
Applications of Machine Learning in

Astrophysics: Computational Methods for

Gravitational Wave Data Analysis, Classification,

and Augmentation

Shufan Dong∗

August 2024

Abstract

This paper provides a comprehensive overview of advanced method-
ologies for the analysis of gravitational wave (GW) data, emphasizing the
integration of machine learning (ML) and deep learning (DL) techniques
to enhance the detection and interpretation of GW signals. Initially, we
discuss the foundational data preprocessing steps, including raw data ac-
quisition, noise filtration, and data normalization, which are crucial for
preparing GW datasets for ML applications. We then examine the fully
preprocessed GW data with graphical information and statistical anal-
ysis, alongside a simplistic GW event classifier developed without ML
applications. After that, to match the input data size of various ML mod-
els presented in this study, we detail the conversion of time-series GW
data into spectrograms for 2D models like 2D CNNs, and the retention
of time-series format for 1D and synthetic models: 1D CNNs; 1D RNNs,
including Long Short-Term Memory (LSTM) and Gated Recurrent Units
(GRU); and synthetic models, including Generative Adversarial Networks
(GANs) and WaveNet. The study further explores the use of the follow-
ing ML models for GW data analysis: Convolutional Neural Networks
(CNNs), Recurrent Neural Networks (RNNs), convolutional and recurrent
autoencoders, Transformers, Deep Belief Networks (DBNs), Graph Neu-
ral Networks (GNNs), and synthetic models such as GANs and WaveNet.
The analysis also includes the application of traditional ML models, such
as Support Vector Machines (SVM), Random Forest Classifiers (RF), and
Gaussian Mixture Models (GMM), providing a comparative evaluation of
their effectiveness in classifying and detecting GW signals. Additionally,
in the appendix section, we show a few examples of synthetic GW data
generated using GANs and WaveNet models, offering a new potential to
augment training datasets by improving model robustness with artificially

∗Class of 2026, Bronx High School of Science, NY, USA.

1



synthesized GW data. Our results underline the significant potential of
these methodologies in enhancing the accuracy and reliability of GW sig-
nal detection, thereby contributing to the broader field of astrophysical
research.

Contents

1 Introduction 4

2 Raw Data Preprocessing 5
2.1 Data Acquisition and Setup . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Setting GPS Time and Detector . . . . . . . . . . . . . . 5
2.1.2 Importing TimeSeries Package . . . . . . . . . . . . . . . 5
2.1.3 Downloading and Reading Data . . . . . . . . . . . . . . 6

2.2 Data Extraction and Handling Missing Values . . . . . . . . . . . 6
2.2.1 Extracting Data . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Handling Missing Values . . . . . . . . . . . . . . . . . . . 7

2.3 Data Noise Filtering and Normalization . . . . . . . . . . . . . . 7
2.3.1 Band-Pass Filtering . . . . . . . . . . . . . . . . . . . . . 7
2.3.2 Data Normalization . . . . . . . . . . . . . . . . . . . . . 8

2.4 Final Data Inspection . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Data Visualization and Analysis 9
3.1 Time Series Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Spectrogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Time-Domain Features . . . . . . . . . . . . . . . . . . . . . . . . 12
3.5 Basic Event Detection and Parameter Estimation . . . . . . . . . 14
3.6 Basic Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . 17

4 Data Preparation and Augmentation 17
4.1 Data Segmentation and Labeling . . . . . . . . . . . . . . . . . . 17
4.2 Time-series Data Reshaping for 1D and Synthetic Models . . . . 19
4.3 Spectrogram Data Generation for 2D Models . . . . . . . . . . . 19
4.4 Dataloader Generation for Transformer . . . . . . . . . . . . . . 20
4.5 Tensor Data Creation for DBN . . . . . . . . . . . . . . . . . . . 20
4.6 Graphical Data Generation for GNN . . . . . . . . . . . . . . . . 21
4.7 Data Augmentation . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Model Building, Training, and Evaluation 23
5.1 CNNs and RNNs . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.1.1 1D CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1.2 2D CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.3 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5.1.4 GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Autoencoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2



5.2.1 1D CNN Autoencoder . . . . . . . . . . . . . . . . . . . . 26
5.2.2 2D CNN Autoencoder . . . . . . . . . . . . . . . . . . . . 27
5.2.3 LSTM Autoencoder . . . . . . . . . . . . . . . . . . . . . 28
5.2.4 GRU Autoencoder . . . . . . . . . . . . . . . . . . . . . . 29

5.3 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 DBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 GNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.6 GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.6.1 Hyperparameters . . . . . . . . . . . . . . . . . . . . . . . 41
5.6.2 Define Generator . . . . . . . . . . . . . . . . . . . . . . . 41
5.6.3 Define Discriminator . . . . . . . . . . . . . . . . . . . . . 42
5.6.4 Define GAN . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.6.5 Train GAN . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7 WaveNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.7.1 Define Causal Convolutional Layer . . . . . . . . . . . . . 45
5.7.2 Define Residual Block . . . . . . . . . . . . . . . . . . . . 45
5.7.3 Define and Train WaveNet . . . . . . . . . . . . . . . . . 47

5.8 Traditional ML Models . . . . . . . . . . . . . . . . . . . . . . . . 47
5.8.1 SVM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8.2 RF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.8.3 GMM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Model Performance Visualization 49
6.1 1D CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 2D CNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 LSTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.4 GRU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.5 1D CNN Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . 51
6.6 2D CNN Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . 52
6.7 LSTM Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.8 GRU Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.9 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.10 DBN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.11 GNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.12 GAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.13 WaveNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.14 SVM (ROC Curve) . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.15 RF (ROC Curve) . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.16 GMM (Clustering) . . . . . . . . . . . . . . . . . . . . . . . . . . 61

7 Conclusion 61

A Appendix 69
A.1 GAN Generated Data Visualization . . . . . . . . . . . . . . . . 69
A.2 WaveNet Generated Data Visualization . . . . . . . . . . . . . . 71

3



1 Introduction

Gravitational wave (GW) astronomy has fundamentally transformed our under-
standing of the universe, offering a new insight through which we can observe
cosmic phenomena that were previously impossible to access. These ripples in
spacetime, first predicted by Albert Einstein in 1916 in his general theory of rel-
ativity, went undetected for nearly a century despite intense theoretical study.
Nevertheless, the landscape of astrophysics changed dramatically in 2015 with
the first direct detection of GWs from a binary black hole merger by the Laser
Interferometer Gravitational-Wave Observatory (LIGO). This breakthrough not
only confirmed a key prediction of Einstein’s theory but also triggered the begin-
ning of a new era in astrophysics—one in which the universe could be observed
not only through electromagnetic (EM) waves but also through gravitational
waves, offering a direct probe of celestial cosmic events.

This initial discovery was quickly followed by the detection of other high-
energy astrophysical phenomena, such as neutron star mergers, which in 2017
provided a direct link between GWs and EM signals—a phenomenon termed
”multi-messenger astronomy.” These detections have been made possible by a
global network of detectors, including LIGO in the United States, Virgo in
Europe, and the KAGRA detector in Japan. Together, these instruments have
allowed researchers to observe the universe in unprecedented ways, refining our
understanding of the fundamental nature of gravity and contributing to fields
such as cosmology, nuclear physics, and the study of celestial objects such as
black holes and neutron stars.

However, GW signals are extremely faint, requiring the development of
highly sophisticated data analysis techniques. The signals are often buried
within substantial noise from environmental and instrumental sources, making
the task of signal extraction particularly challenging. Traditional methods of
data analysis, while effective, have been increasingly supplemented by machine
learning (ML) and deep learning (DL) techniques. These techniques, with their
ability to detect complex patterns in vast datasets, have revolutionized GW
data processing. The integration of ML methods has significantly enhanced the
accuracy, efficiency, and sensitivity of GW detection, allowing for the real-time
identification of signals and the detailed analysis of their properties.

This paper aims to build on these advancements by exploring a range of
ML methodologies applied to GW data analysis. Starting with essential data
preprocessing steps—such as noise reduction, signal extraction, and data nor-
malization—we prepare the groundwork for applying advanced ML models. The
input data for each model is tailored to optimize its performance; for example,
time-series data is typically used for models like 1D Recurrent Neural Net-
works (RNNs) and 1D Convolutional Neural Networks (CNNs), while spectro-
grams—capturing both time and frequency domain information—are suited for
2D CNNs and other models handling visual or sequential data. The different
data representations allow each model to focus on specific aspects of the GW
signal, such as temporal patterns or frequency-based features. These models
include CNNs, RNNs (LSTMs and GRUs), convolutional and recurrent autoen-

4



coders, Transformers, Deep Belief Networks (DBNs), Graph Neural Networks
(GNNs), generative adversarial networks (GANs), WaveNet, Support Vector
Machines (SVM), Random Forest Classifiers (RF), and Gaussian Mixture Mod-
els (GMM). The focus is on optimizing the performance of these models for the
detection, classification, and parameter estimation of GW signals.

In addition, the paper explores the potential of synthetic data generation
using techniques like GANs and WaveNet, which provide augmented training
datasets and improve model robustness using artificially generated GW signals
created by these synthetic models. By enhancing training data through realis-
tic simulations of GW signals, we can further improve the models’ accuracy in
identifying rare or complex GW events. As the field continues to evolve, these
methods promise to push the boundaries of GW astronomy, enabling more de-
tailed and insightful explorations of the universe’s most violent and energetic
processes.

2 Raw Data Preprocessing

2.1 Data Acquisition and Setup

2.1.1 Setting GPS Time and Detector

For this study, we focus on a specific GW event (GW150914, the first confirmed
observation of GWs from colliding black holes).

Figure 1: Locating GPS time for Binary Black Holes merger (BBH) event
GW150914 and choosing the Hanford (H1) detector.

2.1.2 Importing TimeSeries Package

We ensure that we can successfully import TimeSeries from gwpy by installing
the other required packages necessary for this installation.

5



Figure 2: Importing TimeSeries from gwpy.

2.1.3 Downloading and Reading Data

The GW data is downloaded and read into a TimeSeries object.

Figure 3: Downloading and reading the GW data with the TimeSeries package
imported in the last subsection.

2.2 Data Extraction and Handling Missing Values

2.2.1 Extracting Data

The timestamps and strain values are extracted and stored in a pandas DataFrame.

6



Figure 4: Extracting the time and strain features from the raw GW data file.

2.2.2 Handling Missing Values

Any missing values in the dataset are dropped to ensure clean data.

Figure 5: Dropping any NaN values from the dataset.

2.3 Data Noise Filtering and Normalization

2.3.1 Band-Pass Filtering

Noise filtering is crucial in GW data analysis due to the presence of various
noise sources that can distract us from the true signal. One common method
is band-pass filtering, which allows signals within a specific frequency range to
pass through while reducing the significance of signals outside this range. The
low cutoff frequency (20 Hz) and high cutoff frequency (500 Hz) are chosen
based on the expected characteristics of a BBH event. Consequently, applying
a band-pass filter helps in enhancing the signal-to-noise ratio (SNR) of the GW
data, increasing the exposure of the actual GW signal.

7



Figure 6: butter bandpass function designs a band-pass filter with specified low
and high cutoff frequencies, while bandpass filter function applies the designed
filter to the GW data, removing noise outside the specified frequency range.

2.3.2 Data Normalization

Normalization is another crucial preprocessing step that adjusts the GW data
to a common scale, making it easier to analyze and compare. This step ensures
that the strain data have a mean of zero and a standard deviation of one.
Standardizing the strain data is essential for ensuring that all features contribute
equally to the analysis and for improving the performance of ML models that
are sensitive to the scale of the data.

Figure 7: StandardScaler function standardizes the features so that they’re
easier for ML algorithms to analyze.

8



2.4 Final Data Inspection

We briefly look at the data after it’s being preprocessed.

Figure 8: Characteristics and features of the preprocessed GW data.

3 Data Visualization and Analysis

Visualization is an essential tool in GW data analysis, offering clear insights
into the behavior and structure of astrophysical sources. In the time domain,
GW features reveal key dynamics of compact objects like black holes and neu-
tron stars, such as their masses, spins, and orbital characteristics. Time-domain
analysis also highlights transient events, like mergers, and plays a crucial role
in identifying noise to improve the signal-to-noise (SNR) ratio. Traditional,
simplistic event detection focuses on recognizing significant signals from as-
trophysical phenomena, enabling timely follow-up observations across multiple
observatories, and supporting multi-messenger astronomy. Lastly, parameter
estimation determines the physical attributes of GW sources, allowing for rig-
orous tests of gravitational theories and enhancing our understanding of the
population and evolution of compact celestial objects.

9



3.1 Time Series Plot

We visualize how the strain data changes over time.

Figure 9: Graph of time-series plot (strain data versus time).

In the plot, peaks and troughs may correspond to significant events such
as black hole mergers or neutron star collisions, and it is useful for initial data
inspection, allowing us to identify the presence of potential GW events.

3.2 Spectrogram

We visualize how the frequency content of the strain data changes over time.

10



Figure 10: Graph of spectrograms (strain data’s frequency versus time).

This plot helps identify transient events and their frequency components,
which are crucial for distinguishing between noises and actual GW signals. Ad-
ditionally, spectrograms provides a detailed view of how the signal’s frequency
content evolves, and spectrogram data can be used as 2D GW data for the
implementation of certain ML models.

3.3 Histogram

We visualize the distribution of strain values.

11



Figure 11: Graph of Histogram (frequency distribution of strain data).

This plot provides an overview of the data’s spread, central tendency, and
outliers. This is useful for identifying any anomalies or patterns in the data.
Besides this, understanding the distribution of the strain values is crucial for
subsequent statistical analysis and for ensuring that the GW data meets the
expectations of various ML algorithms.

3.4 Time-Domain Features

The function calc and print time domain features is designed to extract and
print key time-domain features from GW data.

12



Figure 12: The function accepts three parameters: data (a DataFrame con-
taining the signal and time data), strain column (the strain data column), and
fs (the sampling frequency), and the function calculates the peak and mini-
mum amplitudes of the specified strain column. For computational purposes, a
threshold is set at 50% of the peak amplitude, and the duration of significant
signals exceeding this threshold is calculated and printed. As a result, the func-
tion calculates and prints the signal power, noise power, and SNR.

Time-domain features in GW data are crucial because they provide direct
insights into the dynamics of astrophysical sources and the propagation of GWs.
By analyzing these features, we can extract critical information about the nature
and behavior of compact objects, such as black holes and neutron stars, and the
environments in which they reside.

For instance, the shape and structure of the GW signal in the time domain
can reveal the mass, spin, and orbital dynamics of a binary merger event. Fea-
tures such as chirps, where the frequency and amplitude of the wave increase
as the objects spiral closer, are particularly informative. Also, detecting short-
lived, transient signals helps identify specific events like black hole mergers and
neutron star collisions, and each of them has a unique, discoverable signature
in the time domain.

Time-domain analysis allows for the identification of noises, which is essential
for improving the signal-to-noise ratio (SNR) and ensuring the accuracy of the
detected signals.

13



Figure 13: The output of the function prints the peak amplitude, minimum
amplitude, signal duration, and SNR.

3.5 Basic Event Detection and Parameter Estimation

The calc threshold function calculates a threshold for event detection based
on the standard deviation of the noise in the strain data.

Figure 14: This function calculates a threshold based on the standard deviation
of the strain data. The threshold is set to a multiple of this standard deviation.
A threshold of approximately 3 is calculated and returned.

The detect events function identifies events in the strain data based on
the calculated threshold.

14



Figure 15: This function identifies events where the absolute strain exceeds the
calculated threshold, and it iterates through the strain data, marking the start
and end of events. In the end, detected events are stored as start and end indices
in a list.

Event detection is the process of identifying important signals within the
GW data that correspond to astrophysical phenomena. Rapid detection en-
ables follow-up observations with EM and other observatories, providing critical
support to multi-messenger astronomy.

The estimate event params function calculates parameters for each de-
tected event.

15



Figure 16: This function calculates parameters such as start time (GPS time),
end time (GPS time), peak amplitude, and duration for each detected event.
For each event, the function extracts relevant data and calculates the required
parameters, storing them in an array.

Parameter estimation conveys the importance of determining the physical
parameters of the GW source, such as masses, spins, distances, and orbital
characteristics. Accurate parameter estimation is vital for interpreting GW
observations and understanding the underlying physics.

High-precision parameter estimation allows for stringent tests of general rel-
ativity and other gravitational theories. Detailed parameter estimation helps
expound the population properties of compact objects, their formation chan-
nels, and their role in the cosmos.

Figure 17: These are the event parameters of the first 10 events detected.

16



3.6 Basic Statistical Analysis

The summarize event params function summarizes the parameters of detected
events.

Figure 18: This function summarizes detected event parameters, and if no events
are detected, it returns a summary with zeros. For detected events, it calculates
and returns the number of events, average duration, maximum duration, average
peak amplitude, and maximum peak amplitude.

Figure 19: This is the summary of the detected events and their corresponding
parameters, including total number of events detected, average duration, max-
imum duration, average peak amplitude, and maximum peak amplitude.

4 Data Preparation and Augmentation

4.1 Data Segmentation and Labeling

The continuous GW strain data is split into smaller, manageable segments and
labeled appropriately. This step is critical for preparing the dataset for super-

17



vised learning, allowing the model to learn based on discoverable patterns.

Figure 20: The function create segments and labels is used to split the strain
data into segments of 2 seconds each, starting at t start (start of GW150914
event) and sampled at fs Hz (4096 Hz).

Figure 21: The shape of GW data’s segments and labels.

18



4.2 Time-series Data Reshaping for 1D and Synthetic Mod-
els

To ensure the compatibility of the time-series data for 1D and synthetic models,
time-series data is reshaped to include an extra dimension.

Figure 22: The segment data is reshaped with an additional dimension of 1.
Then, the data is split into the training set (80% of the data) and the testing
set (20% of the data).

Figure 23: The shape of the input time-series data.

4.3 Spectrogram Data Generation for 2D Models

To examine the spatial feature extraction capabilities of 2D models, time-series
data is converted into spectrograms, which provide a frequency domain repre-
sentation of the data.

Figure 24: The generate spectrogram function converts each time-series seg-
ment into a spectrogram, and the spectrograms are then reshaped to include a
channel dimension for compatibility with 2D model input. Then, the data is
split into the training set (80% of the data) and testing set (20% of the data).

19



Figure 25: The shape of the input spectrogram data.

4.4 Dataloader Generation for Transformer

Data preparation for the Transformer model involves creating a custom, plain
dataset class used to convert the data into PyTorch tensors and using PyTorch’s
DataLoader for batching, shuffling, and splitting.

Figure 26: For batching and shuffling purposes, the data is split into training
(80%) and testing (20%) datasets using Python functions and PyTorch.

4.5 Tensor Data Creation for DBN

For the DBN model, the data is split into training and testing sets using Scikit-
Learn’s train test split function, and it’s then converted to PyTorch tensors.

20



Figure 27: The data here is split into training (80%) and testing (20%) datasets
with simply the Scikit-Learn’s train test split function.

4.6 Graphical Data Generation for GNN

Graph-structured data is created for the GNN model, which captures complex
relationships and structures in the GW data.

Figure 28: For its spatial capturing capabilities, GNN requires graphical data
input, and PyTorch’s DataLoader is utilized for batching and shuffling

Loop Over Signals and Labels

• The zip(gw signals, labels) function pairs each signal with its corre-
sponding label.

• torch.tensor(signal, dtype=torch.float): converts the signal into a
PyTorch tensor.

• .unsqueeze(1): adds an extra dimension to the tensor.

21



• [[i, i+1] for i in range(len(signal)-1)]: creates pairs of consec-
utive indices (i, i+1), representing the edges between consecutive nodes in
the graph.

• torch.tensor(..., dtype=torch.long): converts index pairs into a Py-
Torch tensor.

• .t(): transposes the tensor.

• .contiguous(): ensures that the tensor’s memory layout is compatible
for efficient processing.

• torch.tensor([label], dtype=torch.long): converts the label into a
PyTorch tensor.

• Data(x=node features, edge index=edge index, y=y): creates a graph
data object using the Data class from PyTorch Geometric.

The function at the end returns the list of graph data objects.

4.7 Data Augmentation

To prevent overfitting and improve generalization, data augmentation tech-
niques are applied to the training data.

Figure 29: The augment data function artificially increases the size of the train-
ing dataset by introducing variability.

22



5 Model Building, Training, and Evaluation

5.1 CNNs and RNNs

CNNs and RNNs are key architectures in DL, designed for different types of
data. CNNs, especially 2D CNNs, are highly effective for spatial data, like
images, using convolutional layers to detect patterns like edges and textures,
making them ideal for image classification. RNNs excel in handling sequential
data, such as time series data, by using loops to maintain context across input
sequences, making them suitable for time-series prediction. These two types of
DL models are commonly utilized for binary event classification in GW research.

5.1.1 1D CNN

A 1D CNN model is constructed and trained on the augmented time-series data.

Figure 30: The 1D CNN model processes the time-series data directly, using
convolutional layers to extract temporal features, pooling layers to reduce di-
mensionality, dense layers to classify event presence, and a dropout layer to
prevent overfitting.

23



5.1.2 2D CNN

A 2D CNN model is built and trained on the augmented spectrogram data.

Figure 31: The 2D CNN model consists of convolutional layers for feature ex-
traction, pooling layers for dimensionality reduction, and dense layers for event
classification. A dropout layer is added to help prevent overfitting.

5.1.3 LSTM

An LSTM model is constructed and trained on the augmented time-series data.

24



Figure 32: The LSTM model processes the time-series data directly, using two
LSTM layers for feature extraction, two dropout layers to prevent overfitting,
and a dense layer to classify event presence. For quicker model training, the size
of the data for LSTM is resampled to four times less than the data for 1D and
2D CNN

5.1.4 GRU

A GRU model is constructed and trained on the augmented time-series data.

25



Figure 33: The GRU model processes the time-series data directly, using two
GRU layers for feature extraction, two dropout layers to prevent overfitting,
and a dense layer to classify event presence. For quicker model training, the
size of the data for LSTM is resampled to four times less than the data for 1D
and 2D CNN

5.2 Autoencoders

In addition to the application of convolutional and recurrent layers, the primary
purpose of the autoencoders is to first compress the dimensions of the data in
the encoder section and then expand the dimensions back in the decoder section,
with the bottleneck section in the middle to mark the end of data dimensionality
reduction and the start of data dimensionality expansion, and this is similar to
as if you are to visualize the Big Bounce hypothesis on the contraction and
expansion of the universe. Because of the unique training process of these
autoencoders, ReLU activation is chosen for its non-linearity. Additionally, this
method attempts to reconstruct the original input at the end of the training
process, and then we can visualize how well the autoencoder performs at this
reconstruction step to determine its ability in GW event detection.

5.2.1 1D CNN Autoencoder

1D CNN Autoencoder is efficient in extracting temporal features from time-
series data.

26



Figure 34: The 1D CNN autoencoder contains an encoder section (with 1D
convolutional layers for feature extraction and 1D pooling layers for spatial di-
mensionality reduction), a bottleneck section (with a flatten layer to convert
the data from 1D feature maps into a 1D vector and a dense layer for dimen-
sionality reduction), and a decoder section (with a dense layer to expands the
compressed data into higher dimensional space, a reshape layer to map the data
from 1D vector to 2D tensor, 1D convolutional layers to feature refining, and
1D upsampling layers for dimensionality expansion).

5.2.2 2D CNN Autoencoder

2D CNN autoencoder is effective in capturing spatial hierarchies from spectro-
grams.

27



Figure 35: The 2D CNN autoencoder contains an encoder section (with 2D
convolutional layers for feature extraction and 2D pooling layers for spatial di-
mensionality reduction), a bottleneck section (with a flatten layer to map the
data from 2D feature maps into a 1D vector and a dense layer for dimensionality
reduction), and a decoder section (with a dense layer to expands the compressed
data into higher dimensional space, a reshape layer to map the data from 1D
vector to 3D vector, 2D convolutional layers to feature refining, and 2D upsam-
pling layers for dimensionality expansion).

5.2.3 LSTM Autoencoder

LSTM Autoencoder captures and learns long-term dependencies in sequential
data.

28



Figure 36: The LSTM autoencoder contains an encoder section (with LSTM
layers for data processing and timesteps returning), a bottleneck section (with a
dense layer for dimensionality reduction), and a decoder section (with a Repeat-
eVector layer to simply repeat the compressed data for it to match the input
sequence length, LSTM layers to preprocess the data for the repeated vector
and return its timesteps, a TimeDistributed layer to apply a dense layer to each
timestep to reconstruct the original input data).

5.2.4 GRU Autoencoder

GRU Autoencoder is efficient memory usage and effective for sequential depen-
dencies.

29



Figure 37: The GRU autoencoder contains an encoder section (with GRU layers
for data processing and timesteps returning), a bottleneck section (with a dense
layer for dimensionality reduction), and a decoder section (with a RepeateVector
layer to simply repeat the compressed data for it to match the input sequence
length, GRU layers to preprocess the data for the repeated vector and return
its timesteps, a TimeDistributed layer to apply a dense layer to each timestep
to reconstruct the original input data).

5.3 Transformer

A Transformer model is defined and trained for time-series data classification,
utilizing its ability to capture long-range dependencies in the data.

30



Figure 38: All the hyperparameters needed to train the Transformer model.

Figure 39: Defining the Transformer model.

The class inherits from the base class, nn.Module, for all Neural Network
(NN) modules in PyTorch.

init () function:

• nn.Linear(input dim, model dim) is an embedding layer that linearly
projects the input from input dim to model dim.

• nn.Parameter(torch.zeros(1, 8192, model dim)) creates a positional
encoding tensor with shape (1, 8192,model dim). This encodes positional
information to help the model understand the order of input.

• nn.TransformerEncoderLayer defines a transformer encoder layer with:

– model dim: the dimension of the model.

– num heads: the number of attention heads.

31



– dim feedforward=2048: the dimension of the feedforward network.

– dropout=dropout rate: the dropout rate.

• nn.TransformerEncoder stacks the encoder layers to form the complete
transformer encoder.

• nn.Linear(model dim, output dim) linearly projects the output from
model dim to output dim.

forward() function:

• x.unsqueeze(-1) adds an extra dimension to x, making its shape com-
patible for the embedding layer.

• self.embedding(x.unsqueeze(-1)) applies the linear transformation to
the input.

• + self.positional encoding[:, :x.size(1), :] adds the positional
encoding to the embedded input.

• self.transformer encoder(x) processes the input through the trans-
former encoder stack.

• x.mean(dim=1) performs global average pooling across the sequence di-
mension, resulting in a tensor of shape (batch size,model dim).

• self.fc out(x) linearly transforms the pooled tensor to the desired out-
put dimension.

• The final output tensor is then returned.

32



Figure 40: Defining the function for training and evaluating the Transformer
model.

train and evaluate() function:

• Epoch Loop: iterates over the epochs.

– model.train(): sets the model to training mode.

– running loss is initialized to 0.0 to accumulate the training loss over
all batches in the epoch.

– Batch Loop: iterates over all batches in the train loader.

∗ optimizer.zero grad(): clears the gradients of all optimized
parameters.

∗ outputs = model(segments aug): computes the model outputs
for the input batch.

33



∗ loss = criterion(outputs, labels aug): calculates the loss
between the predicted outputs and the true labels.

∗ loss.backward(): computes the gradient of the loss.

∗ optimizer.step(): updates the model parameters using the
computed gradients.

∗ running loss += loss.item(): adds the batch loss to the run-
ning total loss for the epoch.

– train loss = running loss / len(train loader): calculates the
average training loss for the epoch.

– train losses.append(train loss): appends the average training
loss to train losses.

– model.eval(): sets the model to evaluation mode.

– with torch.no grad(): disables gradient computation, which re-
duces memory usage and speeds up computations.

– Batch Loop: iterates over all batches in the test loader.

∗ outputs = model(segments aug): computes the model outputs
for the input batch.

∗ , predicted = torch.max(outputs.data, 1): finds the one
with the highest predicted score for each sample.

∗ total += labels aug.size(0) and correct += (predicted ==

labels aug).sum().item(): updates the total number of sam-
ples and the number of correct predictions.

• The function returns two lists: train losses, containing the average
training loss for each epoch, and test accuracies, containing the test
accuracy for each epoch.

Figure 41: Building and training the Transformer model.

5.4 DBN

A DBN is trained for binary classification, capturing hierarchical representations
in the data.

34



Figure 42: Defining the DBN model.

The class inherits from the base class, nn.Module, for all NN modules in
PyTorch.

init () function:

• self.layer1 takes the input data and outputs 256 features.

• self.layer2 takes the 256 features from layer1 and outputs 128 features.

• self.layer3 takes the 128 features from layer2 and outputs 64 features.

• self.output takes the 64 features from layer3 and outputs a single fea-
ture for binary classification or regression.

• Sigmoid activation is used.

forward() function:

• It defines the forward pass of the network, which is the way input data
flows through the network shown in the constructor.

35



• The final output x is returned. It will be in the range of (0, 1), which is
fit for binary classification tasks.

Figure 43: Training and evaluating the DBN model.

Epoch Loop: iterates over the epochs.

• model.train(): sets the model to training.

• optimizer.zero grad(): clears the gradients of all optimized parameters.

• outputs = model(X train aug): processes the input data X train aug

and produces outputs.

• loss = criterion(outputs, y train aug): calculates the difference be-
tween the outputs and the true labels y train aug.

• loss.backward(): performs backpropagation to compute the gradients
of the loss respective to the parameters.

• optimizer.step(): updates the parameters using the computed gradi-
ents.

• predicted = (outputs >= 0.5).float(): converts the outputs to bi-
nary predictions with a threshold of 0.5.

36



• accuracy = (predicted.eq(y train aug).sum() / float(y train aug.shape[0])).item():
compares the predicted labels to the true labels and calculates the accu-
racy.

• with torch.no grad(): disables gradient computation, which reduces
the memory used and speeds up computations.

• val outputs = model(X test): processes the test data X test.

• val loss = criterion(val outputs, y test): calculates the difference
between the outputs and the true labels y test.

• val predicted = (val outputs >= 0.5).float(): converts the outputs
to binary predictions.

• val accuracy = (val predicted.eq(y test).sum() / float(y test.shape[0])).item():
calculates the accuracy of the predictions on the test data.

5.5 GNN

A GNN is trained for classification, using the graph structure of the data to
capture complex relationships.

37



Figure 44: Defining the GNN model.

The class inherits from the base class, nn.Module, for all NN modules in
PyTorch.

init () function:

• self.conv1 = GCNConv(in channels=in channels, out channels=16):
initializes the first graph convolutional layer with input data and 16 output
features.

• self.conv2 = GCNConv(in channels=16, out channels=32): initializes
the second graph convolutional layer with 16 input features from the first
layer and 32 output features.

• self.fc = torch.nn.Linear(32, 2): initializes a fully connected layer
that takes 32 input features from the second layer and outputs 2 features
used for binary classification.

forward() function:

• It defines the forward pass of the network, which is the way input data
flows through the network shown in the constructor.

38



• x = F.relu(x): applies the ReLU activation.

• x = global mean pool(x, batch): applies global mean pooling to ob-
tain a graph-level representation.

• x = self.fc(x): applies the fully connected layer to the graph-level rep-
resentation.

• return F.log softmax(x, dim=1): applies the log softmax function, con-
verting the raw scores into log-probabilities for classification tasks.

39



Figure 45: Training and evaluating the GNN model.

train() function:

• model.train(): sets the model to training.

• Batch Loop: Iterates over all batches in the data loader.

40



– optimizer.zero grad(): clears the gradients of all optimized pa-
rameters.

– output = model(data): passes the input data to get predictions.

– loss = criterion(output, data.y): calculates the loss between
the output and the true labels.

– loss.backward(): compute the gradient of the loss respective to the
parameters.

– optimizer.step(): update the parameters with the computed gra-
dients.

– .item() converts the tensor to a number.

– pred = output.argmax(dim=1): obtain the prediction with the in-
dex of the highest log probability.

Epoch Loop: applies train() function over epochs.

5.6 GAN

5.6.1 Hyperparameters

Figure 46: The hyperparameters for implementing GAN.

• latent dim: dimensionality of the latent space (input vector)).

• num gw data to generate: number of synthetic gravitational wave data
samples to generate after training.

5.6.2 Define Generator

The build generator function creates the generator model to synthesize GW
data.

41



Figure 47: The construction of the build generator.

• Dense Layer: initial dense layer with latent dim input.

• LeakyReLU: LeakyReLU activation function.

• BatchNormalization: normalizes the output.

• Reshape: reshapes the output into a suitable shape for Conv1D layers.

• UpSampling1D: upsamples the input.

• Conv1D Layers: convolutional layers to extract features.

• Activation: tanh activation to output values between -1 and 1.

5.6.3 Define Discriminator

The build discriminator function creates the discriminator model to distin-
guish real versus generated data.

42



Figure 48: The construction of the build generator.

• Conv1D Layers: convolutional layers to extract features.

• LeakyReLU: LeakyReLU activation function.

• Flatten: Flattens the 3D tensor into 1D.

• Dense Layer: final dense layer to output a single probability (of it being
real and not generated data) with sigmoid activation.

5.6.4 Define GAN

The build gan function combines the generator and discriminator into a GAN
model.

Figure 49: The construction of the GAN.

• Compile Discriminator: compile the discriminator.

• Freeze Discriminator: ensure only the generator is trained.

• GAN Input: create input layer for the GAN model.

• Generated Data: pass input through the generator to get synthetic data.

• GAN Output: pass generated data through the discriminator to get the
probability (of it being real and not generated data).

• Compile GAN: compile the GAN model.

43



5.6.5 Train GAN

The train gan function trains the GAN by alternating between training the
discriminator and the generator. The steps are as follows:

Figure 50: Visualization of the GAN training loop.

Training Loop:

• Train Discriminator:

– Sample real data.

– Generate synthetic data.

– Train on real data (labeled 1) and synthetic data (labeled 0).

– Compute the discriminator loss.

• Train Generator:

– Generate random noise.

– Create an array with every element labeled 1 for the noise.

44



– Train on the random noise and array.

– Compute the generator loss.

5.7 WaveNet

5.7.1 Define Causal Convolutional Layer

The causal convolutional layers are used to maintain causality in time series
data.

Figure 51: The causal Conv1D class.

CausalConv1D Class:

• init function:

– Inherits from layers.Layer.

– Creates a Conv1D layer.

• Call function:

– Defines the forward pass by returning the convolutional layer that’s
applied to the input tensor.

5.7.2 Define Residual Block

The residual block is added to build complex feature representations while main-
taining gradient flow through skip connections.

45



Figure 52: The residual block class.

ResidualBlock Class:

• init function:

– Inherits from layers.Layer.

– Creates a CausalConv1D layer.

– Creates two Dense layers with tanh and sigmoid activations, respec-
tively.

– Creates two Conv1D layers for skip and residual connections.

• Call function:

– Defines the forward pass:

∗ Applying the CausalConv1D layer to the input.

∗ Applying the Dense layers with tanh and sigmoid activations to
the output of the previous layer.

∗ Multiplying the outputs of the tanh and sigmoid layers to create
a gated activation.

∗ Applying the skip conv layer to the gated activation for the skip
connection.

∗ Applying the residual conv layer to the gated activation and
adding it to the input to create the residual output.

– Returning the skip output and the residual output.

46



5.7.3 Define and Train WaveNet

The build wavenet function creates a WaveNet model for sequential data gen-
eration.

Figure 53: The construction of the WaveNet.

• Inputs: input layer with specified shape.

• Residual Blocks: apply multiple residual blocks with different dilation
rates.

• Skip Connections: collect and sum connections.

• Activations and Convolutions: layers to produce output.

We then train the WaveNet on augmented data and validate it on test data.

Figure 54: Training and saving its history for WaveNet

5.8 Traditional ML Models

Traditional ML models, including SVM, RF, and GMM, offer versatile solutions
for various predictive tasks. SVM is a powerful supervised learning algorithm
useful for classification purposes, which aims to best separate classes in a dataset
based on the information present. RF, an ensemble method, constructs multiple
decision trees and combines their predictions to improve accuracy and reduce
overfitting, making them robust for classification. GMM is an unsupervised

47



learning algorithm used for clustering, organizing data into a mixture of several
Gaussian distributions to identify the underlying patterns in complex datasets.
These traditional ML models are still widely used due to their effectiveness
in many applications, though their usage in GW astronomy is less commonly
associated since certain DL models, such as CNNs and RNNs, already display
promising results in binary classification.

5.8.1 SVM

An SVM model with an RBF kernel is trained with the training data and
evaluated with the validation data. The confusion matrix and classification
report provide insights into the model’s performance.

Figure 55: The confusion matrix and classification report for SVM.

5.8.2 RF

A RF model is trained and evaluated similarly. The confusion matrix and
classification report are also applied to examine its performance.

Figure 56: The confusion matrix and classification report for RF.

5.8.3 GMM

A GMM is trained on the original segment data due to its unsupervised nature.
The log-likelihood of the data is computed and used to detect outliers, defined

48



as the bottom 0.01% of the log-likelihood value, and these outliers represent a
higher likelihood of a GW event present at the corresponding time.

Figure 57: Number of outliers detected with GMM considering the bottom
0.01% of the data as outliers.

6 Model Performance Visualization

6.1 1D CNN

Figure 58: These plots show the training history of the 1D CNN, including the
test loss and accuracy evaluation.

49



6.2 2D CNN

Figure 59: These plots show the training history of the 2D CNN, including the
test loss and accuracy evaluation.

6.3 LSTM

Figure 60: These plots show the training history of the LSTM, including the
test loss and accuracy evaluation.

50



6.4 GRU

Figure 61: These plots show the training history of the GRU, including the test
loss and accuracy evaluation.

6.5 1D CNN Autoencoder

Figure 62: These plots show the training history of the 1D CNN autoencoder,
including the test loss and accuracy evaluation.

51



6.6 2D CNN Autoencoder

Figure 63: These plots show the training history of the 2D CNN autoencoder,
including the test loss and accuracy evaluation.

6.7 LSTM Autoencoder

Figure 64: These plots show the training history of the LSTM autoencoder,
including the test loss and accuracy evaluation.

52



6.8 GRU Autoencoder

Figure 65: These plots show the training history of the GRU autoencoder,
including the test loss and accuracy evaluation.

53



6.9 Transformer

Figure 66: These plots show the training history of the Transformer model,
including the loss and accuracy evaluation.

54



6.10 DBN

Figure 67: These plots show the training history of the DBN model, including
the loss and accuracy evaluation.

55



6.11 GNN

Figure 68: These plots show the training history of the GNN model, including
the loss and accuracy evaluation.

56



6.12 GAN

Figure 69: Visualization of the discriminator and generator losses over epochs
(G = Generator, D = Discriminator).

57



6.13 WaveNet

Figure 70: Visualization of the loss and accuracy over epochs for WaveNet
model.

58



6.14 SVM (ROC Curve)

Figure 71: The ROC curve for SVM.

59



6.15 RF (ROC Curve)

Figure 72: The ROC curve for RF.

60



6.16 GMM (Clustering)

Figure 73: The clustering results from GMM, highlighting detected outliers and
clusters in the data.

7 Conclusion

The advancements in GW astronomy have profoundly expanded our under-
standing of the universe, enabling the exploration of some of its most energetic
and enigmatic phenomena. The integration of ML techniques into GW data
analysis marks a significant milestone, allowing for the detection, classification,
and analysis of GW signals with unprecedented accuracy and precision. ML
models such as CNNs, RNNs, and many others have become indispensable in

61



extracting faint GW signals from highly noisy data environments.
Specifically, synthetic data generation through models like GANs andWaveNet

plays a vital role in augmenting training datasets, especially in situations where
real data is scarce or specific events, such as rare mergers, are underrepresented.
The synthetic data, designed to mimic the characteristics of real GW signals,
can replace the data generated with the traditional augmentation technique
and improve the training of ML models by introducing controlled variability,
enabling these models to generalize better to diverse and complex scenarios.
This not only enhances the models’ ability to identify and classify GW events
but also improves their sensitivity to subtle patterns that might otherwise be
overlooked.

As the field advances, the connection between increasingly sophisticated ML
algorithms and the rapidly expanding global network of GW detectors will un-
doubtedly lead to more profound discoveries. Continued innovations in event
classification and synthetic data augmentation techniques will be critical to re-
fining our models, making them more resilient to noise and better equipped to
handle rare events. These developments promise to push the boundaries of our
knowledge of high-energy astrophysics, the dynamics of compact objects, and
the widening field of gravity.

Looking ahead, the fusion of ML with GW astronomy will remain pivotal in
deepening our insights into fundamental physics, cosmology, and the evolution
of black holes and neutron stars. With ongoing improvements in both detection
technology and analytical methodologies, the future of GW astronomy is bright,
offering the potential for even deeper understanding and discoveries about the
cosmos.

References

[1] Abbott, B.P., et al. “Observation of Gravitational Waves from a Binary
Black Hole Merger.” Physical Review Letters, vol. 116, 061102, 2016.

[2] Abbott, B.P., et al. “GW170817: Observation of Gravitational Waves from
a Binary Neutron Star Inspiral.” Physical Review Letters, vol. 119, 161101,
2017.

[3] Abbott, R., et al. “GWTC-2: Compact Binary Coalescences Observed by
LIGO and Virgo during the First Half of the Third Observing Run.” Physical
Review X, vol. 11, 021053, 2021.

[4] Abbott, B.P., et al. “Tests of General Relativity with GW150914.” Physical
Review Letters, vol. 116, 221101, 2016.

[5] Abbott, B.P., et al. “Multi-Messenger Observations of a Binary Neutron
Star Merger.” Astrophysical Journal Letters, vol. 848, L12, 2017.

62



[6] Abbott, B.P., et al. “GWTC-1: A Gravitational-Wave Transient Catalog of
Compact Binary Mergers Observed by LIGO and Virgo during the First and
Second Observing Runs.” Physical Review X, vol. 9, 031040, 2019.

[7] Abbott, B.P., et al. “Binary Black Hole Mergers in the First Advanced LIGO
Observing Run.” Physical Review X, vol. 6, 041015, 2016.

[8] Abbott, B.P., et al. “Properties of the Binary Black Hole Merger
GW150914.” Physical Review Letters, vol. 116, 241102, 2016.

[9] Abbott, B.P., et al. “GW170104: Observation of a 50-Solar-Mass Binary
Black Hole Coalescence at Redshift 0.2.” Physical Review Letters, vol. 118,
221101, 2017.

[10] Abbott, B.P., et al. “Astrophysical Implications of the Binary Black-Hole
Merger GW150914.” Astrophysical Journal Letters, vol. 818, L22, 2016.

[11] Zheng, Y., et al. “Angular Power Spectrum of Gravitational-Wave Tran-
sient Sources as a Probe of the Large-Scale Structure.” Physical Review Let-
ters, vol. 131, 171403, 2023.

[12] Abbott, B.P., et al. “Upper Limits on the Stochastic Gravitational-Wave
Background from Advanced LIGO’s First Observing Run.” Physical Review
Letters, vol. 118, 121102, 2017.

[13] Abbott, B.P., et al. “Localization and Broadband Follow-up of the
Gravitational-Wave Transient GW150914.” Astrophysical Journal Letters,
vol. 826, L13, 2016.

[14] Abbott, B.P., et al. “GW170608: Observation of a 19-solar-mass Binary
Black Hole Coalescence.” Astrophysical Journal Letters, vol. 851, L35, 2017.

[15] Abbott, B.P., et al. “GW170814: A Three-Detector Observation of Gravita-
tional Waves from a Binary Black Hole Coalescence.” Physical Review Letters,
vol. 119, 141101, 2017.

[16] Abbott, B.P., et al. “GW170104: Observation of a 50-Solar-Mass Binary
Black Hole Coalescence at Redshift 0.2.” Physical Review Letters, vol. 118,
221101, 2017.

[17] Abbott, B.P., et al. “GW151226: Observation of Gravitational Waves from
a 22-Solar-Mass Binary Black Hole Coalescence.” Physical Review Letters,
vol. 116, 241103, 2016.

[18] Abbott, B.P., et al. “Binary Black Hole Mergers in the First Advanced
LIGO Observing Run.” Physical Review X, vol. 6, 041015, 2016.

[19] LIGO Scientific Collaboration, et al. “Advanced LIGO.” Classical and
Quantum Gravity, vol. 32, 074001, 2015.

63



[20] Acernese, F., et al. “Advanced Virgo: A Second-Generation Interferomet-
ric Gravitational Wave Detector.” Classical and Quantum Gravity, vol. 32,
024001, 2015.

[21] Aasi, J., et al. “Characterization of the LIGO Detectors during Their Sixth
Science Run.” Classical and Quantum Gravity, vol. 32, 115012, 2015.

[22] The Virgo Collaboration, et al. “Observation of Gravitational Waves from a
Binary Black Hole Merger by the Advanced LIGO and Virgo Collaborations.”
Physical Review Letters, vol. 119, 141101, 2017.

[23] Abadie, J., et al. “Topologies for Future Gravitational Wave Detectors.”
Classical and Quantum Gravity, vol. 27, 173001, 2010.

[24] Ajith, P., et al. “A Template Bank for Gravitational Waveforms from Co-
alescing Binary Black Holes: I. Non-Spinning Binaries.” Physical Review D,
vol. 77, 104017, 2008.

[25] Kalogera, V., et al. “The Gravitational-Wave Breakthrough: Birth of the
New Astronomy.” Physics Today, vol. 70, no. 8, 2017.

[26] Sathyaprakash, B.S., et al. “Scientific Objectives of Einstein Telescope.”
Classical and Quantum Gravity, vol. 29, 124013, 2012.

[27] Punturo, M., et al. “The Einstein Telescope: A Third-Generation Gravita-
tional Wave Observatory.” Classical and Quantum Gravity, vol. 27, 194002,
2010.

[28] Sesana, A., et al. “Multi-band Gravitational-wave Astronomy: Science with
Joint Space- and Ground-based Observations of Black Hole Binaries.” Astro-
physical Journal, vol. 817, 2016.

[29] Cutler, C., and Thorne, K.S. “An Overview of Gravitational-Wave
Sources.” Proceedings of the GR16 Conference on General Relativity and
Gravitation, vol. 10, 2001.

[30] Cornish, N.J., et al. “Detecting a Stochastic Gravitational Wave Back-
ground in the Presence of a Galactic Foreground.” Physical Review D, vol.
84, 062003, 2011.

[31] Maggiore, M. “Gravitational Waves: Volume 1: Theory and Experiments.”
Oxford University Press, 2007.

[32] Moore, C.J., et al. “Gravitational-wave Sensitivity Curve Plotter.” Classi-
cal and Quantum Gravity, vol. 32, 015014, 2014.

[33] Blanchet, L. “Gravitational Radiation from Post-Newtonian Sources and
Inspiralling Compact Binaries.” Living Reviews in Relativity, vol. 17, 2014.

[34] Thorne, K.S. “Gravitational Radiation.” Proceedings of the GR7 Confer-
ence on General Relativity and Gravitation, vol. 9, 1974.

64



[35] Schutz, B.F. “Networks of Gravitational Wave Detectors and Three Figures
of Merit.” Classical and Quantum Gravity, vol. 28, 125023, 2011.

[36] Anderson, W.G., et al. “A Powerful Tool for the Detection of Gravitational
Waves.” Physical Review D, vol. 63, 042003, 2001.

[37] Will, C.M. “The Confrontation between General Relativity and Experi-
ment.” Living Reviews in Relativity, vol. 17, 2014.

[38] Phinney, E.S. “A Practical Theorem on Gravitational Wave Backgrounds.”
Astrophysical Journal Letters, vol. 380, L17, 1991.

[39] Buonanno, A., and Damour, T. “Effective One-body Approach to General
Relativistic Two-body Dynamics.” Physical Review D, vol. 59, 084006, 1999.

[40] Misner, C.W., et al. “Gravitation.” W.H. Freeman, 1973.

[41] Cutler, C., and Flanagan, E.E. “Gravitational Waves from Merging Com-
pact Binaries: How Accurately Can One Extract the Binary’s Parameters
from the Inspiral Waveform?” Physical Review D, vol. 49, 2658, 1994.

[42] Finn, L.S. “Detection, Measurement, and Gravitational Radiation.” Phys-
ical Review D, vol. 46, 5236, 1992.

[43] Allen, B. “Stochastic Gravitational-wave Backgrounds: A Search Strategy.”
Physical Review D, vol. 71, 062001, 2005.

[44] Abadie, J., et al. “Search for Gravitational Waves from Low Mass Com-
pact Binary Coalescence in 186 Days of LIGO’s Fifth Science Run.” Physical
Review D, vol. 80, 047101, 2009.

[45] Goodfellow, I., et al. “Deep Learning.” MIT Press, 2016.

[46] LeCun, Y., Bengio, Y., and Hinton, G. “Deep Learning.” Nature, vol. 521,
pp. 436-444, 2015.

[47] Krizhevsky, A., et al. “ImageNet Classification with Deep Convolutional
Neural Networks.” Communications of the ACM, vol. 60, no. 6, pp. 84-90,
2017.

[48] Hochreiter, S., and Schmidhuber, J. “Long Short-Term Memory.” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[49] Vaswani, A., et al. “Attention is All You Need.” Advances in Neural Infor-
mation Processing Systems, vol. 30, 2017.

[50] He, K., et al. “Deep Residual Learning for Image Recognition.” Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770-778, 2016.

65



[51] Chollet, F. “Xception: Deep Learning with Depthwise Separable Convolu-
tions.” Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 1251-1258, 2017.

[52] Kingma, D.P., and Welling, M. “Auto-Encoding Variational Bayes.” arXiv
preprint arXiv:1312.6114, 2013.

[53] Radford, A., et al. “Unsupervised Representation Learning with
Deep Convolutional Generative Adversarial Networks.” arXiv preprint
arXiv:1511.06434, 2015.

[54] Silver, D., et al. “Mastering the Game of Go with Deep Neural Networks
and Tree Search.” Nature, vol. 529, pp. 484-489, 2016.

[55] Sutskever, I., et al. “Sequence to Sequence Learning with Neural Networks.”
Advances in Neural Information Processing Systems, vol. 27, 2014.

[56] Devlin, J., et al. “BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding.” Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, vol. 1, pp. 4171-4186, 2019.

[57] Dosovitskiy, A., et al. “An Image is Worth 16x16 Words: Transformers for
Image Recognition at Scale.” arXiv preprint arXiv:2010.11929, 2020.

[58] Chen, T., et al. “A Simple Framework for Contrastive Learning of Visual
Representations.” International Conference on Machine Learning, pp. 1597-
1607, 2020.

[59] Goodfellow, I., et al. “Generative Adversarial Nets.” Advances in Neural
Information Processing Systems, vol. 27, 2014.

[60] Bahdanau, D., et al. “Neural Machine Translation by Jointly Learning to
Align and Translate.” International Conference on Learning Representations
(ICLR), 2015.

[61] Ren, S., et al. “Faster R-CNN: Towards Real-Time Object Detection with
Region Proposal Networks.” Advances in Neural Information Processing Sys-
tems, vol. 28, 2015.

[62] Szegedy, C., et al. “Going Deeper with Convolutions.” Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp.
1-9, 2015.

[63] Hinton, G.E., and Salakhutdinov, R.R. “Reducing the Dimensionality of
Data with Neural Networks.” Science, vol. 313, no. 5786, pp. 504-507, 2006.

[64] Simonyan, K., and Zisserman, A. “Very Deep Convolutional Networks for
Large-Scale Image Recognition.” International Conference on Learning Rep-
resentations (ICLR), 2015.

66



[65] Ioffe, S., and Szegedy, C. “Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift.” International Confer-
ence on Machine Learning, pp. 448-456, 2015.

[66] Krizhevsky, A., and Hinton, G.E. “Learning Multiple Layers of Features
from Tiny Images.” Technical Report, University of Toronto, 2009.

[67] Zeiler, M.D., and Fergus, R. “Visualizing and Understanding Convolutional
Networks.” European Conference on Computer Vision, pp. 818-833, 2014.

[68] Mikolov, T., et al. “Efficient Estimation of Word Representations in Vector
Space.” arXiv preprint arXiv:1301.3781, 2013.

[69] Schmidhuber, J. “Deep Learning in Neural Networks: An Overview.” Neu-
ral Networks, vol. 61, pp. 85-117, 2015.

[70] Russakovsky, O., et al. “ImageNet Large Scale Visual Recognition Chal-
lenge.” International Journal of Computer Vision, vol. 115, pp. 211-252, 2015.

[71] He, K., et al. “Mask R-CNN.” Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV), pp. 2980-2988, 2017.

[72] Zoph, B., et al. “Learning Transferable Architectures for Scalable Image
Recognition.” Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 8697-8710, 2018.

[73] Brown, T.B., et al. “Language Models are Few-Shot Learners.” Advances
in Neural Information Processing Systems, vol. 33, 2020.

[74] Girshick, R., et al. “Rich Feature Hierarchies for Accurate Object Detec-
tion and Semantic Segmentation.” Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 580-587, 2014.

[75] Tieleman, T., and Hinton, G. “Lecture 6.5 - RMSProp: Divide the Gradient
by a Running Average of its Recent Magnitude.” Coursera: Neural Networks
for Machine Learning, 2012.

[76] Li, Y., et al. “ResNet in ResNet: Generalizing Residual Architectures with
Non-Local Attention.” arXiv preprint arXiv:1912.09505, 2019.

[77] Xu, B., et al. “Empirical Evaluation of Rectified Activations in Convolu-
tional Network.” arXiv preprint arXiv:1505.00853, 2015.

[78] Deng, J., et al. “ImageNet: A Large-Scale Hierarchical Image Database.”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp. 248-255, 2009.

[79] Russell, S., and Norvig, P. “Artificial Intelligence: A Modern Approach.”
Prentice Hall, 4th edition, 2020.

[80] Goodfellow, I., et al. “Deep Learning.” MIT Press, 2016.

67



[81] Silver, D., et al. “Mastering the Game of Go with Deep Neural Networks
and Tree Search.” Nature, vol. 529, pp. 484-489, 2016.

[82] Hutter, F. “Automated Machine Learning: Methods, Systems, Chal-
lenges.” Springer, 2019.

[83] McCarthy, J., et al. “A Proposal for the Dartmouth Summer Research
Project on Artificial Intelligence.” AI Magazine, vol. 27, no. 4, pp. 12-14,
2006.

[84] Mnih, V., et al. “Human-Level Control through Deep Reinforcement Learn-
ing.” Nature, vol. 518, pp. 529-533, 2015.

[85] LeCun, Y., et al. “A Theoretical Framework for Back-Propagation.” Pro-
ceedings of the 1988 Conference on Connectionist Models Summer School,
1988.

[86] Bengio, Y., et al. “Learning Deep Architectures for AI.” Foundations and
Trends in Machine Learning, vol. 2, no. 1, pp. 1-127, 2009.

[87] Ng, A.Y., and Jordan, M.I. “On Discriminative vs. Generative Classifiers:
A Comparison of Logistic Regression and Naive Bayes.” Advances in Neural
Information Processing Systems, vol. 14, 2002.

[88] Newell, A., and Simon, H.A. “GPS, a Program that Simulates Human
Thought.” IEEE Transactions on Information Theory, vol. 2, pp. 38-46, 1956.

[89] Turing, A.M. “Computing Machinery and Intelligence.” Mind, vol. 59, no.
236, pp. 433-460, 1950.

68



A Appendix

A.1 GAN Generated Data Visualization

Figure 74: Example 1 of the GW segments generated.

69



Figure 75: Example 2 of the GW segments generated.

70



A.2 WaveNet Generated Data Visualization

Figure 76: Example 1 of the GW segments generated.

71



Figure 77: Example 2 of the GW segments generated.

72


	Introduction
	Raw Data Preprocessing
	Data Acquisition and Setup
	Setting GPS Time and Detector
	Importing TimeSeries Package
	Downloading and Reading Data

	Data Extraction and Handling Missing Values
	Extracting Data
	Handling Missing Values

	Data Noise Filtering and Normalization
	Band-Pass Filtering
	Data Normalization

	Final Data Inspection

	Data Visualization and Analysis
	Time Series Plot
	Spectrogram
	Histogram
	Time-Domain Features
	Basic Event Detection and Parameter Estimation
	Basic Statistical Analysis

	Data Preparation and Augmentation
	Data Segmentation and Labeling
	Time-series Data Reshaping for 1D and Synthetic Models
	Spectrogram Data Generation for 2D Models
	Dataloader Generation for Transformer
	Tensor Data Creation for DBN
	Graphical Data Generation for GNN
	Data Augmentation

	Model Building, Training, and Evaluation
	CNNs and RNNs
	1D CNN
	2D CNN
	LSTM
	GRU

	Autoencoders
	1D CNN Autoencoder
	2D CNN Autoencoder
	LSTM Autoencoder
	GRU Autoencoder

	Transformer
	DBN
	GNN
	GAN
	Hyperparameters
	Define Generator
	Define Discriminator
	Define GAN
	Train GAN

	WaveNet
	Define Causal Convolutional Layer
	Define Residual Block
	Define and Train WaveNet

	Traditional ML Models
	SVM
	RF
	GMM


	Model Performance Visualization
	1D CNN
	2D CNN
	LSTM
	GRU
	1D CNN Autoencoder
	2D CNN Autoencoder
	LSTM Autoencoder
	GRU Autoencoder
	Transformer
	DBN
	GNN
	GAN
	WaveNet
	SVM (ROC Curve)
	RF (ROC Curve)
	GMM (Clustering)

	Conclusion
	Appendix
	GAN Generated Data Visualization
	WaveNet Generated Data Visualization


