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Abstract

We define a Goldbach table as a table consisting of two rows. The

lower row counts from 0 to any n and and the top row counts down

from 2n to n. All columns will have all numbers that add to 2n.

Using a sieve, all composites are crossed out and only columns with

primes are left. We then define a novel prime decimal system: it

gives for every n remainders when n is divided by all primes less than

n. This suggests linear functions, the divisions used can give another

perspective on all the column pairs. The inverses of these functions

when put into tabular form give symmetries that suggest Goldbach’s

conjecture is correct.

Introduction

Hardy and Apostol spend some time on Goldbach’s conjecture [1, 2]. The
conjecture has it that every even number can be expressed as the sum of two
primes.

It is easy to find examples. One can just add any two odd primes and
the result will be even. So 3 + 5 = 8, 5 + 7 = 12, and so on. This will give
lots of even sums fast. If one allows, which the conjecture does, non distinct
primes then we can add 3 + 3 = 6 and 5 + 5 = 10 and start to sense that,
indeed, you might just get all evens.

This article gives a simple scheme that exhaustively shows all sums that
give a given even number using both prime and composite numbers. These
we call Goldbach tables. We then explore these tables in hopes of proving
the conjecture.
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A Goldbach table

20 19 18 17 16 15 14 13 12 11 10
0 1 2 3 4 5 6 7 8 9 10

Table 1: A Goldbach table for 2 · 10 = 20.

Table 1 gives the scheme. One just fills a bottom row of a table from
0 to whatever positive integer one likes and then moving up to the top row
counts down from that number. The columns generated will give all sums of
two non-negative integers that sum to any given even number. In this table
that number is 20.

All four possibilities for the status of bottom and top numbers are rep-
resented in this sample. The lower row indexes the columns. So, column 2
consists of 18 on the top, a composite and 2 on the bottom: column 3 consists
of the two primes 17 and 3 and shows for this even 20 Goldbach’s conjecture
is correct. At index 7, we have two primes 13 and 7, another confirmation of
Goldbach’s conjecture. Is there a way to find all primes and all such prime
columns?

A Sieve

We can quickly filter out all composite numbers using a sieve. Scratch off
all but the first prime multiples of the first and second rows. You can do
this without knowing what numbers are primes: just scratch out non-one
multiples of 2, 3, 4, 5, and so on and you will only have primes left. In Table
2 we do this. This procedure is called a sieve. The Greek mathematician
Eratosthenes used it to find primes. We are doing the same thing.

��20 19 ��18 17 ��16 ��15 ��14 13 ��12 11 10

�0 �1 2 3 �4 5 �6 7 �8 �9 ��10

Table 2: If primes are aligned in the top and bottom rows, Goldbach’s con-
jecture is confirmed.

If columns survive the procedure (meaning that there is no slash in ei-
ther cell comprising the column), Goldbach’s conjecture is confirmed for the
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particular even number. If we have a way of guaranteeing at least one prime
column survives in any such 2n table, we will have proven Goldbach’s con-
jecture correct.

Dissecting n = 20

Using the division algorithm, we can divide any given number by all the
primes less than it and arrive at a sequence of remainders and quotients. So,
staying with our 20 and its sieve, we have

20 = 010

2
26

3
04

5
62

7
91

11
71

13
31

17
11

19
, (1)

where the digit in this prime base is of the form

Rq
p where 2n = p · q + R.

For example the fourth digit in the prime base representation of 20 is

62

7
meaning 20 = 7 · 2 + 6.

Calling the q superscript an exponent, we notice exponents or powers of 1
emerge in greater valued primes. We see, for example, 71

13
, 31

17
, and 11

19
in

(1) and these translate to winning pairs of primes: {(7, 13), (3, 17)} that all
sum to 20.

We can use lower valued primes to find all Composites. Consider the
primes less than

√
20: P (20) = {2, 3}. Any number between 2 and 20 that

doesn’t have a factor from P (20) will be a prime [2] and the converse also
holds if a number is divisible by 2 or 3 it is composite. We can form sets of
numbers that correspond to our slashing out cells in Goldbach tables. For
example, the set

GC(2) = {(f(x), g(x))|f(x) = 2(10 − x) and g(x) = 2x, x ∈ Z
10/2

0
} (2)

consists of {(20, 0)0, (18, 2)1, (16, 4)2, (14, 6)3, (12, 8)4, (10, 10)5} and

GC(3) = {(f(x), g(x))|f(x) = 3(6 − x) and g(x) = 3x + 2, x ∈ Z
6

0
}

of {(18, 2)0, (15, 5)1, (12, 8)2, (9, 11)3, (6, 14)4, (3, 17)5, (0, 20)6}. We can now
complete the Goldbach table, Table 1 by a different method referencing these
sets, Table 3. We do get a spurious confirmation with (19, 1), but, using
Bertrand’s postulate, we know there will be a prime between k/2 and k –
the second half of the bottom row. Indeed, for k = 10, there is 7 and this
aligns with 13 for a confirmation for this case.
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20 19 18 17 16 15 14 13 12 11 10
0 1 2 3 4 5 6 7 8 9 10

2 x x x x x x
3 x x x x x x x

Table 3: A Goldbach table solved with sets.

Inverse Linear Functions

The functions in GC(2) and GC(3) are linear functions. We can differentiate
them with subscripts: f2(x) = −2x + 20 and g2(x) = 2x are the functions
of GC(2, 20)and f3(x) = −3x + 18 and g3(x) = 3x + 2 are the functions of
GC(3, 20), where we are using the customary f(x) = mx + b slope intercept
format and have added the 2n parameter: GC(p, 2n) means the prime p for
the Goldbach table 2n.

So far, we are using these functions to find all numbers that have 2 and
3 as factors. Putting in a string of domain values, we get all the multiples
of these primes on the bottom row. The inverse of these functions using the
domain of all numbers on the bottom row, will have integers returned for
multiples of the prime and non-integers for non-multiples. We have a way
to find primes on the right half of the bottom row. They are the numbers
that have non-integer values for the inverses of the prime functions associated
with a given 2n: when all these functions are non-integer, we have a prime.
We’ll demonstrate this with our example.

It is easy to crunch the inverse form of these functions. The task is a drill
in intermediate algebra books: swap y with x, solve for y, and replace y with
the inverse form of the function, a superscript −1. We find

f2(x) = −2x + 20 gives f−1

2
= −1

2
x + 10 (3)

and

g2(x) = 2x gives g−1

2
(x) =

1

2
x (4)

and we can test we got these right with composition f−1(f(x)) = f(f−1(x)) =
x, we’re supposed to get the identity function back and in (3) and (4) we do.
We also have

f3(x) = −3x + 18 gives f−1

3
(x) = −1

3
x + 6 (5)
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and

g3(x) = 3x + 2 gives g−1

3
(x) =

1

3
x − 2

3
. (6)

We can show the values for these four inverses for all numbers: Table ??.

Figure 1: Non-integer values of the inverse functions indicate primes. The
symmetry correlates with aligned primes.

Figure 1 shows that these functions have a symmetry to them. If a
row has all non-integer numbers then we can infer that the number is a
prime; it is not divisible by 2 or 3. The symmetry seems to indicate that
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f−1

2
(20 − x) = g−1

2
(x), for example. That is cells B9 and C9, corresponding

to x = 13 pairs with cell B15 and C15 corresponding to x = 7; that is
f−1

2
(20 − 13) = g−1

2
(7) and g−1

2
(20 − 13) = f−1

2
(7). The importance of this

observation is the prime status is maintained in a column. Notice the primes
that don’t have all decimal numbers such as 17 and 11 are paired with 3 and
9; the first is a prime to the first power and the second is a prime squared.
One is a false negative and the other a false positive. As mentioned, using
Bertrand’s postulate we can predict the existence of a prime between 6 and
10; that’s 7. By symmetry this has a prime above it: that’s 13. In the next
section, we will prove the symmetric nature of these inverse functions.

An attempt

Lemma 1. Let f(x) = −mfx + bf and g(x) = mfx + bg be two linear

functions with slopes ±mf where mf is a positive integer and bf + gf = 2n,

then

f−1(2n − x) = g−1(x) (7)

and

g−1(2n − x) = f−1(x). (8)

Proof. The inverses for f(x) and g(x) are

f−1(x) = − 1

mf
x +

bf

mf
and g−1(x) =

1

mf
x − bg

mf
.

Consider

f−1(2n − x) − g−1

p (x) = − 1

mf
(2n − x) +

bf

mf
− (

1

mf
x − bg

mf
)

when multiplied by mf gives

mf(f
−1(2n − x) − g−1

p (x)) = −(2n − x) + bf − (x− bg) = bf + bg − 2n = 0.

As mf is not zero, this implies (7). By symmetry (8) is also implied.

We now can prove Goldbach’s conjecture is true.
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Theorem 1. Goldbach’s conjecture is true.

Proof. For any even number 2n, a Goldbach table, GT (2n) can be con-
structed. There will exist primes pi less than or equal to

√
n: P (2n) = {pi}.

These will reside on the bottom row, left half of GT (2n). By Bertrand’s
postulate there will exist one or more primes, bi between bn/2c and n. These
primes will be different than those between 1 and bn/2c; we know this as√

n < n/2 for n > 4.
Using Lemma 1 we can construct inverse linear functions for all pi. The

values of these functions at bi will all be non-integer, as bi /∈ P (2n) and bi is
a prime (not divisible by any pi). Using symmetry properties there will exist
a prime aligned with each bi, ti thus proving that Goldbach’s conjecture is
correct.

References

[1] Apostol, T. M. (1976). Introduction to Analytic Number Theory. New
York: Springer.

[2] Hardy, G. H., Wright, E. M., Heath-Brown, R. , Silverman, J. , Wiles,
A. (2008). An Introduction to the Theory of Numbers, 6th ed. London:
Oxford Univ. Press.

7


