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Abstract

This paper proposes a new theoretical framework introducing a fifth spatial dimension, referred to as
”space density,” as a fundamental aspect affecting both gravitational and electric fields. While the prop-
erties of electromagnetic and gravitational interactions are well-studied empirically, their fundamental
nature, interconnection, and the physical substance from which they arise remain elusive. This research
explores the concept of ”space density” in a five-dimensional space, hypothesizing that changes in this
dimension can lead to phenomena analogous to gravitational and electric fields. Through a series of
mathematical models, we demonstrate how the distribution of space density behaves around spherical
objects and discuss the implications for classical field theories. Our findings suggest the need to re-
consider the traditional view of space as merely metrically confined, proposing instead that space itself
possesses inherent properties and degrees of freedom. This hypothesis opens up new possibilities for
understanding fundamental interactions in the universe from both a physical and philosophical perspec-
tive. Based on innovative theoretical insights, this paper provides yet another alternative confirmation
of the Theory of Relativity concerning the equivalence of energy and mass of elementary particles.

I Introduction

Electromagnetic and gravitational forces are among the most fundamental in-
teractions known to physics. These forces govern the behavior of matter and
energy across scales, from subatomic particles to the cosmos. Despite exten-
sive empirical data and theoretical models describing the behavior of these
forces, their true nature and the material essence from which they arise remain
subjects of deep inquiry.

From a physical standpoint, we understand how these forces act and can
accurately predict their effects. However, questions remain: what exactly are
these forces? How are they interconnected? And, most importantly, what is
the proto-matter, the fundamental substance from which these forces emerge?
These questions touch not only on physical principles but also on philosophical
reflections about the nature of reality.

In this paper, we propose a theoretical model that introduces a fifth spatial
dimension, referred to as ”space density.” We hypothesize that this dimension
plays a critical role in the formation of gravitational and electric fields. Our
model suggests that the traditional three-dimensional space, combined with
time, is insufficient to fully explain the origin of these forces. Instead, space
itself may possess internal properties that contribute to the formation of these
fields. By expanding our understanding of space to include an additional di-
mension, we explore the potential for new interpretations of gravitational and
electromagnetic interactions.
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II Hypothesis

We hypothesize that electromagnetic and gravitational fields are manifestations
of a more fundamental property of space, which we call ”space density.” This
property is defined in a five-dimensional system, where the fifth dimension is
orthogonal to the traditional three spatial and one temporal dimensions.

In this model, ”space density” represents a measure of how space itself can be
compressed or expanded independently of its metric. This density is not anal-
ogous to the density of matter with which we are familiar in three-dimensional
space, but rather reflects a fundamental characteristic of space that influences
the formation of gravitational and electric fields.

Our hypothesis is based on several key postulates:

• Space Density: In five-dimensional space, the density ρ(r) characterizes
the state of space and can vary, allowing us to describe the curvature of
space without distorting its metric. Let us call this phenomenon first-order
space curvature. A similar term is used in the Theory of Relativity, but in
this theory, it will have a slightly different context.

• Spherical Symmetry of Disturbances: The distribution of space den-
sity under disturbance assumes spherical symmetry. The distribution of
space density ρ(r) is assumed to be symmetric relative to the point that is
the center of disturbance.

• Conservation of Space Density: When a region of space is disturbed,
the surrounding space is capable of changing its density in such a way that
the total density of the entire space remains constant. In other words, in
a certain approximation, we can say that the total ”density” of space over
a finite volume much larger than the volume of the disturbance should
remain constant.

• Minimization of Entropy: Space tends to states of minimum entropy
relative to the distribution of space density. This principle governs the
natural tendency of space to return to a uniform density distribution after
disturbances, similar to the thermodynamic principles that govern physical
systems.

By exploring these postulates within the framework of five-dimensional space,
we aim to provide a deeper understanding of the origins of gravitational and
electromagnetic fields. This model challenges the traditional notion that these
fields are independent and instead suggests that they are interconnected through
the intrinsic properties of space itself.
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III Methodology

IV Distribution of Space Density Around a Compressed Spherical
Region of Space

We have two states of the universe. In the first state, the density throughout
space is ρ0 and is a constant. In the second state of the system, there is a
region of space bounded by a sphere S(R1), which we compress to S(R′

1). We
need to find the distribution of space density inside and outside the sphere,
based on the laws we have established in our hypothetical universe.

4.1 Density Distribution After Compression
The density after compression inside the sphere is given by ρinside = ρ0 + ρ1,
where ρ1 is the added density, determined by the ratio of the volumes before
and after compression:

ρ0V (R1) = ρinsideV (R′
1)

Substitute the volumes of the spheres:

ρ0
4

3
πR3

1 = (ρ0 + ρ1)
4

3
πR′3

1

Simplifying:

ρ0R
3
1 = (ρ0 + ρ1)R

′3
1

ρ1 = ρ0

(
R3

1

R′3
1

− 1

)
4.2 Density Distribution Outside the Sphere
We assume that outside the sphere, the amount of extracted space density must
equal the amount added inside it, ρ1 · V (R′

1). Therefore, when integrating the
disturbance from the surface of the compressed sphere to infinity, the integral
must converge to a finite number, meaning the integrand must be convergent.
In three-dimensional space, such a function is 1/r4. Let us assume that the
distribution of reduced density outside the compressed region of space will fol-
low this distance dependence from the center of disturbance. Thus, we get the
following dependence for the space density distribution outside the compressed
sphere:

∆ρdecrease(r) =
A

r4
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4.3 Normalization Coefficient A

To satisfy the law of conservation of space density, the integral of ∆ρdecrease(r)
over the volume from R′

1 to infinity must equal the added density inside the
sphere:

ρ1V (R′
1) =

∫ ∞

R′
1

∆ρdecrease(r) · dV

Considering the law of spherical symmetry, in spherical coordinates, the
integral simplifies to:

ρ1V (R′
1) =

∫ ∞

R′
1

∆ρdecrease(r) · 4πr2 dr

Substituting:

ρ1
4

3
πR′3

1 = 4π

∫ ∞

R′
1

A

r4
r2 dr

Solve the integral:

4πA

∫ ∞

R′
1

1

r2
dr = 4πA

[
−1

r

]∞
R′

1

= 4πA

(
1

R′
1

− 0

)
=

4πA

R′
1

The equality of densities:

ρ1
4

3
πR′3

1 =
4πA

R′
1

Find A:

A = ρ1
R′4

1

3
The final formula for ∆ρdecrease(r):

∆ρdecrease(r) =
A

r4
=

ρ1
R′4

1

3

r4

Now multiply both the numerator and denominator by 4π:

∆ρdecrease(r) =
4πρ1

R′4
1

3

4πr4
=

ρ1
4
3πR

′4
1

4πr4
=

ρ1
V (R′

1)
R′

1

r4
=

ρ1 ·R′
1 · V (R′

1)

4πr4

Thus, we have derived the following formula for the density distribution
outside the sphere ∆ρdecrease(r):
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∆ρdecrease(r) =
ρ1 ·R′

1 · V (R′
1)

4πr4
(1)

Considering that the amount of added density in the volume of the com-
pressed sphere is expressed by the formula:

Q = (V (R1)− V (R′
1)) · ρ0

where V (R1) and V (R′
1) are the volumes of the spheres with radii R1 and

R′
1, respectively. Also, taking into account the formula for ρ1 — the density of

the added density inside the sphere:

ρ1 =
Q

V (R′
1)

where V (R′
1) is the volume of the sphere after compression.

We can express the derived formula for the space density distribution ∆ρdecrease(r)
as:

∆ρdecrease(r) =
Q ·R′

1

4πr4
(2)

Where Q is the amount of density added to the volume of the sphere S(R1′),
R1′ is the radius of the compressed sphere, and r is the distance from the center
of the sphere to the point in space in spherical coordinates.

4.4 Verification of Space Density Conservation
To satisfy the third law established in our system, the following equality must
hold:

∫ ∞

R′
1

∆ρdecrease(r) · dV =

∫ ∞

R′
1

∆ρdecrease(r) · 4πr2 dr = ρ1V (R′
1)

Substitute the expression for ∆ρdecrease(r):
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∫ ∞

R′
1

ρ1 ·R′
1 · V (R′

1)

4πr4
· 4πr2 dr = ρ1 ·R′

1 · V (R′
1)

∫ ∞

R′
1

1

r2
dr

Integrate and apply the limits:

ρ1 ·R′
1 · V (R′

1)

[
−1

r

]∞
R′

1

= ρ1 ·R′
1 · V (R′

1)

(
1

R′
1

− 0

)
=

ρ1 ·R′
1 · V (R′

1)

R′
1

We get: ∫ ∞

R′
1

∆ρdecrease(r) · dV = ρ1V (R′
1) = ρ1

4

3
πR′3

1

Thus, we have confirmed that our space density distribution outside the com-
pressed sphere, proportional to 1/r4, agrees with our third law of space density
conservation in the system, taking into account the normalization coefficient
A.

V Interaction of Two Compressed Spheres of Space

In this section, we explore the interaction between two compressed spherical
regions of space. By analyzing the distribution of space density around these
spheres, we derive the influence of one sphere on the density distribution of
the other. This analysis is crucial for understanding the nature of forces and
interactions that arise due to variations in space density.

5.1 Illustration of Space Density Distribution
Before proceeding with the mathematical derivations of the impact of space
density distribution created by two spheres on each other, I suggest exam-
ining a graphical representation of the space density distribution around two
compressed spheres. This figure, constructed based on the mathematical model
using the formula derived for ∆ρdecrease(r) (equation (2)), visually demonstrates
how the density distribution created by each sphere changes depending on the
distance between them.
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Figure 1: Space density distribution around two compressed spheres. The graph illustrates how the space
density changes along the line connecting the centers of the spheres as they approach each other.

5.2 Integral of the Density Gradient for One Sphere
Consider the function ∆ρdecrease(r

′
1), which represents the density distribution

for one sphere and has spherical symmetry with respect to the coordinate
system r′1. The function takes the form:

∆ρdecrease(r
′
1) =

R′
1ρ1V (R′

1)

4πr′41
where R′

1 is the radius of the sphere, ρ1 is the density at radius R′
1, and

V (R′
1) is the volume-dependent function.

5.2.1 Gradient of the Density Function in the r′1 Coordinate Sys-
tem
I propose that the amount of disturbance created by the second sphere on the
space density distribution of the first sphere can be described by calculating the
integral of the gradient of the space density distribution outside the spheres in
a coordinate system centered at the first sphere. Accordingly, to calculate the
influence of the first sphere on the second, the same process should be applied,
but in the coordinate system centered at the second sphere. Let us verify the
outcome of such assumptions.
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First, we compute the gradient of the function ∆ρdecrease(r
′
1) with respect to

the radial coordinate r′1. The gradient operator in spherical coordinates for a
radially symmetric function is given by:

∇r′1
∆ρdecrease(r

′
1) =

d

dr′1

(
R′

1ρ1V (R′
1)

4πr′41

)
r̂′1

where r̂′1 is the unit vector in the radial direction.
Taking into account the spherical symmetry, we compute the derivative with

respect to r′1 and obtain:

d

dr′1

(
R′

1ρ1V (R′
1)

4πr′41

)
= −4R′

1ρ1V (R′
1)

4πr′51
Thus, the gradient of the density function in spherical coordinates r′1 is:

∇r′1
∆ρdecrease(r

′
1) = −R′

1ρ1V (R′
1)

πr′51
r̂′1

5.2.2 Integral of the Gradient from R′
1 to Infinity

Next, we integrate the gradient of the density function from R′
1 to infinity:∫ ∞

R′
1

∇r′1
∆ρdecrease(r

′
1)dVr′1

where dVr′1
= 4πr′21 dr

′
1 is the volume element in spherical coordinates r′1.

Substituting the previously obtained gradient:∫ ∞

R′
1

(
−R′

1ρ1V (R′
1)

πr′51

)
4πr′21 dr

′
1 = −4R′

1ρ1V (R′
1)

∫ ∞

R′
1

1

r′31
dr′1

Solving the integral: ∫
1

r′31
dr′1 = − 1

2r′21
Substituting the integration limits from R′

1 to infinity, we get:[
− 1

2r′21

]∞
R′

1

= 0−
(
− 1

2R′2
1

)
=

1

R′2
1

Finally, substituting this into the integral:∫ ∞

R′
1

∇r′1
∆ρdecrease(r

′
1)dVr′1

= −4R′
1ρ1V (R′

1) ·
1

2R′2
1

= −2
R′

1ρ1V (R′
1)

R′2
1

Simplifying the expression:∫ ∞

R′
1

∇r′1
∆ρdecrease(r

′
1)dVr′1

= −2
ρ1V (R′

1)

R′
1
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5.3 Integral of the Density Gradient for the Second Sphere
Consider the density distribution for the second sphere ∆ρdecrease(r

′
2), which is

spherically symmetric with respect to the coordinate system r′2. The function
is given by:

∆ρdecrease(r
′
2) =

R′
2ρ2V (R′

2)

4πr′42
Considering the invariance of the position of the second sphere relative to

the first in the coordinate system r1′ at a fixed distance D (the system of two
spheres is invariant to the coordinates of the center of the second sphere in the
r1′ coordinate system and depends only on the distance D), the relationship
between the radius vectors in the two reference systems can be expressed as:
r′2 = r′1−D, where D is the fixed distance between the origins of the coordinate
systems r′1 and r′2, respectively.

5.3.1 Gradient of the Density Function in the r′1 Coordinate Sys-
tem
Having the relationship between the radius vectors of the coordinate systems
r′1 and r′2, to compute the gradient of ∆ρdecrease(r

′
2) with respect to r′1, it is

necessary to apply the chain rule. The gradient of the function ∆ρdecrease(r
′
2)

with respect to r′2 is given by:

∇r′2
∆ρdecrease(r

′
2) =

d

dr′2

(
R′

2ρ2V (R′
2)

4πr′42

)
r̂′2

Using the chain rule, we get:

∇r′1
∆ρdecrease(r

′
2) =

d∆ρdecrease(r
′
2)

dr′2
· dr

′
2

dr′1
r̂′1

where dr′2
dr′1

= d
dr′1

(r′1 −D) = 1, since D is a constant value.
Thus, the gradient of ∆ρdecrease(r

′
2) in the r′1 coordinate system is:

∇r′1
∆ρdecrease(r

′
2) =

d

dr′2

(
R′

2ρ2V (R′
2)

4π(r′1 −D)4

)
r̂′1 = −R′

2ρ2V (R′
2)

π(r′1 −D)5
r̂′1
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5.3.2 Application of the Change of Variables Theorem
To perform the integration, we apply the change of variables theorem. Consid-
ering that r′2 = r′1 −D, we find that r′1 = r′2 +D.

Verification of the Chain Rule Application: The chain rule can be ap-
plied since the function ∆ρdecrease(r

′
2) is continuously differentiable with respect

to r′2. Moreover, the relationship between r′1 and r′2 is linear, ensuring that the
condition dr′1

dr′2
= 1 is satisfied.

Verification of the Change of Variables Theorem: To apply the change
of variables theorem, the following conditions must be verified:

1. Continuity of the Transformation: The transformation r′2 = r′1 − D
is continuous and differentiable.

2. Jacobian Calculation: The Jacobian of the transformation r′1 = r′2 +D

equals dr′1
dr′2

= 1.

3. Transformation of Integration Limits: The integration limits are
transformed as follows:

• Lower limit: r′1 = R′
1 corresponds to r′2 = R′

1 −D.
• Upper limit: r′1 = ∞ corresponds to r′2 = ∞.

Thus, the change of variables theorem is applicable, and the integral in the
r′2 coordinate system is:∫ ∞

R′
1

∇r′1
∆ρdecrease(r

′
2)dVr′1

=

∫ ∞

R′
1−D

∇r′2
∆ρdecrease(r

′
2)dVr′2

5.3.3 Integral of the Gradient in the r′2 Coordinate System
Now, let’s integrate the gradient of the density function ∆ρdecrease(r

′
2) over the

volume element dVr′2
= 4πr′22 dr

′
2:

∫ ∞

R′
1−D

(
−R′

2ρ2V (R′
2)

πr′52

)
4πr′22 dr

′
2 = −4R′

2ρ2V (R′
2)

∫ ∞

R′
1−D

1

r′32
dr′2

The integral simplifies to:

−4R′
2ρ2V (R′

2)

∫ ∞

R′
1−D

1

r′32
dr′2
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Solving the integral: ∫
1

r′32
dr′2 = − 1

2r′22

Integrating from R′
1 −D to infinity, we get:[

− 1

2r′22

]∞
R′

1−D

= 0−
(
− 1

2(R′
1 −D)2

)
=

1

2(R′
1 −D)2

Thus, the integral of the gradient of the function ∆ρdecrease(r
′
2) in the r′1

coordinate system is:∫ ∞

R′
1

∇r′1
∆ρdecrease(r

′
2)dVr′1

= −2
R′

2ρ2V (R′
2)

(R′
1 −D)2

5.4 Disturbance of the Density Distribution of the First Sphere
in the Presence of the Second Sphere
5.4.1 Determination of the Disturbance Magnitude
I propose that the disturbance of the density distribution of the first sphere in
the presence of the second sphere, located at a distance D, is determined as the
difference between the integral of the gradient of the total density distribution
for the two spheres in the r′1 system and the integral of the gradient of the
density distribution for one sphere, also in the r′1 system. This disturbance
represents the ”amount of influence” of the second sphere on the density distri-
bution of the first sphere. I also hypothesize that the amount of disturbance,
according to the fourth postulate of our system, will equal the amount of ”in-
teraction” between the systems. Space, striving to minimize its entropy, will
”affect” the spheres by changing their position in space, thereby reducing the
disturbance.

Mathematically, the disturbance magnitude ∆Wr′1
(D) is defined as:

∆Wr′1
(D) =

(∫ ∞

R′
1

∇r′1
∆ρtotal(r)dVr′1

)
−
(∫ ∞

R′
1

∇r′1
∆ρdecrease(r

′
1)dVr′1

)
where: ∫ ∞

R′
1

∇r′1
∆ρtotal(r)dVr′1

= −2
ρ1V (R′

1)

R′
1

− 2
R′

2ρ2V (R′
2)

(R′
1 −D)2

is the total space density distribution created by the two spheres in the r′1
coordinate system, while:
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∫ ∞

R′
1

∇r′1
∆ρdecrease(r

′
1)dVr′1

= −2
ρ1V (R′

1)

R′
1

is the density distribution created by the first sphere, again in the r′1 coor-
dinate system.

Now, the disturbance magnitude ∆Wr′1
(D)—the amount of disturbance in

the space density created by the second sphere on the space density distribu-
tion of the first sphere in the r′1 coordinate system—can be computed as the
difference between these two integrals:

∆Wr′1
(D) =

(
−2

ρ1V (R′
1)

R′
1

− 2
R′

2ρ2V (R′
2)

(R′
1 −D)2

)
−
(
−2

ρ1V (R′
1)

R′
1

)
Simplifying the expression:

∆Wr′1
(D) = −2

R′
2ρ2V (R′

2)

(R′
1 −D)2

(3)

5.4.2 Approximation for Large Distances D � R′
1

In the approximation where D � R′
1, the formula for the disturbance simplifies

and becomes similar to the expression for the electric field intensity created by
a point charge. Specifically, the magnitude ρ2 · V (R′

1) can be interpreted as
the equivalent of the electric charge Q of the second sphere, representing the
added space density of the second sphere in the volume V (R′

1). The radius R′
1

in the numerator acts as a normalizing constant, and D represents the distance
between the centers of the spheres S(R′

1) and S(R′
2), where the added space

density is concentrated, which can be analogous to electric charges.
With this analogy in mind, the disturbance magnitude ∆Wr′1

(D) for large
distances can be expressed as:

∆Wr′1
(D) ≈ 2

R′
2Q

D2
, (4)

where Q = ρ2V (R′
2), or Q = (V (R2)− V (R′

2)) · ρ0
This formula highlights the direct proportionality of the disturbance ∆Wr′1

(D)
to Q and the inverse-square dependence on the distance D between the ”charges,”
which is characteristic of fields such as the electric field created by point charges.
Given the similarity of the obtained formula to the formula for the electric field
intensity, in our interpretation, Q takes on the physical meaning of charge, and
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∆Wr′1
(D) takes on the physical meaning of electric field intensity or the force

exerted by the charge Q on a unit charge located at a distance D. This result
is very important for our theory, as it gives us confidence that our hypothetical
assumptions about the nature of space are likely correct, and our theory transi-
tions from an abstract model to having practical significance in understanding
the origin of such phenomena as charge and the electric field.

5.4.3 Physical Interpretation
Given the similarity of this disturbance formula to the formula for the electric
field intensity derived from Coulomb’s law, which was originally obtained based
on experimental data, it can be reasonably assumed that our assumptions about
the properties of space density in the context of real physical phenomena, such
as the electric field, are correct. This analogy provides a conceptual bridge
between the abstract mathematical formulation of space density disturbance
and well-known physical laws governing electric fields.

Thus, the presence of the second sphere at a distance D leads to a disturbance
in the space density distribution of the first sphere, similar to the influence of
a point charge on the electric field at a distance. This connection not only
confirms the validity of our theoretical approach but also provides a deeper
understanding of the interaction between space density distributions and their
physical interpretations.

5.5 Results and Further Discussion
The results obtained from the analysis of the interaction between two com-
pressed spheres suggest a profound connection between the concepts of space
density and classical field theories. The derived formula for the interaction of
space density disturbances bears a striking resemblance to Coulomb’s law for
electric fields, implying that what we understand as electric charge may be
deeply rooted in the fundamental properties of space.

This similarity opens up new perspectives for interpreting the nature of
electric and gravitational fields, suggesting that these fields are not merely
byproducts of the presence of matter, but are intrinsic to the very fabric of space
itself. The hypothesis that space can possess a ”density” that influences the
formation of fields challenges traditional views of space as a passive backdrop
for physical phenomena.

The presented mathematical model provides a new foundation for under-
standing the forces that govern the universe. The introduction of the concept
of a fifth dimension gives us a new perspective on the interaction of forces,
potentially leading to a unified theory encompassing both gravitational and
electromagnetic interactions.

The potential implications of this model are vast. If the connection between
space density and the formation of fields is confirmed by further theoretical and
experimental work, it could lead to a reevaluation of fundamental concepts in
physics. This model may offer new insights into the unification of forces, the
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nature of dark matter and dark energy, and the role of additional dimensions
in the structure of the universe.

Future research should explore the broader applicability of this model, in-
cluding its implications for quantum field theory, cosmology, and high-energy
physics. Additionally, experimental verification of the predicted space den-
sity distributions and their effects on observable phenomena will be critical to
confirm this theory. The introduction of space density as a fundamental prop-
erty of space itself opens new avenues for both theoretical and experimental
research.

VI Solving the Gradient Integral Over the Entire Volume for the
Space Density Distribution Equation of One Sphere

In this section, we solve the gradient integral over the entire volume for the
space density distribution equation of one sphere. The approach uses the Heav-
iside function, which effectively describes boundary conditions and sharp tran-
sitions in the space density distribution. This detailed derivation ensures the
conservation laws are upheld and provides insight into the nature of space
density disturbances.

We will write our distribution taking into account the boundary conditions
using the Heaviside function and integrate the gradient of this space density
distribution over the entire volume. The idea is that mass, in the classical sense
of mass, is also related to space density. The curvature of space, along with
its metric (second-order curvature) and the curvature of space relative to its
metric (first-order curvature), such as the change in space density distribution
different from the uniform distribution ρ0, is inevitably tied to boundary con-
ditions! Based on the postulates of our space, according to the fourth postulate
of our space, the space density inside the compressed sphere will always be ho-
mogeneous, while at the boundary of the sphere, there will always be a sharp
transition in density, which can be described by the Heaviside function. Thus,
to again satisfy the fourth postulate of our space—the tendency to minimize
entropy—space will tend to curve further.

I hypothesize that it is precisely the boundary conditions, such as the dis-
continuity in the uniform distribution of space density, which is undoubtedly a
strong space density disturbance, that cause the curvature of space along with
its metric. Below is an illustration showing the space density distribution along
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any radial vector from the center of the disturbance to infinity:

Figure 2: Graphs of space density distribution along a line passing through the center of the compressed
sphere.

6.1 Representation of Space Density Distribution Using the Heav-
iside Function
The space density distribution, ρ(r), for a single sphere can be expressed using
the Heaviside function H(x) for an accurate description of the density inside
and outside the compressed sphere. The primary density distribution is defined
as:

ρ(r) =

{
ρ0 + ρ1, if r ≤ R′

1

ρ0 − R′
1·ρ1·V (R′

1)
4πr4 , if r > R′

1

The increase in density ∆ρincrease(r) within the compressed region can be
expressed as:

∆ρincrease(r) =

{
ρ1, if r ≤ R′

1

0, if r > R′
1

Similarly, the decrease in density ∆ρdecrease(r) outside the sphere is:
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∆ρdecrease(r) =

{
0, if r ≤ R′

1
R′

1·ρ1·V (R′
1)

4πr4 , if r > R′
1

Now we can rewrite these expressions in terms of the Heaviside function
H(x):

∆ρincrease(r) = ρ1H(R′
1 − r)

∆ρdecrease(r) =
R′

1 · ρ1 · V (R′
1)

4πr4
H(r −R′

1)

Thus, the overall change in density ∆ρ(r):

∆ρ(r) = ρ1H(R′
1 − r)− R′

1 · ρ1 · V (R′
1)

4πr4
H(r −R′

1)

6.1.1 Boundary Condition Verification
Now let’s verify the boundary conditions:

1. For r ≤ R′
1:

∆ρ(r) = ρ1H(R′
1 − r)− R′

1 · ρ1 · VR1′

4πr4
H(r −R′

1)

Since H(R′
1 − r) = 1 and H(r −R′

1) = 0:

∆ρ(r) = ρ1 − 0 = ρ1

2. For r > R′
1:

∆ρ(r) = ρ1H(R′
1 − r)− R′

1 · ρ1 · VR1′

4πr4
H(r −R′

1)

Since H(R′
1 − r) = 0 and H(r −R′

1) = 1:

∆ρ(r) = 0− R′
1 · ρ1 · VR1′

4πr4
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Now substitute VR1′ =
4
3π(R

′
1)

3:

∆ρ(r) = −
R′

1 · ρ1 · 4
3π(R

′
1)

3

4πr4
= −ρ1 ·R′4

1

3r4

Thus, we arrive at the following expression for ∆ρ(r) in terms of
the Heaviside function:

∆ρ(r) = ρ1H(R′
1 − r)− ρ1 ·R′4

1

3r4
H(r −R′

1) (5)

6.2 Verification of the Space Density Conservation Equation
To verify, we will take the integral of ∆ρ(r). Let’s integrate ∆ρ(r) over the
entire volume. Recall that ∆ρ(r) is given by:

∆ρ(r) = ρ1

[
H(R′

1 − r)− R′4
1

3r4
H(r −R′

1)

]
We will calculate the integral:∫ ∞

0
∆ρ(r) · 4πr2 dr

We divide the integral into two parts, corresponding to ∆ρincrease(r) and
∆ρdecrease(r):

∫ ∞

0
∆ρ(r) · 4πr2 dr =

∫ ∞

0

[
ρ1H(R′

1 − r)− ρ1 ·R′4
1

3r4
H(r −R′

1)

]
· 4πr2 dr

We split this into two separate integrals:∫ ∞

0
ρ1H(R′

1 − r) · 4πr2 dr −
∫ ∞

0

ρ1 ·R′4
1

3r4
H(r −R′

1) · 4πr2 dr

Let’s first consider the first integral:

∫ R′
1

0
ρ1 · 4πr2 dr = 4πρ1

∫ R′
1

0
r2 dr = 4πρ1

[
r3

3

]R′
1

0

= 4πρ1 ·
(R′

1)
3

3
=

4πρ1(R
′
1)

3

3
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Now consider the second integral:∫ ∞

R′
1

ρ1 ·R′4
1

3r4
· 4πr2 dr = 4πρ1R

′4
1

3

∫ ∞

R′
1

1

r2
dr =

4πρ1R
′4
1

3

[
−1

r

]∞
R′

1

We evaluate the limits:

4πρ1R
′4
1

3

(
− 1

∞
+

1

R′
1

)
=

4πρ1R
′4
1

3
· 1

R′
1

=
4πρ1R

′3
1

3

Now let’s add both results:∫ ∞

0
∆ρ(r) · 4πr2 dr = 4πρ1(R

′
1)

3

3
− 4πρ1(R

′
1)

3

3
= 0

Thus, the integral of ∆ρ(r) over the entire volume equals zero:∫ ∞

0
∆ρ(r) · 4πr2 dr = 0

We obtained the expected result, though this calculation was necessary for
verification.

6.3 Calculation of the Gradient Integral and Verification of the
Fourth Law of Our System
In this section, we will calculate the integral of the gradient of the space density
distribution over the entire volume, written in terms of the Heaviside function,
to determine whether space is in a disturbed or equilibrium state. In other
words, since we established in the previous section that the gradient integral
of the space density distribution has the physical meaning of a force, let us
find the expression for the force that keeps our space in a compressed state
inside the sphere S(R1). Now we will focus on calculating the gradient and
subsequently integrating it from the function ∇∆ρ(r), expressed using the
Heaviside function.

In the previous subsection, we obtained the following space density distri-
bution for a single sphere ∆ρ(r):

∆ρ(r) = ρ1H(R′
1 − r)− ρ1 ·R′4

1

3r4
H(r −R′

1)

6.3.1 Calculation of the Gradient Over the Volume from the Ob-
tained Space Density Distribution for One Sphere ∇∆ρ(r):

∇∆ρ(r) =
∂

∂r

[
ρ1H(R′

1 − r)− ρ1 ·R′4
1

3r4
H(r −R′

1)

]
r̂.
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Let’s find the gradient ∇∆ρ(r):
1. Derivative of H(R′

1 − r):
∂

∂r
H(R′

1 − r) = −δ(r −R′
1)

2. Derivative of R′4
1

3r4H(r −R′
1) is:

∂

∂r

(
R′4

1

3r4
H(r −R′

1)

)
= −4R′4

1

3r5
H(r −R′

1) +
R′4

1

3r4
δ(r −R′

1)

3. The final partial derivative is:
∂(∆ρ)

∂r
= ρ1

[
−δ(r −R′

1) +
4R′4

1

3r5
H(r −R′

1)−
R′4

1

3r4
δ(r −R′

1)

]

6.3.2 Now let’s compute the integral of the gradient over the en-
tire volume from ∇∆ρ(r), which is:

∂(∆ρ)

∂r
= ρ1

[
−δ(r −R′

1) +
4R′4

1

3r5
H(r −R′

1)−
R′4

1

3r4
δ(r −R′

1)

]
.

Our expression for the gradient integral takes the form:∫
V

∂(∆ρ)

∂r
dV.

In spherical coordinates, the volume element dV is equal to r2 sin θ dr dθ dφ.
Since the function ∂(∆ρ)

∂r depends only on the radial coordinate r, the angular
integrals can be computed separately:∫ π

0

∫ 2π

0
sin θ dφ dθ = 4π.

Thus, the integral simplifies to:∫ ∞

0

∂(∆ρ)

∂r
· r2 · 4π dr.

Now substitute the function ∂(∆ρ)
∂r :
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∫ ∞

0
ρ1

[
−δ(r −R′

1) +
4R′4

1

3r5
H(r −R′

1)−
R′4

1

3r4
δ(r −R′

1)

]
· r2 · 4π dr.

We divide the integral into three parts:∫ ∞

0
ρ1

[
−δ(r −R′

1) · r2 +
4R′4

1

3r5
H(r −R′

1) · r2 −
R′4

1

3r4
δ(r −R′

1) · r2
]
· 4π dr.

6.3.3 Now we compute each integral part:
1. Integral of −δ(r −R′

1) · r2

Using the property of the delta function:∫ ∞

0
−δ(r −R′

1) · r2 · 4π dr.

The delta function property states:∫ ∞

−∞
f(r)δ(r − a) dr = f(a).

Here, f(r) = −r2 · 4π and a = R′
1. Thus:

−
∫ ∞

0
δ(r −R′

1) · r2 · 4π dr = −4π(R′
1)

2.

2. Integral of 4R′4
1

3r5 H(r −R′
1) · r2

For the function H(r −R′
1), the integral is limited from R′

1 to infinity:∫ ∞

R′
1

4R′4
1

3r5
· r2 · 4π dr.

We simplify the integrand:

4R′4
1

3
· 4π

∫ ∞

R′
1

1

r3
dr.

The integral over r: ∫ ∞

R′
1

1

r3
dr =

[
− 1

2r2

]∞
R′

1

=
1

2R′2
1

.

Thus:

4R′4
1

3
· 4π · 1

2R′2
1

=
16πR′2

1

3
.
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3. Integral of −R′4
1

3r4δ(r −R′
1) · r2

Using the property of the delta function:∫ ∞

0
−R′4

1

3r4
δ(r −R′

1) · r2 · 4π dr.

The delta function allows us to simplify this integral:

−4πR′4
1

3
·
∫ ∞

0

1

r2
δ(r −R′

1) dr = −4πR′4
1

3
· 1

R′2
1

= −4πR′2
1

3
.

4. Now let’s sum all the parts:
Now let’s sum all the parts:∫ ∞

0

∂(∆ρ)

∂r
dV = ρ1

[
−4π(R′

1)
2 +

8πR′2
1

3
− 4πR′2

1

3

]
.

Combining the results:

∫ ∞

0

∂(∆ρ)

∂r
dV = ρ1

[
−4π(R′

1)
2 +

4πR′2
1

3

]
= ρ1

[
−12πR′2

1

3
+

4πR′2
1

3

]
.

We get:

= ρ1

[
−8πR′2

1

3

]
.

Thus, the final result of the integral is:

∫ ∞

0

∂(∆ρ)

∂r
dV = −8πρ1R

′2
1

3
. (6)

Expressing the result through the area of the sphere S(R′
1):

S(R′
1) = 4π(R′

1)
2 =⇒ (R′

1)
2 =

S(R′
1)

4π
.

Substituting into the integral:
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∫ ∞

0
∇∆ρ(r) · dV = −

8πρ1
(
S(R′

1)
4π

)
3

= −8ρ1S(R
′
1)

12
= −2ρ1S(R

′
1)

3
.

Thus, the gradient integral over the entire volume in terms of the sphere’s
area S(R′

1) is:

∫ ∞

0
∇∆ρ(r) · dV = −2ρ1S(R

′
1)

3
. (7)

Now let’s express the result through Q, considering that:

ρ1 =
Q

V (R′
1)
.

Where Q is the amount of added density to the volume bounded by the
sphere S(R1′) and is expressed by the formula:

Q = (V (R1)− V (R′
1)) · ρ0,

and V (R1) and V (R′
1) are the volumes of the spheres with radii R1 and R′

1,
respectively. We get the formula for the disturbance of space density caused
by a single compressed sphere:

∫ ∞

0
∇∆ρ(r) · dV = −2 ∗Q

R′
1

. (8)

We obtained the same dimensionality as the formula for ∆Wr′1
(D) ≈ 2R′

2Q
D2 ,

if we cancel out R′
2 and the square from D2, we get the same dimensionality as

the electric field intensity, which characterizes the force with which the electric
field intensity acts on a unit electric charge at a distance D between the centers
of the spheres. This means that our reasoning was correct; the integral of the
gradient for the space density distribution from 0 to infinity indicates the force
required to keep the space density in a compressed state.

We also see that, despite the fulfillment of the third postulate of our sys-
tem—the law of conservation of space density—the system is not in equilibrium
and remains disturbed. Thus, to satisfy the fourth law of our universe—the ten-
dency to minimize the entropy of the space density distribution—the amount
of space density disturbance must also tend to zero. However, if we make fur-
ther changes to the space density distribution outside the sphere and somehow
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redistribute the space density outside the sphere, this will violate the third law
associated with the conservation of space density.

In this regard, it can be assumed that space, in order to compensate for this
disturbance, will curve along with its metric. In this way, both the third and
fourth postulates of our hypothetical universe will be observed. Now we need
to find such a space density distribution that will lead to zero disturbance of
space density caused by the boundary conditions on the compressed sphere.

6.4 Conclusions on the Gradient Integral
The integration of the space density gradient over the entire volume yielded a
significant result that confirms the hypothesis that space density plays a key
role in the formation of gravitational and electromagnetic fields. The non-zero
result of the gradient integral, with a negative sign, indicates that the system
is in a disturbed state and requires further changes to achieve equilibrium.

This disturbance can be interpreted as space curvature, which is directly
related to changes in the space density distribution caused by the compression
of a spherical region. The result obtained suggests that space curvature and
space density disturbances are closely linked, providing new insights into the
nature of gravitational interactions.

Additionally, the expression obtained for the total disturbance highlights the
relationship between the three-dimensional surface area, space density, and the
resulting disturbance. This relationship points to a deeper connection between
space density and the forces that govern the behavior of matter and energy in
the universe.

The introduction of the concept of space density as a fundamental property
of space itself, capable of influencing the distribution and interaction of fields,
opens new avenues for understanding the fundamental forces of nature. This
theoretical framework offers the potential to unify gravitational and electro-
magnetic phenomena under a common conceptual basis, which could lead to
new discoveries about the nature of matter, energy, and the structure of the
universe.

VII The Relationship Between Space Density and the Mass of a
Compressed Sphere

In the previous section, we obtained that
∫∞
0 ∇∆ρ(r) · dV = −2∗Q

R′
1

, which is
non-zero and characterizes the force that keeps the sphere with space density
compressed.

Now, let’s calculate the energy required to compress this sphere from S(R1)
to S(R′

1). If the integral of the gradient is a measure of force, then by integrat-
ing this force along the path, we will obtain the work necessary to compress
the sphere, i.e., its internal energy.

Next, we will find this relationship between the internal energy of the charge,
equal to the integral of the force required to compress the sphere, over the
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radius from its initial radius R1 to the final radius R′
1. This relationship is

crucial for understanding how the energy contained within the compressed
sphere determines the curvature of space, and consequently, the gravitational
field generated by the compressed region of space in the form of a sphere, i.e.,
its mass.

7.1 Energy Required to Compress the Sphere from R1 to R′
1

7.1.1 Initial Equation
We have: ∫ ∞

0
∇∆ρ(r) · 4πr2 dr = −8πρ1(R

′
1)

2

3

where

ρ1 = ρ0

(
R3

1

R′3
1

− 1

)

Substitute the value of ρ1 and get:∫ ∞

0
∇∆ρ(r) · 4πr2 dr = −8πρ0

3

(
R3

1

R′
1

− (R′
1)

2

)
7.1.2 Let’s perform a variable substitution, replacing R′

1 with t,
so that our expression takes the form:

F (t) = −8πρ0
3

(
R3

1

t
− t2

)
Here, F (t) represents the physical force required to compress the sphere S(t)

from t = R1 to t′ = R′
1.

7.1.3 Calculating the Energy Required to Compress the Sphere
from R1 to R′

1

Consider the sphere S(t) with radius t, which needs to be compressed from
radius R1 to radius R′

1. The force that holds the sphere in a compressed state
S(R′

1) is given by the function:

F (t) = −8πρ0
3

(
R3

1

t
− t2

)
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We need to find the energy E, expended in compressing the sphere from R1

to R′
1. To do this, we use the formula for work, which in this case is equal to

the compression energy:

E =

∫ R′
1

R1

F (t) dt

Substitute the expression for force F (t):

E =

∫ R′
1

R1

−8πρ0
3

(
R3

1

t
− t2

)
dt

We split the integral into two terms:

E = −8πρ0
3

[∫ R′
1

R1

R3
1

t
dt−

∫ R′
1

R1

t2 dt

]
Integrating each term with respect to t:
For the first term, we get: ∫

R3
1

t
dt = R3

1 ln t

For the second term, we get: ∫
t2 dt =

t3

3

Substitute the integration results and limits of integration:

E =
8πρ0
3

[
−R3

1 ln

(
R′

1

R1

)
+

1

3

(
(R′

1)
3 −R3

1

)]
(9)

This expression represents the energy required to compress the sphere from
R1 to R′

1. This energy is equivalent to the amount of energy contained within
the compressed sphere, which causes the curvature of space along with its
metric, thereby determining the mass of the sphere.

7.2 Mass of the Compressed Sphere
Using the well-known Einstein equation E = mc2, we can find the mass m of
the compressed sphere:

m =
E

c2

Substitute the expression for E:
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m =
8πρ0
3c2

[
−R3

1 ln

(
R′

1

R1

)
+

1

3

(
(R′

1)
3 −R3

1

)]
(10)

This expression defines the mass of the compressed sphere based on the
energy required for its compression, which can also be interpreted as the energy
that holds the sphere in a compressed state or the energy contained within
the compressed sphere. This result illustrates how the energy associated with
compressing the sphere is converted into equivalent mass, which (in accordance
with our fourth postulate) creates the curvature of space relative to its metric
and gives rise to effects such as mass and the gravitational field.

7.3 Transition to Gravitational Equations
The obtained value of the energy required to compress the space density sphere
is nothing more than the energy required to create this clump of space density.
One could say that this is the internal energy of the electric charge or the
gravitational charge; the essence remains the same. According to the fourth
law of our system, space will strive to reach equilibrium and curve the metric
of space, thereby fulfilling the fourth postulate of minimizing the entropy of
space energy and bringing the system to equilibrium.

We can, similarly to the calculation of first-order curvature characterized
by ∆ρdecrease(r), obtain the curvature coefficient K(r), which represents the
coefficient of curvature of the space metric at each point in space created by
the energy clump E, as per Formula No. 9.

Unlike first-order curvature, which is characterized by the electric field, the
transition between first-order space r1 and second-order space r′1—relative to
which our space will be curved—will follow the following relationship for the
radial vectors:

r′1 =

∫ r1

0
r1 ·K(r) dr (11)

Thus, unlike electric fields, whose values combine and form a new field dis-
tribution upon interaction, the curvatures caused by energy clumps E will
multiply. This also defines the nature of the interaction, in contrast to the
interaction of electric charges. Energy objects, or as we commonly understand
them, massive bodies, will distort the curvature distributions created by other
objects not by adding the curvature coefficients but by multiplying them, unlike
how we did with the analogs of our electric charges S(R′

1) and S(R′
2). There-

fore, at short distances comparable to the sizes of massive bodies, to minimize
the amount of mutual curvature and entropy of space, energy objects (or sim-
ply, bodies with mass) will attract each other. At larger distances, when the
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coefficient of mutual curvature of space metrics is small, they will repel each
other with acceleration, similar to electric charges. This explains phenomena
such as dark matter and dark energy.

The curvature of the spatial metric K(r), similar to the distribution of den-
sity outside the compressed sphere, will be proportional to 1/r4 with an appro-
priate normalization coefficient. This coefficient K(r) describes the distribution
of spacetime curvature caused by the energy clump and allows us to establish
an equation for this distribution.

Next, we will need to consider the perturbations caused by a second grav-
itational charge on the distribution of the coefficient K(r) in the coordinate
system of the first one, describing the curvature of the spacetime metric due
to the first charge, similarly to how we did with electric charges, except that
the curvature coefficients from two bodies do not add but multiply, to create a
unified picture of the gravitational field generated by two energy objects, or as
we commonly call them, bodies with mass. This mutual perturbation and its
influence on the curvature of space up to the second body will lead us to equa-
tions similar to gravitational equations, but more precise, which will account
for the repulsion of massive bodies at large distances.

This simple explanation covers concepts such as energy, charge, electric field,
mass, gravitational field, dark matter, and dark energy.

The space density that we introduced at the beginning of our study as a
hypothetical value has a physical dimensionality equal to a coulomb divided
by a unit of volume. In turn, the charge is the difference in the volumes of
spheres before and after compression, multiplied by the space density in the
state of minimal entropy, ρ0.

7.4 Physical Meaning
The calculations performed serve as further confirmation of the Theory of Rel-
ativity, which asserts the equivalence of energy and mass. What we understand
by mass, as a measure of matter that manifests itself in gravitational effects
through the curvature of the space metric, is nothing more than the amount of
energy spent on compressing the space density from the sphere S(R1) to S(R′

1),
where R′

1 < R1. These same statements will be true for the expansion of the
sphere from S(R1) to S(R′

1), where R′
1 > R1. Thus, this creates an analogy

opposite to the first case of electric charge: if the first case is taken as a negative
charge, then the second would correspond to a positive one. It should also be
noted that the amount of energy required to stretch the space density with the
same charge will be greater, and the ”geometric” size of the stretched sphere
will also be larger, which relates us to elementary particles—electrons and
protons—and the ratio of their masses and sizes with identical electric charges.
Undoubtedly, the representation of charges as spheres is an approximation, and
in reality, we do not yet know the geometric structure of elementary charges,
and their mass-to-size ratio will depend on this geometric structure.

The proposed approach to the relationship between the mass and size of
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elementary charges allows us to analyze possible geometric structures of ele-
ments of the micro-world. However, already knowing the mass of the electron
and the proton, we can approximately calculate the ratio of S(R1) to S(R′

1)
that satisfies the observed mass ratio of electrons and protons. Thus, we can
already obtain calculated data for the relative ratio of the ”compression coeffi-
cient” K = R1

R′
1

of the space density necessary for the formation of elementary
particles. Next, using our formula for the amount of energy in the space den-
sity, we can determine the internal energy of an elementary particle in units
of ρ0. Knowing the internal energy, we can also calculate the value of ρ0,
which will allow us to express all known physical quantities in terms of units
of measurement of ρ0, the dimensionality of which is coulomb divided by unit
volume.

VIII Conclusion and Final Remarks

This work attempts to theoretically derive Coulomb’s law, which currently
serves as an empirical generalized model of experimental data. The main goal of
the study was to explain the fundamental interactions in nature by introducing
a new concept—space density—which can quantitatively describe the distortion
of space without changing its metric. This approach allowed us to propose a
model that connects the concepts of gravity, electric fields, and the mass of
matter on a deeper level than existing theories.

8.1 Main Results
1. Derivation of Coulomb’s Law:

Using simple mathematics and fundamental physical concepts, a formula
analogous to Coulomb’s law was derived through the introduction of space
density. This was achieved by recognizing that space density plays a key role
in forming fields and forces analogous to those present in electromagnetism.

2. Concept of Space Density:
Space density was introduced as a new physical quantity capable of de-

scribing space distortion. Unlike the traditional view of distortion through
the metric tensor of spacetime, this concept offers an alternative view of the
interaction between matter and fields.

Space density was also linked to the concept of a ”gravitational charge,”
interpreted as the energy required to compress space. In this context, the
gravitational charge explains how a ”clump” of space density contributes to
the distortion of the space metric and the creation of gravitational effects.

3. Further Confirmation of the Equivalence of Energy and Mass:
It is assumed that as the sphere S(R1) is compressed to S(R′

1), where R1 is
the uncompressed sphere with density ρ0, the gravitational charge corresponds
to the amount of energy required to compress space. By integrating the force
required to compress the space density from R1 to R′

1 (where R1 > R′
1), we

obtained the energy required to compress the sphere, or the energy contained
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within the elementary particle, which determines the curvature coefficient of
space along with its metric and forms what we currently understand as the
mass of matter.

Our study once again confirms the assertion of the Theory of
Relativity regarding the equivalence of mass and energy. This is
important for understanding how energy is related to the curvature
of space along with its metric.
4. Connection with Existing Theories:

The paper shows that the proposed model does not contradict the laws
of electrostatics, the theory of relativity, or quantum field theory but rather
complements them, providing a deeper explanation of concepts such as matter,
force, energy, and mass. In particular, the model confirms the existing views
on the equivalence of the ”creation energy” of elementary particles or their
internal energy and their mass.

5. Comparison with Existing Theories:
The introduction of space density as a mechanism responsible for distortion

provides a way to integrate it with established theories such as general relativity
and quantum field theory. Space density can be associated with the gravita-
tional charge, which causes the distortion of the space metric tensor, aligning
with ideas about the Higgs boson and its role in endowing matter with mass.

6. Philosophical Aspects of Physics:
The work touches not only on the technical aspects of deriving physical laws

but also on philosophical questions about the nature of matter and energy.
This makes the theory a universal platform for further research in fundamental
physics.

8.2 Final Remarks
The concept of space density proposed in this work represents the first but very
important step toward creating a unified Theory of Everything, which unites
gravitational and electromagnetic interactions and explains the nature of mass
in matter. The derivation of a formula analogous to Coulomb’s law and the
understanding of mass as the amount of energy required to compress space
provide a new and very interesting foundation for studying physical processes.

However, many questions remain open. At present, space density remains a
hypothetical quantity, and the mechanisms that cause its specific behavior re-
quire further study. Future research should focus on experimentally confirming
the proposed ideas and on a deeper theoretical understanding of the mechanism
of interaction between space density, matter, and fields.

Thus, this work is the first step toward a more profound and comprehensive
theory that requires collective efforts and further development. This new ap-
proach has the potential to lead to fundamental discoveries and revolutionize
our understanding of the nature of forces, fields, and matter.
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