true.
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o X@)  X@n(Gs) XM o (=Dt
GRH(S, X(n)>=L<S, X(n))=z n? (11121 SS) (1_;_5) ( n)s

X@) <o (~1)n? "N
Ta- ;1‘5) n=1( r:’zrti = 1)21 S)Z X(n )(n” n“) B

)nloo 1

— 21-9) z X (™) (cos(In((n)) + isin(In(n)))t

n-1

)21 S)z X(n)(n"°(cos(In(n)) + isin(In(n)))™")
( Dl i X(m)n~°(cos(tin(n)) — isin(tln(n)) )

—215)

(teCandt# 0,s € Cands # 1,n € Z* and n goes through all positive integers),

GRH(S, X(m)) = LG, X() ZX(H) KON __Hm 5

-2 (1-294& w

L0 S o
_(1_21—§)n=1 no-ti —p1- S)Z ()(

—tl

1
21 5) Z(X( )n" (cos(In(n)) + isin(In(n)))~ =

Ta- 21—§) nz=1( X(mn®(cos(In(n)) + isin(In(n))") =

—Z (X(M)n~°(cos(tln(n)) + isin(tln(n)))
(1—21-35)

(teCandt# 0,s € Cands # 1,n € Z*,n goes through all positive integers).

GRH (1 —s, x(n)> _ L<1 _s, X(n)) _ Z Xm)  X(mn(1-s)  X(n) (—1)n1

L ns = (1-29) - (1-29) L pl-o-ti
( 1)n 1
2 10 (i)
( nrt o1
=729 Z( X(m)n°*(cos(tin(n)) + isin(tln(n))),

(teCandt# 0,s € Cands # 1,n € Z*,n goes through all positive integers).

Suppose
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U=[ X(n)1%cos(tin1)— X(n)2~?cos(tin2)+ X(n)3~“cos(tin3)— X(n) 4~ cos(tind)+...],

V=[ X(n)1"?Sin(tin1)— X(n)27%sin(tIn2)+ X(n)3 “sin(tin3)— X(n)4~’sin(tin4)+...],

then

L(s, X(n))=L(5, X(n))(s€EC and s# 1,n € Z"and n goes through all positive integers).

And n goes through all the positive numbers, so n=1,2,3,... let's just plug in, so

L(s, X(n)) = Ynoi—— X( ) =[ X(m)17° cos(tinl) — X(n)277 cos(tin2)+ X(n)3™° cos(tIn3)
—X(n) 477 cos(tind)+...]-i[ X(n)17? sin(tinl) — X(n)277 sin(tln2)+ X(n)377 sin(tIn3)
— X(n)4 ’sin(tIn4)+...]= U-Vi

(s € Cands # 1,n € Z© and n goes through all positive integers ) ,

U=[ X(n)17%cos(tin1)— X(n)2~%cos(tin2)+ X(n)3~?cos(tIn3)— X(n) 4~ cos(tInd)+...],

V=[ X(n)1 %sin(tin1)— X(n)2~%sin(tIn2)+ X(n)3 “sin(tin3)— X(n)4~’sin(tin4)+...],

Then

L(s, X(n))=Yneq n§ [ X(n)17%cos(tin1)— X(n)2~?cos(tIn2)+ X(n)3~?cos(tin3)—4~“cos(t!
nd)+...]+i[ X(n)17sin(tin1) — X(n)277sin(tIn2)+ X(n)37?sin(tIn3) — X(n) 4~ “sin(tind)+ ...]=
U+Vi,(s € Cand s # 1,n € Z* and n goes through all positive integers ) ,

U=[ X(n)1%cos(tin1)— X(n)2~%cos(tIin2)+ X(n)3~“cos(tin3)— X(n) 4~ cos(tind)+...],

V=[ X(n)1 %sin(tin1)— X(n)2 ’sin(tIn2)+ X(n)3’sin(tIn3)— X(n)4 7sin(tin4)+...],

L(s, X(n))and L(s, X(n)) are complex conjugates of each other,thatis L(s, X(n))=L(s, X(n))

(s € Cands # 1,n € Z* and n goes through all positive integers ) ,

When a%, then

L(s, X(n))=L(1 —s, X(n))=U-Vi

(s € Cands # 1,n € Z* and n goes through all positive integers ) ,

U=[ X(n)1%cos(tin1)— X(n)2 ?cos(tin2)+ X(n)3~?cos(tin3)— X(n) 4™ cos(tind)+...],

V=[ X(n)1 %sin(tIn1)— X(n)2 ’sin(tIn2)+ X(n)3’sin(tIn3)— X(n)47sin(tin4)+...].

(44)



The proof of the Riemann conjecture

and When a- , then only L<1 —s, X(n)) < S, X(n))

(s € Cands # 1,n € Z" and n goes through all positive integers ) ,

Xmnk-s) _ X() (o1
(1-21- k+5) (1-21-k+s) Zn 1 pk—p-ti —

GRH(k —s, X(n)) = Lk—s, X(n)) =

(=t _
(1-21- k+s> Zn 1 x(n)(nk O'n—tl)

%Zf{;l(X(n)n"_k(cos(tln(n)) + isin(tln(n))(s€ Cands # 1,t€ Candt # 0,k €

R,n € Z* and n goes through all positive integers) ,

W=[ X(n)1°~ Keos(tinl)— X(n)2°~ Keos(tin2)+ X(n)3”‘ cos(tin3)— x(n) 4°~ Keos(tind)+...]
U=[X(n)1”_ksin(tln1)— X(0)2° Ksin(tin2)+ x(n)3° Ksin(tin3)— Xx(n)4° Ksin(tin4)+...] .
k
When a=E(kE R), then
Only L(k—s, X(n))=L (§, X(n)) =W - Ui
(s€ Cands # 1,k € R,n € Z* and n goes through all positive integers ) ,but the Riemann

Us) function only satisfies {(1-s)=21"51 ‘Scos(%s)r(s)z(s) (s€C and s# 1), so when {(s)=0(s€eC

and s# 1), then only (1 —s)= {(s)=0(s€C and s# 1),and when {(5)=0, then only {(1 —s)=
U(s)=0(s€C and s# 1), which is {(k —s)={(1 —s) = {(5)(s€C and s# 1),s0 only k=1 be true.so

only Re(s =l§=% (k € R).So Only L(1—s, X(n)) = L(, X(n))(s€C and s# 1,n € Z*) is true, so

only k=1 is true.According the equation {(1-s)=2'"Sm ‘%os(?)r(s)l(s)(sec and s#
1)obtained by Riemann,since Riemann has shown that the Riemann {(s)(s€C and s# 1)

function has zero, that is, in {(1-s)=21"5nt ‘Scos(?)r(s)l(s)(s € Cand s # 1), {(s)=0(s€C and
s# 1) is true. So only when a=% and {(s)=0(s€eCand s# 1) and X(n) #0(n € Z*), then

L(s, X(n))=X(n){(s)=0(s€C and s# 1,n € Z* and n traverse all positives integers) is true.
Because L(s, X(n))=X(n){(s)(s€Cand s# 1,n € Z* and n traverse all positive integers) and
L(1—s, X(n)) = X(n) {(1-s) (s €C and s# 1,n € Z* and n traverse all positive integers), so
When p%, it must be true that L(s, X(n))=L <§, X(n)) (s€Cand s# 1,n € Z* and n traverse all

positive integers), and it must be true that L(1—s, X(n))=L(s, X(n))(s€C and s# 1,n€

Z* and n traverse all positive integers).
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According ¢(1 —s)={(s)=0(s€C and s# 1) and {(s)={(5)={(1-5)=0(s€C and s# 1), so

L(s, X(n))=L(1 — s, X(n))=0(s€C and s# 1,n € Z* and n traverse all positive integers) and

L(s, X(n))=L(s, X(n))=L(1 —5, X(n))=0(seC and s+ 1,n € Z* and n traverse all positive
integers ),then s=s or s=1-s or s=1-s ,so SER, oro+ti=1-o-ti,or og-ti=1-0-ti, so s €

R,or a=§and t=0, or 0 = % andt €R and t# 0, so seé R, or s=%+0i ,or s=%+ti(t ERandt #
0 ), because ¢ (%) — 400,{(1) = 4+0,{(1)is divergent, ¢ (%) is more divergent, so drop =
lands=0. So only s :%+ti (teR,andt # 0,s € C)is true,orsay s =%+ti (te
R,and t # 0,s € C)is true.And beacause only when a=% ,the next three equations, L(a +

ti, X(n)) =0 ( t € R and t #0,n€Z*andn traverseall positive integers ),
L (1 — o —ti, X(n)) =0 (t € R and t # 0,n € Z* and n traverse all positive integers ),and
L (a — i, X(n)>=0 (tECR and t+ 0,,n € Z* and traverse all positive integers) are all true.
And because L(%, X(n))>0(n € Z* and n traverse

all positive integers), so only s=5+t|(tER andt# 0) is trueThe Generalized Riemann

hypothesis and the Generalized Riemann conjecture must satisfy the properties of the

L(s, X(n)(s€C and s# 1,n € Z* and n traverse all positive integers) function, The properties

of the L(s, X(n))(s€C and s=# 1,n € Z* and n traverse all positive integers)function are

fundamental, the Generalized Riemann hypothesis and the Generalized Riemann conjecture must

be correct to reflect the properties of the L(s, X(n))(s€C and

s # 1,n € Z* and n traverse all positive integers ) function , that is, the roots of the

L(s, X(n))=0(s€C and s# 1,n € Z* and ntraverse all positive integers) can only be

s=%+ti(tER and t # 0), that is, Re(s) must only be equal to %, and Im(s) must be real, and Im(s) is

not equal to zero.So the Generalized Riemann hypothesis and the Generalized Riemann
conjecture must be correct.

According L(1 —s, X(n))= L(s, X(n))=0(s€C and s# 1,n € Z* and n traverse all positive

integers),so the zeros of the L(s, X(n))(s€C and s# 1,n € Z* and n traverse all positive

integers) function in the complex plane also correspond to the symmetric distribution of point
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(%,Oi) on a line perpendicular to the real number line in the complex plane,so When L(1 —
s, X(n)) = L(s, X(n)) = 0(s € Cand s # 1,n € Z* and n traverse all positive numbers),s

and 1-s are pair of zeros of the function L(s, X(n))(s€C and s+ 1,n € Z* and n traverse all

positive numbers) symmetrically distributed in the complex plane with respect to point (%,Oi)

on a line perpendicular to the real number line of the complex plane.

We got L(s, X(n)) =L(s, X(n)) (s=o+ti,c ER, t€ER andt+ 0,n € Z* and n traverse all

positive integers) before,When t in Generalized Riemann's hypothesis s=§+ti(tEC andt =+ 0)isa

complex number, and s=§+ti=a+ti ,thensin L(s, X(n))=L(s, X(n))(s=0+ti, 0 ER, t ERand t #

0) is consistent with s in Generalized Riemann's hypothesis s=%+ti(tEC and t # 0), so onlyo =

%.When L(s, X(n)) =L(s, X(n))=0(s=0+ti,0c ER, teRandt # 0,n € Z* and n
traverse all positive numbers),since s and s are a pair of conjugate complex numbers, so s and
S must be a pair of zeros of the Generalized function L(s, X(n))( s € C and

s# 1,n € Z* and n traverse all positive numbers) in the complex plane with respect to
point(p,0i) on a line perpendicular to the real number line.s is a symmetric zero of 1-s, and a
symmetric zero of s. By the definition of complex numbers, how can a symmetric zero of the

same Generalized Riemann function L(s, X(n))(s€C and s# 1,n € Z* and n traverse all

positive integers) of the same zero independent variable s on a line perpendicular to the real
number axis of the complex plane be both a symmetric zero of 1-s on a line perpendicular to the

. . . 1 . . -
real number axis of the complex plane with respect to point (E,OI) and a symmetric zero of s on
a line perpendicular to the real number axis of the complex plane with respect to point (g, 0i)?

1 . 1 -
Unless o and S are the same value, is also that o = > and only 1-s=s is true, only
s=5+t|(t€R and t # 0,s€C) is true. Otherwise it's impossible,this is determined by the uniqueness

of the zero of Generalized Riemann function L(s, X(n))(s€C and

s# 1,n € Z* and n traverse all positive numbers) on the line passing through that point
perpendicular to the real number axis of the complex plane with respect to the vertical foot
symmetric distribution of the zero of the line and the real number axis of the complex plane,Only
one line can be drawn perpendicular from the zero independent variable s of Generalized

Riemann function L(s, X(n))(s€C and s# 1,n € Z* and n traverse all positivenumbers)on the

real number line of the complex plane, the vertical line has only one point of intersection with
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the real number axis of the complex plane. In the same complex plane, the same zero point of

Generalized Riemann function L(s, X(n))(s€C and s# 1,n € Z* and n traverse all positive

integers)on the line passing through that point perpendicular to the real number line of the
complex plane there will be only one zero point about the vertical foot symmetric distribution of
the line and the real number line of the complex plane,so | have proved the generalized Riemann

conjecture when the Dirichlet eigen function X(n)(n€ Z* and n traverse all positive numbers) is

any real number that is not equal to zero,Since the nontrivial zeros of the Riemannian function

{(s)(seC and s# 1) and the generalized Riemannian function L(s, X(n))(s€C and s# 1,n €
Z* and n traverse all positive integers) are both on the critical line perpendicular to the real

number line of Re(s)=% and Im(s)# 0, these nontrivial zeros are general complex numbers of
Re(s)=% and Im(s)# 0,so | have proved the generalized Riemann conjecture when the Dirichlet

eigen function X(n)(n € Z* and n traverse all positivel intergers) is any real number that is not

equal to zero.

The Generalized Riemann hypothesis and the Generalized Riemann conjecture must satisfy the

properties of the L(s, X(n))(s€C and s# 1,n € Z* and n traverse all positive intergers) function,

The properties of the L(s, X(n)) (s€C and s# 1,n € Z* and n traverse all positive numbers)

function are fundamental, the Generalized Riemann hypothesis and the Generalized Riemann

conjecture must be correct to reflect the properties of the L<S, X(n)) (s€eCands#1,n€e

Z* and n traverse all positive intergers) function, that is, the roots of the L(s, X(n))=0(s€C
and s# 1,n € Z* and n traverse all positive intergers) can only be s=%+ti(tEC,sEC and t # 0),

. 1 .
that is, Re(s) can only be equal to > and Im(s) must be real, and Im(s) is not equal to zero.

When L(s, X(n)) = 0 (n€ Z*,p € Z*,s €C and s# 1, n goes through all the positive integers, p goes

through all the prime numbers, X(n) € R and X(n) # 0), a(n) = a(p)=X(n), P(p , s)=$)),
then the Generalized Riemann hypothesis and the Generalized Riemann conjecture must be correct,
and s =~ +ti(t €Randt# 0,5 € C).

Reasoning 4:

For any complex number s,when X(n) is the Dirichlet characteristic and satisfies the following

properties:
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1: There exists a positive integer g such that X(n+q)= X(n)(n € Z1);
2: when n and q are not mutual prime, X(n)=0(n € Z");

3: X(a) X(b)=X(ab) (a € Z*,b € Z*)for any integer a and b;

Suppose gq=2k(k € Z%),

if n and n+q are all prime number, and if X(Y) = 0 (Y traverses all positive odd numbers) and
X(n+q) = X(n) =0(n and n + q traverses all positive odd numbers),because n(n traverses
all prime numbers) and g=2k(k € Z*) are not mutual prime, then X(n)=0 (n € Z* and nand n +

q traverses all prime numbers ) andfor any prime numberaandb, X (a). X (b)= X (ab)(a €

Z*,b € Z* ,a traverses all prime numbers and b traverses all prime number,then the
threeproperties described by the Dirichlet

eigenfunction X(n)(n € Z* and n traverses all prime numbers). above fit the definition of the

Polignac conjecture, the Polignac conjecture states that for all natural numbers k, there are
infinitely many pairs of prime numbers (p,p+2k)(k € Z1). In 1849, the French mathematician A.
Polignac proposed the conjecture.When k=1, the Polygnac conjecture is equivalent to the twin

prime conjecture.In other words, when L(s, X(n)) = 0(s €C, n€ Z* and n traverses all prime
numbers, X(n)ER,

a(n) =a(p)= X(n) ),P(p, s) ), and generalized Riemann hypothesis and the

1
T Tapp
generalized Riemann conjecture are true, then the Polygnac conjecture must be completely true,
and if the Polignac conjecture must be true, then the twin prime conjecture and Goldbach's
conjecture must be true.l proved that the generalized Riemannian hypothesis and the

generalized Riemannian conjecture are true, so when L(s, X(n)) =0(s €C, n€ Z*and n

traverses all prime numbers, and X(n) = 0), P(p , S)=ﬁ) and s = % +ti(teRandt #

0),1 also proved that the Polignac conjecture,twin prime conjecture must be true and Goldbach
conjecture are completely or almost true.The Generalized Riemann hypothesis and the Riemann
conjecture are perfectly valid, so the Polygnac conjecture and the twin prime conjecture and
Goldbach's conjecture must satisfy the properties of the Generalized Riemann (s)(s € Cand s #
1) function and the Riemann {(s)(s € Cand s # 1) function, so the Polignac conjecture,twin
prime conjecture must be true and Goldbach conjecture is completely true.Riemann hypothesis
and the Riemann conjecture are completely correct and the Generalized Riemann hypothesis and
the Generalized Riemann conjecture are completely correct and the Polignac conjecture,twin
prime conjecture must be tue and Goldbach conjecture are almost or completely true.
Reasoning 5:
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In order to explain why the zero of the Landau-Siegel function exists under special conditions,we
need to start with the Riemann conjecture. | have solved the Riemann conjecture for the Dirichlet

feature X(n)=1(n € Z* and n traverses all positive integers) and the generalized Riemann
conjecture for the Dirichlet feature X(n)#0(n € Z* and n traverses all positive integers), |

propose a special form of Dirichlet L(s, X(p))(s€Cand s # 1, X(p) ER and X(p)=0, p € Z* and p

traverses all odd primes,including 1) function problem. Let me first explain to you what
Landau-Siegel zero conjecture is. As you may know, the Landau-Siegel zero point problem, named
after Landau and his student Siegel, boils down to solving whether there are abnormal real zeros
in the Dirichlet L function. So let's look again at what the Dirichlet L function is. Look at the abve

proof process,which is the expression of Dirichlet L(s, X(n))(s€Cands# 1, n € Z* and n

traverses all positive integers)

x
L(s, X(n))=Xr2, rgl) (s € Cands # 1,n € Z* and n goes through all positive integers ) .

| shall first introduce the Dirichlet L(s, X(n))(s€Cand s # 1, n € Z* and n traverses all positive

integers) function and explain its relation to the Riemannn {(s)(s€C and s # 1) function. X(n)(n €

Z" and n traverses all positive integers) is a characteristic value of a Dirichlet function, which is all

real numbers, and X(n)(n € Z* and n traverses all positive integers) is a real function. The

L(s, X(n))(s€Cand s #= 1, X(n) ER, n€ Z* and n traverse all positivel numbers) function can be

analytically extended as a meromorphic function over the entire complex plane. John Peter

Dirichlet proved that L(1, X(n))#Z0(s&C and s# 1, X(n)€R and X(n)#0, n€Z* and n traverse all

positivel numbers) for all X(n)( n€Z* and n traverse all positivel numbers), and thus proved

Dirichlet's theorem. In number theory, Dirichlet's theorem states that for any positive integers
a,d, there are infinitely many forms of prime numbers, such as a+nd, where n is a positive integer,
i.e., in the arithmetic sequence a+d,a+2d,a+3d,... There are an infinite number of prime

numbers-there are an infinite number of prime modulesd aswellasa. If X(n)(n € Z* and n

traverses all positive integers) is the main feature, then L(s, X(n))(s€C and s# 1, X(n)€ER,

ne€Z*and n traverses all positive integers) has a unipolar point at s=1. Dirichlet defined the

properties of the characteristic function X(n)( n€EZ*and traverses all positive integers) in the

Dirichlet function L(s, X(n))(s€C and s# 1, X(n) €R, n€Zand n traverses all positive integers) :

(50)



The proof of the Riemann conjecture

1: There is a positive integer q such that X(n+q)= X(n)( n€Z*and n traverses all positive
integers);
2: when n(n€Z* and n traverses all natural numbers) and g are non-mutual primes, X(n)=0(nE

Z* and n traverses all positive integers);

3: Foranyintegeraand b, X(a).. X(b)= X(ab)(a is a positive integer, b is a positive integer);

From the expression of the Dirichlet function L(s, X(n))(s€C and s# 1,X(n)ER, n€Z* and n takes

all positive integers), it is easy to see that when the Dirichlet characteristic real

function X(n)=1(s€C and s# 1, nEZ*and n takes all positive integers), Then the Dirichlet

L(s,1)(s€C and s# 1, X(n)ER, nEZ* and n traverses all positive integers) becomes the Riemann

{(s)( s€C and s# 1) function, so the Riemann {(s) (s€C and s+ 1) function is a special function of

the Dirichlet function L(s, X(n))(s€C and s# 1, X(n) ER, n€EZ* and n traverse all positivel
numbers), when the characteristic real function X(n)(n€Z* and n traverse all positivel numbers) is
equal to 1, Also called a trivial characteristic function of the Dirichlet function L(s, X(n))(s€C and

s# 1,,X(n) ER , n€Z" and n traverse all positivel numbers). When the eigenreal functions X(n)#

1(n€ Z* and n traverse all positivel numbers), they are called nontrivial eigenfunctions of the

Dirichlet function L(s, X(n))(s€C and s# 1, X(n)ER , n€Z* and n traverse all positivel integers).
When the independent variable s in the expression of the Dirichlet function L(s, X(n))(s€C and
s# 1, X(n)ER, n€Z" and n traverse all positive inteegers) is a real number B, then for all

eigenfunction values X(n)( n€Z* and n traverses all positive integers), L(B, X(n))(BER, X(n) €R,

n€Z* and n traverses all positive integers) is called the Landau-Siegel function. Visible

landau-siegel function L(B, X(n))(B€ER, X(n)eR, ne Z* and n traverses all positive integers) is

dirichlet function L(s, X(n)) (s€C and s# 1, X(n) ER , n€Z* and n traverses all

positive integers) of a special function, landau-siegel guess is landau and siegel they guess

L(B, X(n))(BER, X(n)€R, neZ* and n traverses all positive integers) is not zero, So Landau

and Siegel's conjecture that L(B, X(n)) #0(B€R, X(n)€R, neZ" and n traverses all
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positive integers) is easy to understand, right? Well, now that you know what the Landau
and Siegel null conjecture is all about, let's continue to see how I'm going to solve the
Landau and Siegel null conjecture. Look at the abve proof process:

oo X X X n-1
GRH (s, x(n)> = L<s, X(n)> = Z rf?) = (1(r_l)r2]1§:§ (1 _(an) S)Z( i

HONRSTS L "N
z(l—;‘s)n:l(ngti - 1)21 S)ZX( )(n"n“>_

21 5) z X (™) (cos(In((n)) + isin(In(n)))t

_1yn-1 &
( )21 S)Z X(m)(n~°(cos(In(n)) + isin(In(n)))™)
(— " N o (cos(l 1

— i S)Z X(m)n~°(cos(tln(n)) — isin(tin(n)) )

(teCandt+ 0,s € Cands # 1,n € Z* and n goes through all positive integers),
then

LB, X(m))=

(_1):1 Yo, x(n)(n~P(cos (0 x In(n)) + isin(0 x
)

(1-2%"

(X(D17P = x(@)27P + x(3)37P - x(9)47P +

1n(n)))—

N

), " X" is the symbol for multiplication.When X(n) =1 (n € Z* and n traverses all natural

numbers), because the real exponential function of the real number has a function value greater than
zero, so

n~P > 0(n € Z* and n traverses all positive integers) and 18 — 28 < 0,3P — 48 <
0,50 -6f<0,...n—-1DPF-mP<0,..,0r 1P-28>0,38—48 >0, 50— 6P >

0,..,(n— 1P —1m)P >0 and |(1T11-B)| # 0, it can be known that when X(n) =1(n € Z* and

n traverses all positive integers), then L(,1)#0(BeR, X(n)eR and X(n) =1,n € Z* and n traverses

all positive integers), so for Riemann {(s)( s€C and s# 1) functions, its corresponding landau-siegel

function L(B,1)(BER, X(n)eR and X(n) =1,n € Z* and n traverses all positive integers) of pure real

zero does not exist, This means that the Riemann {(s)(s€C and s+ 1) function does not have a zero of a

pure real variable s. And the generalized Riemann conjecture L(s, X(n))=0(s€C and s# 1, X(n)eR and

X(n)=land n € Z* and n traverses all positive integers) satisfies s=%+ti(teR,t¢O) is sufficient to
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prove that the twin primes, Polignac's conjecture, Goldbach's conjecture are almost true.

when X(n)#1(n € Z* and n traverses all positive integers) and X(n)+#0(n € Z* and n traverses all

positive integers), because the real exponential function of the real number has a function value greater

than zero,so n~P > 0(n € Z* and n traverses all positive integers) and 1P —2F < 0,36 —
48 <0,58 -6 <0,...,(n-1)B-m)P<o0,..,0or 1F-2F>0,38 - 4P > 0,58 —6F >

0,..,(n—1)F—()f >0 and |(1711_B)| # 0, it can be known that when X(n)=1(n€ Z*and n

traverse all positivel numbers), then L(B,1)=0(BER, X(n)ER and n € Z* and n traverses all positive

integers) so for Riemann {(s)(s€eC and s # 1) functions, its corresponding landau-siegel

function L(B,1)(BER, X(n)€R and X(n) #0,n € Z* and n traverses all positive integers) of pure real

zero does not exist, this means that the generalized Riemann L(B, X (n))(BeR, X(n)eER and

n € Z* and n traverses all positive integers) function does not have a zero of a pure real variable

s, and the generalized Riemann conjecture L(s, X(n))=0(s€C and s# 1, X(n)eR and X(n)=1 and

n € Z* and n traverses all positive integers) satisfies s:%+ti(tER,t¢O) is sufficient to prove that
the twin primes, Polignac's conjecture, Goldbach's conjecture are almost true.

When X(n) #1 (n € Z* and n traverses all positive integers) and X(n) #0 (n € Z* and n

traverses all positive integers), because the real exponential function of the real number has a
function value greater than zero, so

n~P > 0(n € Z* and n traverses all positive integers) and 1 — 28 < 0,3f — 48 < 0,5F —

6P <0,..,n—1DPF-—m)P<0,.,0r1F-26>0,3F-4F >0,5f -6 >0,.,(n—1)F -

(n)f >0 and |(1T11—B)| # 0, it can be known that when X(n) #1(n € Z* andn traverses all

positive integers) and X(n)# O( n€Z*and n traverses all positive integers),
then L(B, X(n))#0(BER, X(n)€ER and X(n) #1 and X(n) #0,n € Z* and n traverses all positive
integers) so for generalized Riemann L(s, X(n))(s€C and s# 1,n € Z* and n traverses all positive
integers) functions, its corresponding landau-siegel function L(B, X(n) )(BER , X(n) €R
and X(n) #1 and X(n) #0,n € Z* and n traverses all positive integers) of pure real zero does

not exist, this means that the generalized Riemann L(s, X(n))(s€C and s# 1,n € Z* and n

traverses all positive integers) function does not have a zero of a pure real variable s. and the

generalized Riemann conjecture L(s, X(n))=0(s€Cand s# 1, X (n)eRand X(n)#land X(n)#0,n €

(53)



The proof of the Riemann conjecture

Z* and n traverses all positive integers) satisfies s:%+ti(tER,t¢O) is sufficient to prove that the twin
primes, Polignac's conjecture, Goldbach's conjecture are all almost true.

When X(n) =0 (n € Z* and n traverses all positive integers), because the real exponential

function of the real number has a function value greater than zero, so

n~P > 0(n € Z* and n traverses all positive integers) and X(1)1f = 0, x(2)2F =

0, X(3)3F =0, X(4)4P =0, X(5)5P = 0, X(6)6°P = 0,..., X(n—1)(n— 1) = 0, X(n)nP =
0,..,and |(1T11—B)| # 0, it can be known that when X(n) =0 (n € Z* and n traverses all positive
integers), then L(B,0)=0(BER, X(n)eR and X(n) =0,n € Z* and n traverses all positive integers), so
for generalized Riemann L(s, X(n))(s€eCands# 1,n € Z* and n traverses all positive integers)

functions, its corresponding landau-siegel function L(B,0)(BER, X(n)ER and X(n) =0,n €
Z* and n traverses all positive integers) of pure real zero exists, this means that the generalized
Riemann L(s, X(n))(s€Cand s# 1,n € Z* and n traverses all positive integers) function has a

zero of a pure real variable s, that means the twin prime conjecture, Goldbach's conjecture,
Polignac's conjecture are completely true.

When X (p)=0(p € Z* and p traverses all odd primes, including 1), then L(s, X(p))=0( X(p) ER and X

(p)=0, p€ Z* and p traverses all odd primes, including 1) was established. At the same time

L(s, X(p))( s€C and s# 1, X(p)ER and X(p)=0, p € Z* and p traverses all odd primes, including 1)

the corresponding landau-siegel function L(B,0)(BER, X(p)ER and X(p)=0, p € Z* and p traverses

all odd primes, including 1) expression as shown as follows:

LB, X(p))= (s Zir X(PIP ™ (cos (0 X In(p)) + isin(0 x In(p))) =

o el ik 525 (X PP ST B)[X(l)l‘B-X(2)2‘3+ X(3)378-X(5)5P+ X(7)77F + ..

—X(P)pP+-]1(B ER, p € Z* and p traverses all primes, including 1), " X " is the symbol

for multiplication.

When X(p)=0(p € Z* and p traverses all odd primes, including 1), then L(s, X(p))=0(s€eC and
s# 1, X(n) €R and X(p)=0, p traverses all odd primes, including 1) was established. At the same

time L(s, X(p))(s€C and s# 1, X(p) ER and X(p)=0, p € Z* and p traverses all primes, including 1)
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the corresponding landau-siegel function L(B,0)=0(BER, X(p)ER and X(p)=0, p€ Z* and p

traverses all primes, including 1), this means that the generalized Riemann L(s, X(n))( s€C and

s# 1,n € Z* and n traverses all positive integers) function has a zero of a pure real variable s, that
means the twin prime conjecture, Goldbach's conjecture, Polignac's conjecture are all completely true.

Now | summarize the Dirichlet function L(s, X(n))(seC and s# 1, X(n) ER, n € Z* and n
traverses all positive integers) as follows:

1: When X(n)=1(s € Cand s # 1,n € Z* and n traverses all positive integers), the generalized

Riemannian hypothesis and the generalized Riemannian conjecture degenerate to the ordinary
Riemannian hypothesis and the ordinary Riemannian conjecture, whose nontrivial zeros s satisfy

s:%+ti(t€R and t£0), and ordinary Riemann {(s)=L(s, X(n))(s€C and s# 1, X(n)ER and X(n)=1,
n€Ztand n traverses all positive integers) the corresponding Landau-siegel function
L(B,1)£0(BER, X(n)ER and X(nN)=1, n € Z* and n traverses all positive integers), ordinary
Riemann hypothesis and ordinary Riemann hypothesis all hold, and for Riemann {(s)(s€C and
s# 1) function, its corresponding Landau-Siegel function L(B,1)(BER , X(n)ER and X(n)=1,n €

Z* and n traverses all positive integers) does not exist pure real zero, which also shows that
Riemann {(s)(s€C and s# 1) function does not exist zero when variable s is a pure real zero.

2: When X(n)=0(n € Z* and n traverses all positive odd numbers,including 1), then x(p)=0(p €
Z* and p traverses all odd primes, including 1), a special Dirichlet function L(s, X(p))(s€C and

s# 1, X(p)ER and X(p)=0, p € Z* and p traverses all odd primes, including 1) has zero, and

when zero is obtained, the independent variable s is any complex number. This special dirichlet

function L(s, X(p))(seC and s# 1, X(p)ER and X(p)=0, p € Z* and p traverses all odd prime,

including 1) the corresponding Landau-siegel function L(B,0)=0(BER, X(p)ER and X(p)=0,p €
Z* and p traverses all odd prime, including 1) holds, so for this particular Dirichlet function

L(s, X(p))=0(seC and s# 1, X(p)ER and X(p)=0, p € Z* and p traverses all odd primes,

including 1) holds.The existence of a pure real zero of the corresponding Landau-Siegel function

L(B,0)(BER , X(p)ER and X(p)=0, p € Z* and p traverses all odd prime numbers, including 1)

shows that the twin prime numbers, Polignac conjecture and Goldbach conjecture are all
completely true.

3: When X(n)#land X(n)#0(n € Z* and n traverses all positive integers), Dirichlet function
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L(s, X(n))(seCands# 1, X(n)eRand X(n)#0 and X(n)#l, n € Z* and n traverses all positive
integers) has zero, it's nontrivial zero meet s:%+ti(teR and t#0). For dirichlet function L(s, X
(n))(seC and s# 1, X(n)eR and X(n)#0, n € Z* and n traverses all positive integers), it's

corresponding Landau-siegel function L(B, X(n))(BER, X(n)€ER and X(n)#0 and X(n)#1,

n € Z* and n traverses all positive integers) of pure real zero does not exist, In other words, it

shows that the Dirichlet function L(s, X(n))(s€C and s# 1, X(n)€R and X(n)#0 and X(n)#1,n €

Z* and n traverses all positive integers) does not exist for the zero of a pure real variable s, so if

X(n)£0 and X(n)#1 (n € Z* and n traverses all positive integers), then both the generalized

Riemannian hypothesis and the generalized Riemannian conjecture hold and the Generalized

Riemann L(s, X(n))(s€C and s# 1, X(n)eR and X(n)#0 and X(n)#1, n € Z* and n traverses all

positive intege) function of nontrivial zero s also meet s=%+ti(tER and t£0).Now we know that

merely proving that the nontrivial zero s of the Riemann conjecture L(s,1)=0(s€C and s#

1, X(nN)ER and X(n)=1,n€Z*and n traverses all positive integers)and the generalized

Riemann conjecture L(s, X(n))=0(s€C and s# 1, X(n)eR and X(n)#l and X(n)#0,n € Z* and n

traverses all positive integers) satisfies s:%+ti(tER,t¢O) is sufficient to prove that the twin primes,

Polignac's conjecture, Goldbach's conjecture are all almost true.
I11. Conclusion

After the Riemann hypothesis and the Riemann conjecture and the Generalized Riemann
hypothesis and the Generalized Riemann conjecture are proved to be completely valid, the
research on the distribution of prime numbers and other studies related to the Riemann hypothesis
and the Riemann conjecture will play a driving role. Readers can do a lot in this respect.

IV.Thanks
Thank you for reading this paper.
V.Contribution
The sole author, poses the research question, demonstrates and proves the question.

VI.Author
Name: Teng Liao (1509135693@139.com), Sole author.
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