
Application of Machine Learning in Gravitational

Wave Data Analysis: Transformers, Deep Belief

Networks, and Graph Neural Networks

Shufan Dong1

1email: shufandong6011@gmail.com

Abstract

The detection and analysis of gravitational waves (GW) have become
a pivotal aspect of modern astrophysics. Applying the use of machine
learning (ML) techniques, particularly advanced neural network models,
has significantly enhanced the capacity to detect and interpret GW signals
containing vast amounts of noisy data. This paper explores the applica-
tion of various ML models, including Transformer models, Deep Belief
Networks (DBNs), and Graph Neural Networks (GNNs), to analyze GW
data. The processes of data segmentation, augmentation, preparation,
model training, and model evaluation are presented, demonstrating the
efficacy of these models in identifying and classifying GW signals.

Contents

1 Introduction 2

2 Data Preparation 2
2.1 Importing Libraries . 2
2.2 Data Segmentation and Labeling 4
2.3 Data Preparation . 4

2.3.1 Transformer . 4
2.3.2 DBN . 5
2.3.3 GNN . 5

3 Model Training and Evaluation 6
3.1 Transformer . 6
3.2 DBN . 10
3.3 GNN . 12

1

4 Model Visualization 16
4.1 Transformer . 17
4.2 DBN . 18
4.3 GNN . 19

5 Conclusion 19

1 Introduction

Gravitational waves (GWs), ripples in spacetime caused by strong astrophysi-
cal events, were first directly detected by the LIGO and Virgo collaborations
in 2015. These detections brought importance to advanced data analysis tech-
niques due to the weak nature of GW signals and the presence of significant
background noise. Various ML applications have offered robust tools for signal
detection, noise reduction, and data interpretation. The preprocessing of GW
data is also critical to the certainty of smooth ML applications, and more details
about it can be found in [35]. Besides a brief introduction to GW data prepara-
tion that’s discussed and expounded more closely in [36], this paper focuses on
the utilization of Transformer, DBN, and GNN models for GW data analysis,
demonstrating their distinct advantages and methodologies.

2 Data Preparation

2.1 Importing Libraries

The analysis begins with importing essential libraries for data processing, visu-
alization, and ML model implementation.

2

Figure 1: Visualization of all the libraries imported.

Each library serves a specific purpose:

• NumPy and Pandas for number and data manipulation.

• Requests and OS for web requests and system operations.

• Matplotlib for data visualization.

• SciPy for signal processing.

• Scikit-Learn for data preprocessing and splitting.

• TensorFlow and PyTorch for building and training ML models.

• Torch Geometric for implementing GNNs.

• Warnings to suppress unnecessary warnings for smooth execution of the
codes.

3

2.2 Data Segmentation and Labeling

Segmentation and augmentation are crucial for managing and enhancing the
dataset. The continuous time-series GW data is segmented into smaller chunks,
and data augmentation techniques are applied to increase the dataset size,
thereby improving model performance. Since the data preparation and re-
sampling steps are different for all 3 ML models, the shapes of the data after
augmentation do vary.

Figure 2: The shape of the segments and labels before augmentation.

2.3 Data Preparation

2.3.1 Transformer

Data preparation for the Transformer model involves creating a custom, plain
dataset class used to convert the data into PyTorch tensors and using PyTorch’s
DataLoader for batching, shuffling, and splitting.

Figure 3: For batching and shuffling purposes, the data is split into training
(80%) and testing (20%) datasets using Python functions and PyTorch.

4

2.3.2 DBN

For the DBN model, the data is split into training and testing sets using Scikit-
Learn’s train test split function, and it’s then converted to PyTorch tensors.

Figure 4: The data here is split into training (80%) and testing (20%) datasets
with simply the Scikit-Learn’s train test split function.

2.3.3 GNN

Graph-structured data is created for the GNN model, which captures complex
relationships and structures in the GW data.

Figure 5: For its spatial capturing capabilities, GNN requires graphical data
input, and PyTorch’s DataLoader is utilized for batching and shuffling

Loop Over Signals and Labels

• The zip(gw signals, labels) function pairs each signal with its corre-
sponding label.

• torch.tensor(signal, dtype=torch.float): converts the signal into a
PyTorch tensor.

5

• .unsqueeze(1): adds an extra dimension to the tensor.

• [[i, i+1] for i in range(len(signal)-1)]: creates pairs of consec-
utive indices (i, i+1), representing the edges between consecutive nodes in
the graph.

• torch.tensor(..., dtype=torch.long): converts index pairs into a Py-
Torch tensor.

• .t(): transposes the tensor.

• .contiguous(): ensures that the tensor’s memory layout is compatible
for efficient processing.

• torch.tensor([label], dtype=torch.long): converts the label into a
PyTorch tensor.

• Data(x=node features, edge index=edge index, y=y): creates a graph
data object using the Data class from PyTorch Geometric.

The function at the end returns the list of graph data objects.

3 Model Training and Evaluation

3.1 Transformer

A Transformer model is defined and trained for time-series data classification,
utilizing its ability to capture long-range dependencies in the data.

Figure 6: All the hyperparameters needed to train the Transformer model.

6

Figure 7: Defining the Transformer model.

The class inherits from the base class, nn.Module, for all NN modules in
PyTorch.

init () function:

• nn.Linear(input dim, model dim) is an embedding layer that linearly
projects the input from input dim to model dim.

• nn.Parameter(torch.zeros(1, 8192, model dim)) creates a positional
encoding tensor with shape (1, 8192,model dim). This encodes positional
information to help the model understand the order of input.

• nn.TransformerEncoderLayer defines a transformer encoder layer with:

– model dim: the dimension of the model.

– num heads: the number of attention heads.

– dim feedforward=2048: the dimension of the feedforward network.

– dropout=dropout rate: the dropout rate.

• nn.TransformerEncoder stacks the encoder layers to form the complete
transformer encoder.

• nn.Linear(model dim, output dim) linearly projects the output from
model dim to output dim.

forward() function:

• x.unsqueeze(-1) adds an extra dimension to x, making its shape com-
patible for the embedding layer.

• self.embedding(x.unsqueeze(-1)) applies the linear transformation to
the input.

• + self.positional encoding[:, :x.size(1), :] adds the positional
encoding to the embedded input.

7

• self.transformer encoder(x) processes the input through the trans-
former encoder stack.

• x.mean(dim=1) performs global average pooling across the sequence di-
mension, resulting in a tensor of shape (batch size,model dim).

• self.fc out(x) linearly transforms the pooled tensor to the desired out-
put dimension.

• The final output tensor is then returned.

Figure 8: Defining the function for training and evaluating the Transformer
model.

train and evaluate() function:

8

• Epoch Loop: iterates over the epochs.

– model.train(): sets the model to training mode.

– running loss is initialized to 0.0 to accumulate the training loss over
all batches in the epoch.

– Batch Loop: iterates over all batches in the train loader.

∗ optimizer.zero grad(): clears the gradients of all optimized
parameters.

∗ outputs = model(segments aug): computes the model outputs
for the input batch.

∗ loss = criterion(outputs, labels aug): calculates the loss
between the predicted outputs and the true labels.

∗ loss.backward(): computes the gradient of the loss.

∗ optimizer.step(): updates the model parameters using the
computed gradients.

∗ running loss += loss.item(): adds the batch loss to the run-
ning total loss for the epoch.

– train loss = running loss / len(train loader): calculates the
average training loss for the epoch.

– train losses.append(train loss): appends the average training
loss to train losses.

– model.eval(): sets the model to evaluation mode.

– with torch.no grad(): disables gradient computation, which re-
duces memory usage and speeds up computations.

– Batch Loop: iterates over all batches in the test loader.

∗ outputs = model(segments aug): computes the model outputs
for the input batch.

∗ , predicted = torch.max(outputs.data, 1): finds the one
with the highest predicted score for each sample.

∗ total += labels aug.size(0) and correct += (predicted ==

labels aug).sum().item(): updates the total number of sam-
ples and the number of correct predictions.

• The function returns two lists: train losses, containing the average
training loss for each epoch, and test accuracies, containing the test
accuracy for each epoch.

9

Figure 9: Building and training the Transformer model.

3.2 DBN

A DBN is trained for binary classification, capturing hierarchical representations
in the data.

Figure 10: Defining the DBN model.

The class inherits from the base class, nn.Module, for all NN modules in
PyTorch.

init () function:

10

• self.layer1 takes the input data and outputs 256 features.

• self.layer2 takes the 256 features from layer1 and outputs 128 features.

• self.layer3 takes the 128 features from layer2 and outputs 64 features.

• self.output takes the 64 features from layer3 and outputs a single fea-
ture for binary classification or regression.

• Sigmoid activation is used.

forward() function:

• It defines the forward pass of the network, which is the way input data
flows through the network shown in the constructor.

• The final output x is returned. It will be in the range of (0, 1), which is
fit for binary classification tasks.

Figure 11: Training and evaluating the DBN model.

Epoch Loop: iterates over the epochs.

• model.train(): sets the model to training.

• optimizer.zero grad(): clears the gradients of all optimized parameters.

11

• outputs = model(X train aug): processes the input data X train aug

and produces outputs.

• loss = criterion(outputs, y train aug): calculates the difference be-
tween the outputs and the true labels y train aug.

• loss.backward(): performs backpropagation to compute the gradients
of the loss respective to the parameters.

• optimizer.step(): updates the parameters using the computed gradi-
ents.

• predicted = (outputs >= 0.5).float(): converts the outputs to bi-
nary predictions with a threshold of 0.5.

• accuracy = (predicted.eq(y train aug).sum() / float(y train aug.shape[0])).item():
compares the predicted labels to the true labels and calculates the accu-
racy.

• with torch.no grad(): disables gradient computation, which reduces
the memory used and speeds up computations.

• val outputs = model(X test): processes the test data X test.

• val loss = criterion(val outputs, y test): calculates the difference
between the outputs and the true labels y test.

• val predicted = (val outputs >= 0.5).float(): converts the outputs
to binary predictions.

• val accuracy = (val predicted.eq(y test).sum() / float(y test.shape[0])).item():
calculates the accuracy of the predictions on the test data.

3.3 GNN

A GNN is trained for classification, using the graph structure of the data to
capture complex relationships.

12

Figure 12: Defining the GNN model.

The class inherits from the base class, nn.Module, for all NN modules in
PyTorch.

init () function:

• self.conv1 = GCNConv(in channels=in channels, out channels=16):
initializes the first graph convolutional layer with input data and 16 output
features.

• self.conv2 = GCNConv(in channels=16, out channels=32): initializes
the second graph convolutional layer with 16 input features from the first
layer and 32 output features.

• self.fc = torch.nn.Linear(32, 2): initializes a fully connected layer
that takes 32 input features from the second layer and outputs 2 features
used for binary classification.

forward() function:

• It defines the forward pass of the network, which is the way input data
flows through the network shown in the constructor.

13

• x = F.relu(x): applies the ReLU activation.

• x = global mean pool(x, batch): applies global mean pooling to ob-
tain a graph-level representation.

• x = self.fc(x): applies the fully connected layer to the graph-level rep-
resentation.

• return F.log softmax(x, dim=1): applies the log softmax function, con-
verting the raw scores into log-probabilities for classification tasks.

14

Figure 13: Training and evaluating the GNN model.

train() function:

• model.train(): sets the model to training.

• Batch Loop: Iterates over all batches in the data loader.

15

– optimizer.zero grad(): clears the gradients of all optimized pa-
rameters.

– output = model(data): passes the input data to get predictions.

– loss = criterion(output, data.y): calculates the loss between
the output and the true labels.

– loss.backward(): compute the gradient of the loss respective to the
parameters.

– optimizer.step(): update the parameters with the computed gra-
dients.

– .item() converts the tensor to a number.

– pred = output.argmax(dim=1): obtain the prediction with the in-
dex of the highest log probability.

Epoch Loop: applies train() function over epochs.

4 Model Visualization

Visualizing the training loss and accuracy over epochs is critical for understand-
ing model performance. The following plots show the performance metrics for
the Transformer, DBN, and GNN models.

16

4.1 Transformer

Figure 14: These plots show the training history of the Transformer model,
including the loss and accuracy evaluation.

17

4.2 DBN

Figure 15: These plots show the training history of the DBN model, including
the loss and accuracy evaluation.

18

4.3 GNN

Figure 16: These plots show the training history of the GNN model, including
the loss and accuracy evaluation.

5 Conclusion

This comprehensive workflow expounds the necessary steps for preparing data,
building, training, evaluating, and visualizing various ML models’ capabilities
and performance. The ML models (Transformer, DBN, and GNN) bring unique
advantages to the field of astrophysical research, enhancing the reliability and
applicability of GW data analysis. The application of these advanced ML tech-
niques demonstrates significant potential in improving GW signal detection and
classification of the occurrence of merger celestial events, thereby contributing
to the broader field of astrophysics.

References

[1] Abbott, B.P., et al. “Population Properties of Compact Objects from the
Second LIGO-Virgo Gravitational-Wave Transient Catalog.” Astrophysical
Journal Letters, vol. 913, 2021.

[2] Zheng, Y., et al. “Angular Power Spectrum of Gravitational-Wave Transient
Sources as a Probe of the Large-Scale Structure.” Physical Review Letters,
vol. 131, 171403, 2023.

19

[3] Ghosh, R., et al. “Does the Speed of Gravitational Waves Depend on the
Source Velocity?” arXiv preprint arXiv:2304.14820v3 [gr-qc], 2023.

[4] Abbott, R., et al. “Constraints on the Cosmic Expansion History from
GWTC-3.” Astrophysical Journal, vol. 949, no. 11, 2021.

[5] Clavin, W. “LIGO Surpasses the Quantum Limit.” Physical Review X, 2023.

[6] Reitze, D., et al. “LIGO Congratulates Pulsar Timing Array Teams for
New Gravitational Wave Discovery.” LIGO Laboratory News Release, June
28, 2023.

[7] Ossokine, S., et al. “Multipolar Effective-One-Body Waveforms for Precess-
ing Binary Black Holes: Construction and Validation.” Physical Review D,
vol. 102, 044055, 2020.

[8] Kapadia, S.J., et al. “A Self-Consistent Method to Estimate the Rate of
Compact Binary Coalescences with a Poisson Mixture Model.” Classical and
Quantum Gravity, vol. 37, 045007, 2020.

[9] Buikema, A., et al. “Sensitivity and Performance of the Advanced LIGO
Detectors in the Third Observing Run.” Physical Review D, vol. 102, 062003,
2020.

[10] Bertacca, D., et al. “Projection Effects on the Observed Angular Spectrum
of the Astrophysical Stochastic Gravitational Wave Background.” Physical
Review D, vol. 101, 103513, 2020.

[11] Nitz, A.H., et al. “2-OGC: Open Gravitational-Wave Catalog of Binary
Mergers from Analysis of Public Advanced LIGO and Virgo Data.” Astro-
physical Journal, vol. 891, 123, 2019.

[12] Abbott, B.P., et al. “Prospects for Observing and Localizing Gravitational-
Wave Transients with Advanced LIGO, Advanced Virgo, and KAGRA.” Liv-
ing Reviews in Relativity, vol. 21, 3, 2018.

[13] Talbot, C., et al. “Measuring the Binary Black Hole Mass Spectrum with
an Astrophysically Motivated Parameterization.” Astrophysical Journal, vol.
856, 173, 2018.

[14] Thrane, E., et al. “Determining the Population Properties of Spinning
Black Holes.” Physical Review D, vol. 96, 023012, 2017.

[15] Vaswani, A., et al. (2017). Attention is all you need. Advances in Neural
Information Processing Systems, 30, 5998-6008.

[16] Devlin, J., et al. (2018). BERT: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint arXiv:1810.04805.

[17] Radford, A., et al. (2019). Language models are unsupervised multitask
learners. OpenAI Blog, 1(8), 9.

20

[18] Brown, T. B., et al. (2020). Language models are few-shot learners. Ad-
vances in Neural Information Processing Systems, 33, 1877-1901.

[19] Liu, Y., et al. (2019). RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

[20] Lan, Z., et al. ALBERT: A lite BERT for self-supervised learning of lan-
guage representations. arXiv preprint arXiv:1909.11942.

[21] Hinton, G. E., et al. (2006). A fast learning algorithm for deep belief nets.
Neural Computation, 18(7), 1527-1554.

[22] Bengio, Y. (2009). Learning deep architectures for AI. Foundations and
Trends® in Machine Learning, 2(1), 1-127.

[23] Lee, H., Grosse, et al. (2009). Convolutional deep belief networks for scal-
able unsupervised learning of hierarchical representations. Proceedings of the
26th Annual International Conference on Machine Learning, 609-616.

[24] Ranzato, M. A., et al. (2010). Factored 3-way restricted Boltzmann ma-
chines for modeling natural images. Proceedings of the 13th International
Conference on Artificial Intelligence and Statistics, 621-628.

[25] Salakhutdinov, R., & Hinton, G. (2009). Deep Boltzmann machines. Arti-
ficial Intelligence and Statistics, 448-455.

[26] Srivastava, N., & Salakhutdinov, R. (2012). Multimodal learning with deep
Boltzmann machines. Advances in Neural Information Processing Systems,
25.

[27] Larochelle, H., & Bengio, Y. (2008). Classification using discriminative
restricted Boltzmann machines. Proceedings of the 25th International Con-
ference on Machine Learning, 536-543.

[28] Scarselli, F., et al. (2009). The graph neural network model. IEEE Trans-
actions on Neural Networks, 20(1), 61-80.

[29] Kipf, T. N., &Welling, M. (2016). Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907.

[30] Velickovic, P., et al. (2017). Graph attention networks. arXiv preprint
arXiv:1710.10903.

[31] Hamilton, W. L., et al. (2017). Inductive representation learning on large
graphs. Advances in Neural Information Processing Systems, 30.

[32] Xu, K., et al. (2018). How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826.

[33] Gilmer, J., et al. (2017). Neural message passing for quantum chemistry.
Proceedings of the 34th International Conference on Machine Learning, 1263-
1272.

21

[34] Defferrard, M., et al. (2016). Convolutional neural networks on graphs with
fast localized spectral filtering. Advances in Neural Information Processing
Systems, 29, 3844-3852.

[35] Dong, S. (2024). Astrophysical Insights Through Gravitational Wave Data
Analysis: Data Preprocessing. viXra preprint viXra:2407.0026.

[36] Dong, S. (2024). Gravitational Wave Event Detection: Developing Convo-
lutional Neural Networks and Recurrent Neural Networks for Gravitational
Wave Data Analysis. viXra preprint viXra:2407.0029.

22

	Introduction
	Data Preparation
	Importing Libraries
	Data Segmentation and Labeling
	Data Preparation
	Transformer
	DBN
	GNN

	Model Training and Evaluation
	Transformer
	DBN
	GNN

	Model Visualization
	Transformer
	DBN
	GNN

	Conclusion

