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Abstract

Recently we have argued [1] that the noncommutativity of the space-
time coordinates is the answer to the question : Why is area, mass, entropy
quantized ? Furthermore, it casts light into a deep interplay among black
hole entropy, discrete calculus, number theory, theory of partitions, ran-
dom matrix theory, fuzzy spheres, . . .. We extend our previous construc-
tion of Schwarzschild black holes and derive the corrections to the Kerr-
Newman temperature and black hole entropy, to all orders, from the dis-
crete mass transitions taken place among different mass states. The mass
spectrum for Kerr, Kerr-Newman, and Reissner-Nordstrom black holes is
explicitly obtained which reduces to the Schwarzschild case when the an-
gular momentum and charge is set to zero. One of the most salient features
in the expansion of the modified temperature T = T + c1

T
N

+ c2
T
N2 + . . .

is that it spells a correspondence between the loop expansion in QFT
in powers of h̄, after setting h̄ ↔ (1/N). N is the principal quan-
tum number labeling the spectrum of mass states and which is given by
N = l3(l3+2)− l2(l2+1)+ l21, with l3 ≥ l2 ≥ |l1| being the quantum num-
bers associated with the hyper-spherical harmonics of the three-sphere
S3. These results can be extended to higher dimensions. To finalize, we
should add that the deviation from a full thermal spectrum and the cor-
rections to the Hawking temperature might be relevant to the solution of
the Black Hole Information paradox.

Keywords : Noncommutative Geometry; Gravity, Black Hole, Entropy; Strings;
Matrix Models; Partitions.
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1 Introduction : Noncommutative Spacetimes,
Quantization of Area, Mass and Entropy

Very recently we have explored how the Noncommutativity of the spacetime co-
ordinates results in the Quantization of Area, Mass and Entropy of black holes
[1]. It allowed to derive the Schwarzschild black hole entropy A

4G , the logarith-
mic corrections, and further corrections, from the discrete mass transitions taken
place among different mass states in D = 4. The higher dimensional general-
ization of the results in D = 4 followed. The discretization of the entropy-mass
relation S = S(M) lead to an entropy quantization of the form S = S(Mn) = n,
and such that one may always assign n “bits” to the discrete entropy, and in
doing so, make contact with quantum information. The physical applications of
mass quantization, like the counting of states contributing to the black hole en-
tropy, black hole evaporation, and the direct connection to the black holes-string
correspondence [2] via the asymptotic behavior of the number of partitions of in-
tegers, followed. We found that the recent large N Matrix model (fuzzy sphere)
of [3] leads to very similar results for the black hole entropy as the physical
model described in [1].

The idea of a Quantum Spacetime where the spacetime coordinates do not
commute was proposed early on by Heisenberg and Ivanenko as a way to elimi-
nate infinities from Quantum Field Theory. Snyder published the first concrete
example [4] of a noncommutative algebra involving the spacetime coordinates,
and it was generalized shortly after by Yang [5], to include noncommuting mo-
mentum variables as well. We learnt from General Relativity that the Poincare
algebra cannot be implemented on a curved spacetime, but only on its flat tan-
gent space (Minkowski spacetime). The momentum operators don’t commute
on a curved spacetime. And vice versa, by Born’s principle of reciprocity [6], [7]
the coordinate operators do not commute on a curved momentum space. This
prompted the formulation of Quantum Mechanics and Quantum Field Theory
in Noncommutative spacetimes (also called Noncommutative QFT), and which
might cast some light in the formulation of Quantum Gravity by encoding both
key aspects of a curved and a noncommuting spacetime (a curved noncommuting
spacetime).

Given a flat 6D spacetime with coordinates Y A = {Y 1, Y 2, Y 3, Y 4, Y 5, Y 6},
and a metric ηAB = diag(−1,+1,+1, . . . ,+1), the Yang algebra [5] can be
derived in terms of the so(5, 1) Lorentz algebra generators described by the
angular momentum/boost operators

JAB = −(Y A ΠB − Y B ΠA) = i Y A ∂

∂YB
− i Y B ∂

∂YA
(1.1)

where ΠA = −i(∂/∂YA) is the canonical conjugate momentum variable to Y A.
Their commutators are

[Y A, Y B ] = 0, [ΠA,ΠB ] = 0, [Y A,ΠB ] = i ηAB , A,B = 1, 2, 3, 4, 5, 6 (1.2)
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The coordinates Y A commute. The momenta ΠA also commute, and Y A,ΠB

obey the Weyl-Heisenberg algebra in 6D.
Adopting the units h̄ = c = 1, the correspondence among the noncommuting

4D spacetime coordinatesXµ, the noncommuting momenta Pµ, and the Lorentz
so(5, 1) algebra generators leading to the Yang algebra [5] is given by

Xµ ↔ LP Jµ5 = − LP (Y µ Π5 − Y 5 Πµ)

Pµ ↔ 1

L
Jµ6 = − 1

L
(Y µ Π6 − Y 6 Πµ), µ, ν = 1, 2, 3, 4 (1.3)

and which requires the introduction of an ultra-violet cutoff scale LP given
by the Planck scale, and an infra-red cutoff scale L that can be set equal to
the Hubble scale RH (which determines the cosmological constant). It is very
important to emphasize that despite the introduction of two length scales LP ,L
the Lorentz symmetry is not lost. This is one of the most salient features of the
Snyder [4] and Yang [5] algebras.

One must include also the remaining so(5, 1) generators

N ≡ J56 = −(Y 5 Π6 − Y 6 Π5), Jµν = −(Y µ Πν − Y ν Πµ), µ, ν = 1, 2, 3, 4
(1.4)

One can then verify that the Yang algebra is recovered after imposing the
above correspondence (1.3)

[Xµ, Xν ] = − i L2
P Jµν , [Pµ, P ν ] = − i (

1

L
)2 Jµν , η55 = η66 = 1 (1.5)

[Xµ, Jνρ] = i (ηµρ Xν − ηµν Xρ) (1.6)

[Pµ, Jνρ] = i (ηµρ P ν − ηµν P ρ ) (1.7)

[Xµ, P ν ] = − i ηµν
LP

L
N , [Jµν ,N ] = 0 (1.8)

[Xµ, N ] = i LPL Pµ, [Pµ, N ] = − i
1

LPL
Xµ (1.9)

and where the [Jµν , Jρσ] commutators are the same as in the so(3, 1) Lorentz
algebra in 4D. They are of the form

[ Jµ1µ2 , Jν1ν2 ] = − i ηµ1ν1 Jµ2ν2 + i ηµ1ν2 Jµ2ν1 +

i ηµ2ν1 Jµ1ν2 − i ηµ2ν2 Jµ1ν1 , h̄ = c = 1 (1.10)

The generators are assigned to be Hermitian so there are i factors in the right-
hand side of eq-(2.10) since the commutator of two Hermitian operators is anti-
Hermitian. The 4D spacetime metric is ηµν = diag(−1, 1, 1, 1).

In [9] we discussed two approaches in the evaluation of the areal spectrum
in 3D and associated with noncommutative coordinates that we labeled as op-
erators as xi; i = 1, 2, 3.
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One approach was to write the operator L−2
P

∑i=3
i=1 xix

i (in Planck units)

as the difference
∑i,j=4

i,j=1 J
2
ij −

∑i,j=3
i,j=1 J

2
ij of the total orbital angular momen-

tum squared in D = 4 and D = 3. So the eigenvalues can be obtained from
the difference between the quadratic Casimirs of SO(4) and SO(3) given by
C2[SO(4)]− C2[SO(3)] = l3(l3 + 2)− l2(l2 + 1), where l3 is the orbital angular
momentum quantum number of the three-sphere S3, and l2 is the orbital angu-
lar momentum quantum number of the two-sphere S2. In the very special case
when l3 = l2 the difference C2[SO(4)]−C2[SO(3)] is given by l2 and such that∑i=3

i=1 xix
i = l2L

2
P turns out to be linear in the angular momentum quantum

number of the two-sphere l2 = l.
The eigenfunctions of the angular momentum operators J2

S2 associated with
S2 are the spherical harmonics Ylm(θ, φ) and which can be rewritten as Yl2l1(θ2, θ1)

Yl2l1(θ2, θ1) ≡ Ylm(θ, φ) = (−1)m
√

2l + 1

4π

√
(l −m)!

(l +m)!
Pm
l (cosθ) eimφ (1.11)

with l1 = m, l2 = l; θ2 = θ, θ1 = φ and where Plm(cosθ) are the associated
Legendre ploynomials.

The eigenfunctions of the angular momentum operators J2
S3 associated with

S3 are given in terms of three angles θ1 = φ, θ2 = θ, θ3 = ξ and three quantum
numbers l1, l2, l3, obeying l3 ≥ l2 ≥ |l1|, as follows [10]

Yl1l2l3(θ, φ, ξ) = Yl1l2(θ, φ)

√
2l3 + 2

2

(l3 + l2 + 1)!

(l3 − l2)!

√
sinξ P

−(l2+
1
2 )

l3+
1
2

(cosξ)

(1.12)

where P
−(l2+

1
2 )

l3+
1
2

(cosξ) is the associate Legendre function of the first kind that

can be written in terms of the hypergeometric function 2F1 as

P
−(l2+

1
2 )

l3+
1
2

(cosξ) ≡ 1

Γ(1 + l2 +
1
2 )

(
1− cosξ

1 + cosξ
)

1
2 (l2+

1
2 ) ×

2F1

(
−(l3 +

1

2
), (l3 +

1

2
) + 1; 1 + (l2 +

1

2
);

1− cosξ

2

)
(1.13)

Note that because Yl1l2l3(θ, φ, ξ) factorizes Yl1l2(θ, φ)Fl3l2(ξ), it can be seen
also as an eigenfunction of J2

S2 (the angular momentum operator associated
with S2) because J2

S2Yl1l2l3(θ, φ, ξ) = l2(l2 + 1)Yl1l2l3(θ, φ, ξ) due to the factor-
ization property and the trivial fact that J2

S2 does not act on the extra angle ξ.
Therefore one arrives at

(

i=3∑
i=1

xix
i) Yl1l2l3 = L2

P (J2
S3 −J2

S2) Yl1l2l3 = L2
P [l3(l3 +2)− l2(l2 +1)]Yl1l2l3

(1.14)
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giving L2
P l2Yl1l2l3 for the right hand side in the special case when l3 = l2. Since

4πr2 is the area of a sphere, when the coordinates are noncommutative, we
can label r2 as the square of the radial operator, and the area spectrum of the
quantum sphere is 4πL2

P [l3(l3 + 2) − l2(l2 + 1)]. The areal spectrum becomes
linear in the angular momentum when l3 = l2 = l

Let us explore the physical implications behind the eigenvalues and eigen-
functions of the area-operators described in terms of the angular momentum
operators of (hyper) spheres S3,S2 . The main starting point is eq-(1.14). If

one sets l3 = l2 = n in eq-(1.14) it yields r2

L2
P

Yl1l2l3 = nYl1l2l3 , Given G = L2
P in

D = 4, the area quantization of the spherical horizon of radius rh = 2GM can
be recast also as a mass quantization condition as follows

r2h = (2GMn)
2 = n L2

P ⇒ 4M2
n

m2
P

= n ⇒ 2Mn

mP
=

√
n, mP = (LP )

−1

(1.15)
with n an integer 0, 1, 2, . . .. If there is a transition between two neighboring
discrete mass states : Mn → Mn−1, a thermal photon of energy ωn,n−1 =
Mn − Mn−1 = ∆Mn is emitted (radiated), so that when ∆n = 1 one learns
from eq-(2.1), to a first order approximation, that

2ωn,n−1

mP
=

2∆Mn

mP
∼ ∆n

2
√
n

=
mP

4Mn
, (∆n = 1) (1.16)

leading to

ωn,n−1 = ∆Mn ∼ m2
P

8Mn
=

1

8GMn
(1.17)

It is important to emphasize that if the transition occurs between states that
are not neighbors, ∆n ̸= 1, one may inclined to claim erroneously that the
frequencies of the photons emitted appear to be integer multiples of ωn,n−1. This
is an artifact of the first order approximation in eq-(1.17). A more rigorous result
reveals that the frequencies are not integer-multiples of the frequency ωn,n−1 of
eq-(1.7), because the mass states Mn ∼ mP

√
n are not equally spaced, like it

occurs in the energy levels of a harmonic oscillator.
In the black body radiation spectrum, Wien’s displacement law sates that the

wavelength at which the intensity per unit wavelength of the radiation has a local
maximum or peak, is only a function of the temperature and given by λpeak = b

T ,
where the constant b ≃ 2.897× 10−3 m-K is Wien’s displacement constant [24].
Since frequency is inversely proportional to the wavelength, the peak frequency
turns out to be directly proportional to the black body temperature.

Hence, if one postulates that the frequency is the same as the temperature,
ωn,n−1 = Tn , one finds that Tn ∼ 1

8GMn
is inversely proportional to the mass

Mn. The latter expression corresponds to a temperature whose functional form
is T (M) = 1

8GM and agrees with the Hawking temperature TH = 1
8πGM up to

a factor of π. The entropy corresponding to a temperature T = T (M) = 1
8GM

is defined as
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S =

∫
dM

T (M)
=

∫
dM (8GM) = 4GM2 =

4M2

m2
P

(1.18)

and this quadratic behavior in the mass matches the entropy of a black hole
4π(2GM)2

4G = Area
4G , up to a factor of π. One may note that a simple rescaling

LP → LP√
π
in the first term of eq-(1.15) suffices to obtain the exact expression for

the Black Hole entropy. In other words, one has An

4G = nπ to be more precise.

Given the Bekenstein-Hawking black hole entropy S = 4πM2

m2
P

, its discretized

form becomes Sn =
4πM2

n

m2
P

= nπ, and such that it is quantized in n-bits, in the

same way that one-quarter of the horizon’s area is quantized in integer multiples
of Planck-area cells (up to a multiple of π). In the remaining of this work we
shall explain how to introduce the π factors properly.

Logarithmic corrections to the black hole entropy are obtained when one
does not approximate the expression ∆Mn as displayed in eq-(1.17) but instead
one evaluates exactly the mass increment ∆Mn by performing the binomial

expansion in powers of 1
n , with n =

4M2
n

m2
P

, as follows

∆Mn =
mP

2
(
√
n −

√
n− 1) =

mP

2

√
n

(
1 −

√
1− 1

n

)
∼

mP

2

√
n

(
1

2n
+

1

8n2
+ . . .

)
(1.19)

Upon substituting n =
4M2

n

m2
P

in eq-(1.19), which stems from the area/mass quan-

tization, gives then for the two leading terms in the binomial expansion the
following

∆Mn = ωn,n−1 = Tn =
1

8GMn
+

1

128G2M3
n

(1.20)

and such discrete expression (1.20) corresponds to a temperature-mass relation
of the form

T = T (M) =
1

8GM
+

1

128G2M3
(1.21)

and one then obtains in this manner the first order corrections to the Hawking
temperature (up to π factors). Hence, the logarithmic corrections to the black
hole entropy are obtained from the integral

S =

∫
dM

T (M)
=

∫
dM

(
1

8GM
+

1

128G2M3

)−1

=

A

4G
− 1

4
ln(

A

G
+ 1) (1.22a)
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after inserting the expression for the horizon area A = 4π(2GM)2 in terms of
the mass M and inserting the factors of π judiciously. The discrete version of
eq-(1.22a) is

Sn =
An

4G
− 1

4
ln(

An

G
+ 1),

An

4G
= nπ =

4πM2
n

m2
P

(1.22b)

Higher order corrections to the Hawking temperature and black hole entropy
follow by including the higher order terms in the binomial expansion.

A similar procedure to obtain the logarithmic corrections to the black hole
entropy, after relating the frequency of the radiated photon to the temperature
in discrete mass transitions, can be found in [13] and references therein. The
mass spectrum of black holes has a long history, see [14], [15], [16], [12], [17]
among others. More recently, the quantum deformation of the Wheeler–DeWitt
equation of a Schwarzchild black hole was studied by [13]. The quantum de-
formed black hole was based on a quantized model constructed from the quan-
tum Heisenberg–Weyl Uq(h4) group. It was found that the event horizon area
and the mass were quantized, degenerate, and bounded due to the nature of the
quantum group when the deformation parameter was a root of unity.

In the next section we extend the above construction of Schwarzschild black
holes and derive the corrections to the Kerr-Newman temperature and black
hole entropy, to all orders, from the discrete mass transitions taken place among
different mass states. The mass spectrum for Kerr, Kerr-Newman, and Reissner-
Nordstrom black holes is explicitly obtained which reduces to the Schwarzschild
case when the angular momentum and charge is set to zero. One of the most
salient features in the expansion of the modified temperature T = T + c1

T
N +

c2
T
N2 + . . . is that it spells a correspondence between the loop expansion in

QFT in powers of h̄, after setting h̄ ↔ (1/N). N is the principal quantum
number labeling the spectrum of mass states and which is given by N = l3(l3 +
2) − l2(l2 + 1) + l21, with l3 ≥ l2 ≥ |l1| being the quantum numbers associated
with the hyper-spherical harmonics of the three-sphere S3. These results can
be extended to higher dimensions. To finalize, we should add that the deviation
from a full thermal spectrum and the corrections to the Hawking temperature
might be relevant to the solution of the Black Hole Information paradox.

Throughout this work we shall employ the units h̄ = c = kB = 1.

2 Mass Spectrum of the Kerr, Kerr-Newman
and Reissner-Nordstrom Black Holes

Having presented a review in the introduction of the area, mass quantization of
the Schwarzschild black hole resulting from the noncommutativity of the space-
time coordinates, we shall proceed with the Kerr, Kerr-Newman and Reissner-
Nordstrom Black Holes. Let us begin with the rotating massive Kerr black hole
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whose fundamental parameters are the mass M , and angular momentum J . The
angular rotation frequency ΩH of the black hole at the horizon is [18]

ΩH =
J

M

1

r2+ + a2
, a =

J

M
(2.1)

where a ≡ J/M is the angular momentum per unit mass. The outer and inner
horizon radius are

r± = (GM) ±
√
(GM)2 − (J/M)2 (2.2)

The area of the horizon is

A =

∫
dθ

∫
dϕ
√

gθθ(r+, θ, ϕ) gϕϕ(r+, θ, ϕ) = 4π (r2+ + a2) (2.3)

and the Kerr black hole temperature is given by

TKerr =
1

2π

r+ − GM

r2+ + a2
(2.4)

The Smarr formula [19] in D = 4

M = 2 TS + 2 ΩJ (2.5)

yields the Kerr black hole entropy

S =
β

2
(M − 2ΩJ) =

4π (r2+ + a2)

4G
, a ≡ J

M
(2.6)

after inserting the expression for β = 1
T with T given by (2.4), and the angular

rotation frequency Ω of the black hole at the horizon given by eq-(2.1). The
result in (2.6) is due to the equalities

(GM) (r2+ − a2) = 2 (GM) r2+ −2 (GM)2 r+ = (r+ − GM) (r2+ + a2) (2.7)

resulting from

r+ − GM =
√
(GM)2 − (J/M)2 =

√
(GM)2 − a2 (2.8)

and
r2+ + a2 = 2(GM)2 + 2GM

√
(GM)2 − (J/M)2 (2.9)

Given the entropy (2.6) the area quantization condition is chosen to be

π (r2+ + a2)N = π 2(GMN )2 + π 2GMN

√
(GMN )2 − (l1/MN )2 =

π L2
P [l3(l3 + 2) − l2(l2 + 1) + l21] = Nπ L2

P , N = 0, 1, 2, 3, . . . (2.10)
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The integer N (the principal quantum number) is defined as

N ≡ l3(l3 + 2) − l2(l2 + 1) + l21, l3 ≥ l2 ≥ |l1| (2.11)

where l1 is the azimuthal quantum number corresponding to the Cartan gener-
ator J3 = Jz = J12 of the SO(3) rotation group in 3D. The angular momentum

J⃗ of the Kerr black hole points in the z-axis direction 1 and its value is quantized
J3 = l1 in positive/negative integer units of h̄ . Given l2 the values of the 2l2+1
azimuthal quantum numbers are l1 = {l2, l2 − 1, l2 − 2, . . . , 0,−1,−2, . . . ,−l2}.

Choosing a given value for N leads to many different choices for the triplet
{l3, l2, l1}. The larger N is the larger the number of choices for {l3, l2, l1}. Given
eq-(2.10) one can then solve for MN in terms of N and l1. After some algebra,
one finds the following Kerr black hole mass spectrum

MN =
mP

2

√
N2 + 4l21

N
, N = 0, 1, 2, . . . (2.12)

which leads to the quantization of the entropy

SN =
AN

4G
= π (r2+ + a2)N = π N (2.13)

The first law of Kerr black hole thermodynamics is

dM = T dS + Ω dJ ⇒ (
∂S

∂M
)J =

1

T
⇒ (

∂M

∂S
)J = T (2.14)

where the variations are performed keeping J fixed. Hence, one can derive the
the discrete (quantized) version of the Kerr black hole’s temperature by varying
MN with respect to SN = Nπ, keeping l1 fixed, as follows

TN = (
∂MN

∂SN
)l1 = (

∂MN

∂(Nπ)
)l1 =

1

π
(
∂MN

∂N
)l1 =

mP

2π

1 − 4(l21/N
2)

2
√

(N2 + 4l21)/N
=

m2
P

8π

1 − 4(l21/N
2)

MN
=

m2
P

8π

N2 − 4l21
MN N2

(2.15)

Having found eq-(2.15) the next step is to invoke the quantization condition

(2.10) in order to relate N, l1 to the quantization values of r2+ and a2 = J2

M2 ,

which are denoted by r2+N and a2N =
l21

M2
N

, respectively. In this fashion, the

mass and angular momentum quantization quantization leads to the following
identifications

N L2
P = r2+N + a2N , N2 L4

P = (r2+N + a2N )2, l21 = a2N M2
N (2.16)

1We use the notation l1 instead of m used by many authors because one may confuse m
with mass
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such that the discrete (quantized) temperature (2.15) can be rewritten as

TN =
1

8π

(r2+N + a2N )2 − 4 a2N (GMN )2

GMN (r2+N + a2N )2
(2.17)

after using G = L2
P = m−2

P . One can verify explicitly that the right hand side
of eq-(2.17) is precisely the same as

TKerr =
1

2π

r+N − GMN

r2+N + a2N
(2.18)

which is the discrete (quantized) version of the temperature of a Kerr black
hole. After dropping the subscripts r+N ,MN , aN , for simplicity, one can show
by inspection that the difference between eq-(2.17) and eq-(2.18) is zero

1

8π

(r2+ + a2)2 − 4a2 (GM)2

GM (r2+ + a2)2
− 4

8π

(r2+ + a2) (GM) (r+ − GM)

GM (r2+ + a2)2
= 0

(2.19)
To verify the validity of eq-(2.19) it suffices to use the definitions in eq-(2.2) and
show by inspection that there is a precise cancellation of all the terms in (2.19).
Therefore, one has checked that eq-(2.17) = eq-(2.18) and it leads to the discrete
version of the Kerr black hole temperature, as expected, by construction, via
the quantization conditions (2.10,2.16).

One can repeat this whole process for the Kerr-Newman black hole. The
quantization condition of the Kerr-Newman black hole is now given by

(r2+ + a2)N = 2(GMN )2 −GQ2
N + 2GMN

√
(GMN )2 −GQ2

N − (l1/MN )2 =

L2
P [l3(l3 + 2) − l2(l2 + 1) + l21] = N L2

P , N = 0, 1, 2, 3, . . . (2.20)

After some straightforward algebra one can solve for MN in terms of N,QN , l1
and obtain the spectrum of the Kerr-Newman black hole

MN =
mP

2

√
N2 + 4 l21
N − Q2

N

(2.21)

If one wishes to avoid singularities, one finds that the quantized charge must be
bounded as follow Q2

N < N . The discrete temperature turns out to be

TN =
m2

P

8π

N2 − 2N Q2
N − 4l21

MN (N − Q2
N )2

(2.22)

Following the same arguments as above one can show that eq-(2.22) is the same
as the discrete version of the Kerr-Newman black hole temperature and which
has the same functional form as eq-(2.18) but now the outer horizon is given by
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r+N = GMN +
√
(GMN )2 −GQ2

N − (l1/MN )2, a2N =
l21
M2

N

(2.23)

All the above equations reduce to the Schwarzschild black hole case when l1 =
QN = 0. The Reissner-Nordstrom black hole results follow from all the Kerr-
Newman results simply by setting l1 = 0.

We learnt from the selection rules in quantum atomic transitions that ∆j =
±1 and which are consistent with the fact that a photon carries spin 1. Conser-
vation of angular momentum requires that the quantum atomic state (after the
photon emission) has decreased its angular momentum by one unit (of h̄). And
vice versa, it must increase its angular momentum by one unit after a photon
absorption. Based on this selection rule, using discrete calculus, and given the
Kerr black hole mass spectrum MN = mP

2

√
(N2 + 4l21)/N , one has

∆MN =
∂MN

∂N
∆N +

∂MN

∂l1
∆l1 +

1

2!

∂2MN

∂N2
(∆N)2 +

1

2!

∂2MN

∂l21
(∆l1)

2 +

∂M

∂N

∂MN

∂l1
∆N ∆l1 +

1

3!

∂3MN

∂N3
(∆N)3 +

∂3MN

∂l31
(∆l1)

3 + . . . (2.24)

involving both a variation in N and l1. The mass-energy content of a Kerr black
hole involves an internal energy (linked to the temperature), and a rotational
energy (linked to the angular momentum). In order to extract the temperature,
we shall keep l1 fixed, ∆l1 = 0 in (2.24) leading to

(∆MN )l1 = (
∂MN

∂N
)l1 ∆N +

1

2!
(
∂2MN

∂N2
)l1 (∆N)2 +

1

3!
(
∂3MN

∂N3
)l1 (∆N)3 + . . .

(2.25)
so that one may find the higher corrections to the discrete temperature TN given
in eq-(2.18) by simply setting ∆N = 1. The first term in eq-(2.25) yields TN

(2.18), while the remaining terms furnish the higher order corrections. When
∆N = 1, eq-(2.25) can be rewritten in terms of TN and its derivatives as

(∆MN )l1 = TN +
1

2!
(
∂TN

∂N
)l1 +

1

3!
(
∂2TN

∂N2
)l1 + . . . (2.26)

Since the discrete (quantized) entropy is SN = Nπ, the actual variations should
be with respect toNπ in order to reproduce the correct π factors. The continuum
version of eq-(2.26) is obtained by a simple replacement MN → M , TN → T ,
and SN → S. Hence, the modified temperature for the Kerr black hole is
postulated to be given by the expression

T = T +
1

2!
(
∂T

∂S
)l1 +

1

3!
(
∂2T

∂S2
)l1 + . . . (2.27)

And the first law of thermodynamics leads to the modified entropy
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S =

∫
β (dM − ΩH dJ) =

∫
dM

T
−
∫

ΩH

T
dJ (2.28)

In the case of the Schwarzschild black hole one can show that the first order
corrections to the temperature is what leads to the logarithmic corrections to
the black hole entropy. Given T = T (M) = 1

8πGM ; S = 4πGM2 ⇒ S ∼ T−2,

T ∼ S−1/2, and this way one can express the functional dependence of T (S) or
S(T ). The modified entropy is

S =

∫
dM

T
=

∫
dM

T + 1
2!

dT
dS + 1

3!
d2T
dS2 + . . .

(2.29)

The integral (2.29) is of the form

∫
dM

M ′ + 1
2!M

′′ + . . .
=

∫
dM

M ′
(
1 + 1

2! (M
′′/M ′) + . . .

) ∼

∫
dM

M ′ (1 − 1

2
(M ′′/M ′) − . . .) (2.30)

with M ′ = T = dM
dS ;M ′′ = T ′ = d2M

dS2 , . . .. The last term of (2.30) was obtained
by recurring to the expansion (1+x)−1 = 1−x+x2−x3+ . . .. The first integral∫

dM
M ′ =

∫
dS = S yields the Bekenstein-Hawking entropy A

4G , while the second
integral

−1

2

∫
dM

M ′′

(M ′)2
=

1

2

∫
dM

d

dS
(
1

M ′ ) =
1

2

∫
dM

dS
d(

1

M ′ ) =

1

2

∫
1

(dS/dM)
d(

dS

dM
) =

1

2
ln(

dS

dM
) =

1

2
ln(T−1) =

1

4
ln(

A

4G
) +

1

2
ln(4

√
π) (2.31)

is what furnishes the logarithmic corrections to the Schwarzschild black hole
entropy. The sign change of the log terms in eq-(2.31) compared to those in eq-
(1.22a) results because we chose above ∆N = 1 (absorption of photon) instead
of ∆N = −1 (emission of photon). Choosing ∆N = −1 will then affect the
relative sign in the first two terms of the expansion in eq-(2.25). This is the
reason why there is a sign change in eq-(2.31) compared to that in eq-(1.22a).
Also, one should add that because the last term of (2.30) was obtained by
recurring to the expansion (1 + x)−1 = 1− x+ x2 − x3 + . . ., one ends up with
ln(A/4G) instead of ln(1 +A/4G) as in eq-(1.22a).

If one includes the higher order terms in (2.30) one will generate the addi-
tional terms of the form (A/4G)−1 + (A/4G)−2 + (A/4G)−3 + . . . as expected.
The salient feature of defining the modified temperature by eq-(2.25) is that the
logarithmic corrections occur for all Schwarzschild-Tangherlini black holes in
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dimensions D ≥ 4. In the case of the Kerr black hole matters are more compli-
cated because one is dealing with partial derivatives instead of total derivatives
due to the fact that two variables are involved : the mass and the angular
momentum.

Next we shall exploit the expressions in eqs-(2.26,2.27) in order to obtain
the first order (and higher orders) corrections to the discrete Kerr black tem-
perature. The expression for TN = (∂M∂N )l1 was already obtained in eq-(2.17),
and its continuum limit was shown to agree precisely with the Kerr black hole
temperature TKerr in eq-(2.18). The leading correction to TN (after taking care
of the π factors involved in the value of the entropy SN = Nπ) is

1

2!
(

∂T

∂(Nπ)
)l1 =

1

16π2

8 a2N N M3
N − (N2 − 4a2N M2

N ) N2 TN

G N4 M2
N

(2.32)

Given the mass spectrum (2.12), one finds that for very large N >> a, the
leading corrections are of the order T1 ∼ (TN/GM2

N ) ∼ TN/N compared to TN .
This is a sign of consistency.

The correspondence given in eq-(2.16) allows to express N,N2 appearing in
the above eq-(2.32) in terms of MN and l1 and such that one can read-off the
functional form of TN = T (MN , l1), and in turn, by taking the continuum limit
TN → T , TN → T ;MN → M , l1 → aM , one will be able to find the sought-after
expression for the modified temperature T = T (M,J) = T (M,J) + . . .. After
tedious algebra, from eq-(2.32 ), and the correspondence given in eq-(2.16), one
finds that the continuum limit of the first leading correction to the Kerr black
hole temperature is

T1 =
1

16π2

8 a2 (GM)3 − [ (r2+ + a2)2 − 4a2 (GM)2 ] T (r2+ + a2)

G M2 (r2+ + a2)3

(2.33)
One can check that by setting a = 0 in (2.33) it furnishes the leading correction
to the Schwarzschild black hole temperature

T
(Schwarz)
1 = − 1

128 π3 G2 M3
(2.34)

which agrees (up to π factors) with the temperature correction to the Hawking
temperature appearing in eq-(1.22a). Once again, the sign change is due to
the fact that eq-(2.34) was derived by setting ∆N = 1 (photon absorption,
∆MN > 0), whereas eq-(1.22a) was based in setting ∆N = −1 (photon emission,
∆MN < 0).

After a laborious algebra one finds that the expression in (2.33) agrees with

(
∂T

∂S
)J = (

∂M

∂S
)J (

∂T

∂M
)J = T (

∂T

∂M
)J (2.35)
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where

(
∂T

∂M
)J =

1

16π2

16π a2 (GM)3 (r+ −GM)−1 − [ (r2+ + a2)2 − 4a2 (GM)2 ]

G M2 (r2+ + a2)2

(2.36)
with T = TKerr = T (M,J) is given by eq-(2.4). Therefore, to sum up, one has
T1 = (∂T∂S )J . The higher order sub-leading corrections to the temperature are
obtained by taking further derivatives

(
∂2T

∂S2
)J = (

∂T

∂S
)J (

∂T

∂M
)J + T (

∂2T

∂S∂M
)J = T (

∂T

∂M
)2J + T 2 (

∂2T

∂M2
)J ; . . .

(2.37)
One finds that for very large N >> a, the sub-leading corrections are of the

form TN/N2;TN/N3; . . . compared to TN . This expansion of the corrections to
the black hole temperature in powers of (1/N) resembles the loop expansion
in QFT in powers of h̄. A correspondence between h̄ and N of the form h̄ ↔
(1/N) is not new. A known example is the large N limit of Self Dual SU(∞)
Yang Mills when we showed in [25] that the equations for self dual SU(∞)
Yang Mills lead to the Plebanski heavenly equations for Self Dual Gravity. A
Moyal deformation quantization of SU(2) Self Dual Yang-Mills also furnishes
the Plebanski heavenly equations for Self Dual Gravity. The large N = ∞ limit
of the Moyal brackets reduce to the classical Poisson brackets. This is consistent
with the fact that if h̄ ↔ (1/N), then N → ∞ amounts to h̄ → 0. Another
example of this classical/quantum correspondence in the large N limit is the
AdS/CFT , gravity/SU(N) Yang-Mills correspondence [26].

Finally, by inserting the sum of the expressions (2.4) and (2.33) T = T +T1,
into the two integrals (2.28) one can derive the first order corrections to the
Kerr black hole entropy. A similar procedure works out for the Kerr-Newman
and Reissner-Nordstrom black hole entropies obtained by including the black
hole’s electric potential ΦH at the horizon

ΦH = Q
r+

r2+ + a2
(2.38)

An important remark is in order concerning the first law of black hole ther-
modynamics and the Smarr formula. The most general Smarr formulae for mas-
sive, charged, rotating black holes in higher dimensions, and with a cosmological
constant, were discussed in full detail by [19]. If one uses the Smarr formula (2.5)
by replacing T for T + T1 . . . in the Schwarzschild black hole it becomes clear
that one will not be able to generate the logarithmic corrections to the entropy
and which were recovered by recurring to the first law dM = T dS = (T+T1)dS,
as displayed explicitly by the integrals in eqs-(2.230, 2.31). Therefore one must
use the first law of thermodynamics which leads to the modified Kerr-Newman
entropy given by the integrals

S =

∫
dM

T
−
∫

ΩH

T
dJ −

∫
ΦH

T
dQ (2.39)
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with T = T + T1 + T2 + . . . , where T = T (M,J,Q) is the Kerr-Newman black
hole temperature. The results obtained in this work can be generalized to higher
dimensions after recurring to hyper spherical harmonics in order to derive the
hyper-areas spectrum [1].

3 Concluding Remarks

We end this work with some important final remarks. The deviation from a
full thermal spectrum and the corrections to the Hawking temperature might
be relevant to the solution of the Black Hole Information paradox since pure
states may no longer evolve to mixed states. Dvali [27] has provided a model-
independent argument indicating that for a black hole of entropy N the non-
thermal deviations from Hawking radiation, per each emission time, are of order
(1/N), as opposed to exp(−N), and argued that his fact abolishes the standard a
priori basis for the information paradox. The features of the non-corrected ther-
mal (non-thermal) spectrum and the quantum corrected thermal (non-thermal)
spectrum were analyzed by [28]. Consequently, these differences provide a pos-
sible way towards experimentally analyzing whether the radiation spectrum of
black hole is thermal or non-thermal with or without high order quantum cor-
rections.

To our knowledge, our approach to evaluate the area and mass spectrum of
black holes, and the higher order corrections to the black holes entropies and
temperatures, based on the noncommutativity of spacetime coordinates, is new,
or not widely known, despite that the literature on the logarithmic corrections
to black hole entropies is vast. We refer to the work of Sen [20], and the large
number of references therein, where he derived the logarithmic corrections to
the Kerr black hole entropy by evaluating in full rigour the Euclidean gravita-
tional path integral. Tanaka [8] in the past has studied quantum black holes
within the context of an underlying noncommutative quantized space-time, and
has explored the holographic relations in Yang’s quantized space-time algebra.
Valtancoli [11] is another author who has studied the spectrum of spheres in a
noncommutative Snyder geometry. For different approaches to the quantization
of the black holes area spectrum see [21]. The authors [29] have shown that the
standard quantum gravitational logarithmic correction to Bekenstein-Hawking
entropy is equivalent to a running gravitational “constant” dependent on the
horizon area Geff (A) that could also lead to a coupling between black hole
masses and cosmological expansion.

Recently, the Landauer principle from information theory in the context of
area quantization of the Schwarzschild black hole has been explored by [22]. It
is also based on a quantum-mechanical perspective where Hawking evaporation
can be interpreted in terms of transitions between the discrete states of the area
(or mass) spectrum. A very extensive and rigorous analysis of the entropy and
spectrum of near-extremal black holes involving semiclassical brane solutions to
non-perturbative problems can be found in [23].
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Most importantly, in our opinion, is that the noncommutativity of the space-
time coordinates is the answer to the question : Why is area, mass, entropy
quantized ? In this work we have not touched the generalized uncertainty prin-
ciple (GUP) relations because we have focused mainly on the spectral ques-
tions. The GUP is bound to play an important role. Furthermore, as discussed
in [1], these results cast light into a deep interplay among black hole entropy,
discrete calculus, number theory, theory of partitions, random matrix theory,
fuzzy spheres, . . .. For recent work on the interplay between number theory and
black holes see [30] where the authors used their methods to revisit the UV/IR
connection that relates black hole microstate counting to modular forms. They
also provided a microscopic interpretation of the logarithmic corrections to the
entropy of BPS black holes. We hope that our results in this work will further
strengthen the links between number theory and black holes.
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