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A proposed solution to the millennium problem on the existence and smoothness
of the Navier—Stokes equations.

1. Introduction

The Navier—Stokes equations are thought to govern the motion of a fluid in R?,
[1-5]. Let u = u(x,?) € R? be the fluid velocity and let p = p(x,f) € R be the
fluid pressure, each dependent on position x € R? and time ¢ > 0. I take the
externally applied force acting on the fluid to be identically zero. The fluid is
assumed to be incompressible with constant viscosity v > 0 and to fill all of R3.
The Navier—Stokes equations can then be written as

0
a—‘; +(u-V)u = vWu - Vp, 1)
V-u=0 (2)
with initial condition
ux,0) =u’ 3)
where u° = u°(x) € R>. In these equations
o 9d 0
V=l—”, —,— 4
((9X1 (9X2 8X3) ( )
is the gradient operator and
3 62
V2 = — 5
2 ox2 )

is the Laplacian operator. When v = 0 equations (1), (2), (3) are called the Euler
equations. When Vp = 0 equations (1), (3) are called the Burgers equations.
Solutions of (1), (2), (3) are to be found with

u’(x +e¢) = u’(x) (6)

for 1 < i < 3 where ¢; is the i unit vector in R?. The initial condition u° is a given
C* divergence-free vector field on R?. A solution of (1), (2), (3) is then accepted
to be physically reasonable [3] if

ux +e;, 1) =ux,1), p(x+e;,t)=pX,i1) (7
onR? x [0, 00) for 1 <i< 3 and

u, p e C(R*x[0,00)). (8)
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2. Solution of the Navier—Stokes problem

Theorem. Take v > 0. Let u° be any smooth, divergence-free vector field satisfy-
ing (6). Then there exist smooth functions u, p on R? x [0, co) that satisfy (1), (2),

3), (1), (8).

Proof. A Fourier derivative collocation method is as follows. Let u, p be given by

0= Z uLeikL-x’ 9)
L

p=) pe (10)
L

respectively. Here uy, = up() € C°, pp, = pr(f) € C,i = V-1, k = 2z, and 3,
denotes the sum over all L € Z3. The initial condition u° is a Fourier series [2] of
which is convergent for all x € R*. Equations (1), (2) can be written as

(9u, : ou; 0’u;
; — —— fori=1,2,3, 11
o Z_;ujﬁxj Zﬁx] c’)xl or 1= (11
and
Z (9u] _ (12)
ox;
respectively. In this method we have for a quantity ¢ that
dq
-t
valid atx = x*, forn = 1,2, ..., N. For example we can choose x*; , to be equally

spaced and fill x € [0,1]>. Here [G j] 1s a known constant N X N matrix with
[G j] = Gjm» and [r] means to vectorise r where the components are equal to
m,n

Tlx=x+,,» n = 1,2,..., N. It turns out that ZZZI Gjmn = 0and ZN 1Gjmn = 0. We
denote glx=x-, = [¢q1, = q.»- Then

N
Bﬂ ZG”“’”“” La_ﬂ =ZGlnapm (14)

a=1 a=
N Ju N N
L‘?x W Z { } = ). 2, GinaGiastiis (15)
7 ln a= X a a=1 p=1
and ; ; ,
ui = - : = —U:
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Equations (11), (12) at x = x*,, imply

8 : o, 2 [ 6%, ap
a2, FRNE=R an
and
3
g (18)
Z Oxj . B

respectively. Equations (17), (18) imply

3 N 3 N N
u1n+ZZu ]naula:VZZZGjna japUip — ZGlnapw (19)

j=1 a=1 Jj=1 a=1 B=1

and

3 N
D> Ginaltza =0 (20)

j=1 a=1

respectively. Let U be a matrix where U,, = u;, and let P be a matrix where
Py, = p.o- Then equations (19), (20) imply

2+ UAMU) = vUB - An)' P @1

and
trace(UA(n)) = 0 (22)

respectively. Herein A(n) and B(n) are matrices where
A(n)a,j = Gj,n,oz (23)

and

3 N
Bgn = D Y GinaGius (24)

j=1 a=1

The i, n component of (21) recovers (19) since

N N
D UUAMUY, = ) Uy
=1 =1

3 N
Ui,aA(n)a/,j U]n Z Z Ul an,n,a Uj,n’ (25)

j=1 a=1

3

D AU,

m=1

[UAMmU)]in

w |l

M=

~
1l
<
1l



N N 3 N N
[UBip = ) UiyBOiy = > UigB)gn = ) " > UigGinaGiag, (26)
=1 B=1

=1 a=1 p=1

and

N
D AWP, = ZA(n»le ZGWPM

=1

An)'P|
[Am" P,

M=

GinaPon = Z GinaP.a- 27)

a=1

I~
l
—_

Equation (22) recovers (20) since

3
trace(UA(n)) = Z[UA(H)]” ZZUJIA(n)lJ

]lll

N N
D UiiGin = Z 2 UiaGina: (28)

=1 j=1 a=1

Mw i

~.
Il
—

Let Q(n) be a matrix such that (A(n)" P)Q(n) = 0. We have

(A" P)om)| . = [Aw" (POw)] | ZA(n),l(PQ(n))zj

N N
= > > AP QM) =0. (29)

=1 m=1

For example we can choose Q(n) = B(n). Then (21) implies

ou
=7 20 + UAmU)0n) = GUBm)Qn). (30)

Equation (30) is the same as we would get for the Burgers equations. Now we
consider a matrix Riccati equation problem.

X
%—t =aX + by, 31
oY
o =cX +dY, (32)
with
X =(UMY. (33)



Then we get

ouU oY
(Ea) Y+ (U5 = aUDY) + bY (34)
which implies
(aa_lt]’l) Y + (UD[c((UDY) + dY] = a(UAY) + bY (35)
implying
aa—ltjﬂ + (U (c(UA) + (Ud =a(U) + b. (36)

We thenleta = b = 0, 1 = Q(n), c = Q(n) 'An), d = —vQ(n) ' (B(n)Q(n)) to
recover (30). The matrix inverses that appear here exist in the sense that opera-
tional matrices of differentiation have inverses in terms of operational matrices of
integration. Then (31) implies

X = X|i=o. (37)
Equation (32) implies
Y
i cXl=o +dY (38)
and so 5
= (eY) = e (eXlim0) (39)
which integrating with respect to ¢ yields
t
Y = [ e (Xl dr Vg (40)
0
to obtain )
Yy =e [ f e (cXlz) dT + Y|,:0] : (41)
0

Equation (33) then implies

Ul = XY

1 -1
((Uli=0D)Y1=0) {[‘[0 e (¢ (Uli=o)Y =) dt + Y|z=o] e_dt}

(Uli=0) {[ f e (c(Ul=od)) dt + 1
0

-1
e-d’} ) (42)

No blowup is possible since the Burgers equations are regular. O
For the Euler equations we have

UA = (UlizD) [e(Ulizo )t + 117" . (43)
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Blowup is possible since the inviscid Burgers equations are not regular. We have
for odd N that the equation

det (c(Ul,co)t+1) =0 (44)
can have a solution # where 0 < ¢ < oo.
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