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                                                                                   ABSTRACT 

The problem of finding the zeros of functions is one of the important issues in 
mathematics, and I would not be exaggerating if I said that all of mathematics is based on 
such problems. Here, curiosity struck me to understand the mechanism or the secret 
behind these functions. I never expected that this curiosity would lead me to encounter an 
important function like the Riemann zeta function, starting from the Taylor and Maclaurin 
series, which at least enabled me to find a function that links the point belonging to a 
certain domain and the values of this domain with an exponential function, as 
demonstrated in the proof. 

In conclusion, I believe that if this function cannot find the zeros of the Riemann zeta 
function, it will at least allow us to look at the zeta function from another perspective that 
is easier to deal with. 

 

Before starting with the solution for the Riemann zeta function, we want to introduce a 

function known to everyone, but whose mathematical logic we may not fully understand 

Let us consider the infinite series:  ƒ𝒏(x)     where    n→∞ 

   ƒ𝒏(x)=𝒂𝒏𝒙𝒏 + 𝒂𝒏−𝟏𝒙𝒏−𝟏 +𝒂𝒏−𝟐𝒙𝒏−𝟐 + …                          (1) 

 

We observe that the value of the function ƒ𝒏(x) at any point (t) is : 

   ƒ𝒏(t) = 𝒂𝒏𝒕𝒏 +  𝒂𝒏−𝟏𝒕𝒏−𝟏 + 𝒂𝒏−𝟐𝒕𝒏−𝟐 + …                                          (2) 

 

However, we can rewrite each   t ∈ ℝ    in the form   t = x + b   where x = 𝒙𝟎 

And according to the Taylar series, we study the variation of the function  ƒ𝒏(t) around 

the point x. from that we conclude: 

   ƒ (t) = ƒ(x) + 
ƒ(𝒙)̀

𝟏!
(t-x) + 

ƒˋˋ(𝒙)

𝟐!
(𝒕 − 𝒙)𝟐 + …                                             (3) 

 

by substituting (t) with the value x+b, we find:  

   ƒ (x+b) = ƒ(x) + 
ƒˋ(𝒙)

𝟏!
 (x+b-x) + 

ƒˋˋ(𝒙)

𝟐!
(𝒙 + 𝒃 − 𝒙)𝟐 +…                           (4) 
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   ƒ(x+b) = ƒ(x) + b
ƒˋ(𝒙)

𝟏!
 + 𝒃𝟐 ƒˋˋ(𝒙)

𝟐!
 + 𝒃𝟑 ƒ(𝟑)(𝒙)

𝟑!
 +…                                        (5) 

 

now, let’s subtract ƒ(x) from both sides of equation (5)  

    ƒ(x+b) – ƒ(x) = b
ƒˋ(𝒙)

𝟏!
 + 𝒃𝟐 ƒˋˋ(𝒙)

𝟐!
 + 𝒃𝟑 ƒ(𝟑)(𝒙)

𝟑!
 +…                                        (6) 

 

we divide both sides of equation (6) by b 

   
ƒ(𝒙+𝒃)−ƒ(𝒙)

𝒃
 = ƒˋ(𝒙) +b

ƒˋˋ(𝒙)

𝟐!
 +𝒃𝟐 ƒ(𝟑)(𝒙)

𝟑!
 +…                                                    (7) 

 We observe in equation (7) that  
ƒ(𝒙+𝒃)−ƒ(𝒙)

𝒃
 represents the value of the derivative at the 

point c.             where c ∈ ]x,x+b[  This is according to the finite increments theorem. 

Thus, we can rewrite equation (7) in the following form: 

   ƒˋ(𝒄) =  ƒˋ(𝒙) + b
ƒˋˋ(𝒙)

𝟐!
 +𝒃𝟐 ƒ(𝟑)(𝒙)

𝟑!
 +…                                                         (8) 

 

At the point x=𝒙𝟎=0 , we write equation (8) in the following form: 

   ƒˋ(𝒄) = ƒˋ(𝟎) +b
ƒˋˋ(𝟎)

𝟐!
 +𝒃𝟐 ƒ(𝟑)(𝟎)

𝟑!
 +…                                                            (9) 

 

Thus, we can rewrite equation (9) in the following form : 

    ƒˋ(𝒄)=  ƒˋ(𝟎)+ 
ƒˋˋ(𝟎)

𝟏!
.c +

ƒ(𝟑)(𝟎)

𝟐!
.𝒄𝟐 +…                                                           (10) 

 

By comparing equations (9) and (10), we conclude that: 

    

 1=1 

 𝑐 =
1

2
𝑏 

 𝑐2 =
1

3
𝑏2                                                                                                        (11) 

 𝑐3 =
1

4
𝑏3 

       . 

       . 



       . 

By making some adjustments, we can rewrite equation (11) in the following  form: 

  1=1 

  C= 
𝑏

2
 

 
𝑐2

2!
= 

𝑏2

3!
                                                                                  (12) 

 
𝑐3

3!
= 

𝑏3

4!
 

     . 

        . 

        . 

By adding both sides of equation (12), we conclude:  

1+ c+ 
𝒄𝟐

𝟐!
+ 

𝒄𝟐

𝟑!
+… = 1 + 

𝒃

𝟐!
 +

𝒃𝟐

𝟑!
 +

𝒃𝟑

𝟒!
                                                         (13) 

we observe on the left side of equation (13) that ( 1+c+
𝒄𝟐

𝟐!
+

𝒄𝟑

𝟑!
+…) is the expansion of 

the function ( 𝒆𝒄 ). 

=>      𝒆𝒄 == 1 + 
𝒃

𝟐!
 +

𝒃𝟐

𝟑!
 +

𝒃𝟑

𝟒!
                                                                      (14)  

We multiply both sides of equation (14) by (b) , then add +1 to both sides. We obtain the 

equation in the following form 

1+ b𝒆𝒄= 1 +b +
𝒃𝟐

𝟐!
+

𝒃𝟑

𝟑!
+…                                                                                         (15) 

 

The right side of equation (15) is the expansion of the function  (𝒆𝒃).therewhere we 

conclude the following: 

 

1 +b𝒆𝒄 =𝒆𝒃          =>              𝒆𝒄 =
𝒆𝒃−𝟏

𝒃
                                                                        (16) 

And this is the mathematical logic behind the limit of the function ( 
𝒆𝒙−𝟏

𝒙
  ) as (x→0) 

𝐥𝐢𝐦
𝒙→𝟎

𝒆𝒙−𝟏

𝒙
  =1           ;    0 < c < x           

 



"Returning to the Riemann zeta function, which is written in the following form: 

 

ζ(s) = ∑𝒏=𝟏
∞ 𝟏

𝒏𝒔 = 1+ 
𝟏

𝟐𝒔 + 
𝟏

𝟑𝒔 + 
𝟏

𝟒𝒔 +…                                             (17)                     

 

We will write the function ƒ(z) in the following form: 

  ƒ(z) = ∑
𝒛𝒏

𝒏𝒔 
∞
𝒏=𝟏  =z +

𝒛𝟐

𝟐𝒔 +
𝒛𝟑

𝟑𝒔 +…                                                     (18) 

 ƒ(0) =0       &      ƒ(1) =1 +
𝟏

𝟐𝒔
+

𝟏

𝟑𝒔
+… = ζ(s)                                          (19) 

 Using the same method as in the beginning of the solution, we obtain the equation: 

                                     𝒆𝒛 =
𝒆𝒃−𝟏

𝒃
                                                    (20) 

Where (z) is a complex number and is written in the form (z=x+yi) . We choose(b=1) 

Then we conclude that:   𝒆𝒙+𝒚𝒊 = e-1                                                    (21) 

The task is to determine the values of x and y in equation (21) 

  𝒆𝒙[𝐜𝐨𝐬 𝒚 + 𝒊 𝐬𝐢𝐧 𝒚] =e-1     =>  𝒆𝒙 𝐜𝐨𝐬 𝒚 + 𝒊𝒆𝒙 𝐬𝐢𝐧 𝒚 = e-1                                          (22)      

 

=> 𝒆𝒙 𝐬𝐢𝐧 𝒚 =0     ;   𝒆𝒙 > 0        ∀   x ∈ ℝ 

=> 𝐬𝐢𝐧 𝒚 = 0     =>    y= nπ           ;      n ∈ ℤ                                                                           (23)                                                                                      

     Substitute the value of  )y( into equation (22)  :  

 𝒆𝒙 𝐜𝐨𝐬(𝒏𝝅) = e-1       ;𝐜𝐨𝐬(𝒏𝝅) =  (−𝟏)𝒏      

=> 𝒆𝒙(−𝟏)𝒏 = e-1                                                                                                                        

Since (e-1) is strictly positive, then (n=2m) 

=> 𝒆𝒙 = e-1    =>    x = ln(e-1)                                                                                           (24) 

Thus, we obtain the complex number     z= x+yi 

 

Z = ln (e-1)+ 2mπi                   ;  m ∈   ℤ                                                                           (25)                                                                  

 

 



To clarify further on deriving the equation for (𝒆𝒛 =
𝒆𝒃−𝟏

𝟏
), and based on the initial steps 

of the solution, and considering that b=1, we write: 

 

 
ƒ(𝒛+𝟏)−ƒ(𝒛)

𝒛+𝟏−𝒛
  = ƒˋ(𝒛) +

ƒˋˋ(𝒛)

𝟐!
 +

ƒ(𝟑)(𝒛)

𝟑!
  +…                                                              (26)                                     

But: 

    
ƒ(𝒛+𝟏)−ƒ(𝒛)

𝒛+𝟏−𝒛
  ⎸= ƒˋ(𝟎) + 

ƒˋˋ(𝟎)

𝟐!
 + 

ƒ(𝟑)(𝟎)

𝟑!
 +…  = ζ(s)                                                                   (27) 

                       Z=0 

 

We can also express ƒˋ(𝒛) in the form: 

  ƒˋ(𝒛) =  ƒˋ(𝟎) + ƒˋˋ(𝟎). 𝒛 + 
ƒ(𝟑)(𝟎)

𝟐!
.𝒛𝟐 +…                                                                            (28) 

 

By comparing Equation 27 with Equation 28, we conclude that: 

 ƒˋ(𝒛)  =  ζ(s)     ⟹       𝒆𝒛 = e-1                                                                                            (29) 

 

Thus, (z=𝐥𝐧(𝒆 − 𝟏) + 𝟐𝒎𝝅𝒊) that we obtained in solving Equation (𝒆𝒛 = 𝒆 − 𝟏) is the 

set of zeros of the Riemann zeta function.           
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