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Abstract

In a Gaussian multivariate context, we will describe the steps to follow to dif-
ferentiate the notion of Pearson correlation and the causality. This paper includes
numerical examples clearly showing the difference between the two notions.
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1 Introduction

In this paper, we will understand in a Gaussian context from a proof how to relate the
notion of causation to square of the multiple correlation.

For this, I will have to introduce the causal effect vector ∆E = E[X∣Ω] − E[X].

X − ∆E will correspond to the signal obtained when the causes Ω acts on X.

The unimpacted signal X and the impacted signal X − ∆E will be related to square of
the multiple correlation KX,Ω.K−1

Ω2 .KΩ,X .

To facilitate our understanding of correlation and causation, I will present a table that
showcases the magnitude of correlations alongside their corresponding causation lev-
els. Using the Seatblet matrix example found in the R software, we will expose the
signals unimpacted and impacted by the causes.

Subsequently, we explore a scenario involving two causes acting on a variable. By
delineating the correlation pairs associated with strong and weak causation, we shed
light on the intricate relationship between these factors.

The paper concludes with numerical applications, specifically addressing a problem
where two causes influence a variable. Through these examples, we establish connec-
tions between strong and weak correlations and the likelihood of causation.
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2 Square of multiple correlation and causation

The relationship which links the causality to the correlations can be written as follows:

KX,Ω.K−1
Ω2 .KΩ,X = 1 − Var(X − ∆E)

Var(X)

where #Ω ≥ 2, E(.∣.) is the Gaussian conditional average and Var(.) is the variance.

X is the unimpacted signal.

∆E = E[X∣Ω] − E[X] is the causal effect vector.

X − ∆E corresponds to impacted signal obtained when the causes Ω act on X.

0 ≤ Var(X−∆E)
Var(X) ≤ 1 is the causal effect ratio of causes Ω acting on the variable X.

0 ≤ KX,Ω.K−1
Ω2 .KΩ,X ≤ 1 corresponds to square multiple correlation.

Proof:

In what follows, we will factorize the variance ΣX2 of the conditional variance ΣX2∣Ω to
show the correlations K:

ΣX2∣Ω = ΣX2 − ΣX,Ω.Σ
−1
Ω2 .ΣX,Ω

ΣX2∣Ω = ΣX2 − ΣX,Ω.(diag−1(ΣΩ2)) 1
2 .K−1
Ω2 .(diag−1(ΣΩ2)) 1

2 .ΣΩ,X

ΣX2∣Ω = ΣX2 − Σ
1
2
X2 .KX,Ω.K−1

Ω2 .Σ
1
2
X2 .KΩ,X

ΣX2∣Ω = ΣX2 .(1 − KX,Ω.K−1
Ω2 .KΩ,X)

The relationship can also be written:

KX,Ω.K−1
Ω2 .KΩ,X = 1 −

ΣX2∣Ω
ΣX2

= 1 − ∣∣X − E(X∣Ω)∣∣2
∣∣X − E(X)∣∣2 = 1 −

∣∣X−E(X∣Ω)∣∣2
N

∣∣X−E(X)∣∣2
N

As we have:EΩ(E(X∣Ω)) = 1
N ∑
Ω

E(X∣Ω) = E(X), we obtain:

KX,Ω.K−1
Ω2 .KΩ,X = 1 − Var(X−E[X∣Ω])

Var(X)

By adding the constant E[X] into the variance Var(X − E[X∣Ω]): Var(X − E[X∣Ω]) =
Var(X − (E[X∣Ω] − E[X])). By putting ∆E = E[X∣Ω] − E[X], we obtain the relation-
ship: KX,Ω.K−1

Ω2 .KΩ,X = 1 − Var(X−∆E)
Var(X)

Note that the Gaussian entropy of X gives h(X) and that the Gaussian entropy of the
impacted signal X − ∆E gives the following Gaussian conditional entropy h(X∣Ω):

h(X − ∆E) = 1
2 ln(2.π.e.Var(X − (E[X∣Ω] − E[X]))) = 1

2 ln(2.π.e.ΣX2∣Ω) = h(X∣Ω).

The signal X having an average E[X] and an entropy h(X) impacted by the causes Ω
becomes the signal X −∆E having an average E[X] and a conditional entropy h(X∣Ω).
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3 Pearson correlation value range

We will explain the importance of correlations to interpret the order of magnitude in
what will follow:

Level of correlation ρmin ρmax

Strong positive correlation 0.6 1
Moderate positive correlation 0.4 0.59

Weak positive correlation 0.2 0.39
Very Weak positive correlation 0 0.19

Strong negative correlation -1 -0.6
Moderate negative correlation -0.59 -0.4

Weak negative correlation -0.39 -0.2
Very Weak negative correlation -0.19 0
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4 Causation value range

We will present a table containing the magnitudes of causation:

Level of causation min(KXΩ.K−1
Ω2 .KΩX) max(KXΩ.K−1

Ω2 .KΩX)
Very weak 0 0.199

Weak 0.2 0.399
Medium 0.4 0.599
Strong 0.6 0.799

Very Strong 0.8 1
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5 Impact for Seatbelt Matrix Signals

In what follows, we will consider the Seatbelt matrix found in the R software to show
the cause signals X1, X2 ,the signal unimpacted Y and the signal Y − ∆E impacted by
the causes X1 and X2:

Time

X
1
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00
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00
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00
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00

Time
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2

1970 1975 1980 1985
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0
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Time

Y
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Y
 −

 (
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 m
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n(

Y
))
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25
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KY(X1,X2).K
−1
(X1X2)2 .K(X1X2)Y = 1−var(Y − ∆E)

var(Y) = 1−var(Y − (E −mean(Y)))
var(Y) = 0.4564833

We notice a medium causal link KY(X1,X2).K
−1
(X1X2)2 .K(X1X2)Y = 0.4564833 with correla-

tion weights KY(X1,X2) = (0.34,0.62) weak and strong. Using examples, we will show
in what follows how to differentiate the notion of causation and correlation.
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6 Problem:Multiple causation of two causes acting on
a single variable computed from correlations

In what follows, we will consider a set of two causes Ω = {ω1, ω2} acting on a variable
X as follows:

ω1 ω2

X

To this graph we attribute a matrix of correlations of the causes KΩ2 and a weight vector
of correlations KX,Ω between the causes Ω and the variable X:

KΩ2 = ( 1 ρω1ω2

ρω1ω2 1 ) and KX,Ω = (ρω1X , ρω2X)

Then we will present a field of correlations KX,Ω = (ρω1X , ρω2X) for which there is a
strong causation:

0.6 ≤ KX,Ω.K−1
Ω2 .KΩ,X < 0.799

We will also show the representation for a weak causation:

0.2 ≤ KX,Ω.K−1
Ω2 .KΩ,X < 0.399

For correlation’s field KX,Ω = (ρω1X , ρω2X) , we select correlation pairs to expose the
following situations:

1. A pair of strong correlations between the causes Ω and the variable X that
implies a strong causation between the causes and the variable.

2. A pair of weak correlations between the causes Ω and the variable X that im-
plies a strong causation between the causes and the variable.

3. A pair of strong correlations between the causes Ω and the variable X that
implies an weak causation between the causes and the variable.

4. A pair of weak correlations between the causes Ω and the variable X that im-
plies an weak causation between the causes and variable.
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7 Strong correlation, weak correlation and strong cau-
sation between two causes and a single variable

In what follows we will consider the matrix of causes KΩ2 :

KΩ2 = ( 1 0.85
0.85 1 )

From the previous matrix, we will now represent the pairs of correlations KX,Ω having
a strong causation 0.6 ≤ KXΩ.K−1

Ω2 .KΩX ≤ 0.799:
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Figure 1: Pairs of correlations KX,Ω having a strong causation 0.6 ≤ KXΩ.K−1
Ω2 .KΩX ≤

0.799

From this graph we will select two points:KX,Ω = (0.73,0.77) and KX,Ω = (0.18,−0.25).
We will compute the square of multiple correlation KXΩ.K−1

Ω2 .KXΩ for the two points:

KXΩ.K−1
Ω2 .KΩX = (0.73,0.77)( 1 0.85

0.85 1 )
−1

.(0.73
0.77) = 0.6134414

KXΩ.K−1
Ω2 .KΩX = (0.18,−0.25)( 1 0.85

0.85 1 )
−1

.( 0.18
−0.25) = 0.6176577

We can therefore describe two situations:

1. A pair of strong correlations between the causes and the variable that implies
a strong causation between the causes and the variable.

2. A pair of weak correlations between the causes and the variable that implies a
strong causation between the causes and the variable.
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8 Strong correlation, weak correlation and weak cau-
sation between two causes and a single variable

In what follows we will consider the same matrix of causes KΩ2 :

KΩ2 = ( 1 0.85
0.85 1 )

From the previous matrix, we will now represent the pairs of correlations KX,Ω having
a weak causation 0.2 ≤ KXΩ.K−1

Ω2 .KΩX ≤ 0.399:
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Figure 2: Pairs of correlations KX,Ω having a weak causation 0.2 ≤ KXΩ.K−1
Ω2 .KΩX <

0.399

From this graph we will select two points:KX,Ω = (0.61,0.6) and KX,Ω = (0.22,−0.12).
We will compute the square of multiple correlation KXΩ.K−1

Ω2 .KΩX for the two points:

KXΩ.K−1
Ω2 .KΩX = (0.61,0.6)( 1 0.85

0.85 1 )
−1

.(0.61
0.6 ) = 0.396036

KXΩ.K−1
Ω2 .KΩX = (0.22,−0.12)( 1 0.85

0.85 1 )
−1

.( 0.22
−0.12) = 0.388036

We can therefore describe two situations:

1. A pair of strong correlations between the causes and the variable that implies
an weak causation between the causes and the variable.

2. A pair of weak correlations between the causes and the variable that implies an
weak causation between the causes and the variable.
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9 Conclusion

In this paper, we have shown mathematically the steps to follow to obtain a relation-
ship relating the notion of causality and correlation. We have exposed the impacted
and unimpacted signals from the Seatbelt matrix. From this matrix, we computed the
magnitude of Gaussian causal link existing between the causes and the response vari-
able.

Using the example of two causes acting on a variable, we have illustrated the various
scenarios that may arise:

1. A pair of strong correlations between the causes Ω and the variable X that
implies a strong causation between the causes and the variable.

2. A pair of weak correlations between the causes Ω and the variable X that im-
plies a strong causation between the causes and the variable.

3. A pair of strong correlations between the causes Ω and the variable X that
implies an weak causation between the causes and the variable.

4. A pair of weak correlations between the causes Ω and the variable X that im-
plies an weak causation between the causes and variable.
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