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Abstract: In this paper, we mainly propose feature extraction algorithm by linear embedding from the

outside new data. The formulation of this algorithm aims at minimizing pairwise distances of feature points.

To enhance the performance of nonlinear feature learning, we also incorporate the neighborhood

reconstruction error to preserve local topology structures. To enhance our algorithm to extract local

features from the outside new data, we also add a feature approximation error that correlates features with

embedded features by the jointly learnt feature extractor. Thus, the learnt linear extractor can extract the

local features from the new data efficiently by direct embedding. To optimize the proposed objective

function, we use Eigen-decomposition. Extensive simulation results verify the effectiveness of our

algorithm, compared with other related feature learning techniques.
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1. Introduction

One-class classification(OCC) describes training data from a single class (called “target class”) as a

normalcy model and aims to detect data from any other class (called “outlier class”) as outliers. In the

fields of OCC, feature extraction of one-class is always a fundamental problem, since it directly affects the

performance of the subsequent pattern recognition and data mining models. Note that real-world data lies

in high dimensional input space, which may result in decreased efficiency and suffer from the “curse of

dimensionality” [1, 2]. Thus, extracting informative features with lower dimensions from high-dimensional

data has been attracting considerable attention during the last decades [3-5]. Generally, feature extraction

includes two main tasks, i.e. reducing dimension appropriately and looking for the compact representations

[6, 7]. The basic principle is to compute a mapping f that can embed each data x in the high

dimensional space DR into the compact representation y in a reduced feature space dR :

DdyxRRf dD ≪    ,  ,:  (1)

Related works are Principal Component Analysis (PCA) [2], Multi-Dimensional Scaling (MDS) [8, 9],

Locally Linear Embedding (LLE) [1], Laplacian Eigenmaps (LE) [6], Isometric Mapping (Isomap) [10],
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Locality Preserving Projection (LPP) [11], Neighborhood Preserving Embedding (NPE) [12], and

Isoprojection [13]. It should be noticed that LPP, NPE and Isoprojection are linear approximations to

previous LE, LLE and Isomap, respectively. Compared with LPP, Isoprojection and NPE that can output an

underlying projection matrix to reveal the linear relations of samples, LE, LLE and Isomap mainly focus on

discovering the nonlinear manifold structures by reducing the number of dimensionality directly without

obtaining an explicit mapping.

Isomap is one of the most classical global nonlinear manifold learning methods, and aims at seeking an

optimal subspace that best preserves the geodesic distance between the points. Let
ND

N RxxxX  ),,,( 21  denote a set of N points in the original D-dimensional space, and
Nd

N RyyyY  ),,,( 21  a set of the reduced representations in the d-dimensional space .

Then, Isomap can perform manifold feature learning in three steps: 1) Determine the nearest neighbors of

each sample by using k-neighborhood [14]; 2) Construct a undirected graph G(V, E), where each node

Vvi  corresponds to a point ix . ),( jiG xxd is the shortest path distances between ix and jx over G.

Dijkstra’s algorithm [15] and Floyd’s algorithm [16, 17] can be applied to find the shortest paths. Then,

Isomap initializes ),( jiG xxd = ),( ji xxd suppose ix and jx are connected by an edge,

and ),( jiG xxd = +∞ otherwise, where ),( ji xxd is Euclidean distance; 3) Obtain the low-dimensional

embedding Y by solving the following problem:

 
ji

jiGjiY
xxdyyd

,

2)),(),((min (2)

which can be similarly solved as the classical MDS [8, 18, 19].

Locally Linear Embedding (LLE) aims at preserving neighbor information of feature points. First,

LLE finds the nearest neighbor of each point nixi ,,2,1,  . Second, We obtain the reconstruction

weights matrix nijiW    ...,,1,0),,(  that each point nixi ,,2,1,  is represented by neighbor

points ,which can be computed by minimizing the following optimization problem:
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In this term, ijx denotes j-neighbor of ix .

The weights are 0 if they aren’t neighbors, the sum of rows of the weights matrix is 1.
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This meas that the sum of the weights of all neighbors is 1. niRy m
i ,...,1,0,  computes the

low-demensional space at a minimum cost.
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The above optimization has two difficulties to avoid the event obtained degrade result, which are

conditions that the outputs should be centralized, namely  
n

i
i 0y and have an unit co-variance matrix.

Thus, We summarise the proposed feature extraction algorithm by linear embedding: 1) Perform

Eigen-decomposition of the matrix )()( WIWI T  ; 2) Remove eigenvetors corresponding to the

minimum eigenvalues; 3) Collect eigenvetors corresponding to the eigenvalues less than the minimuns. We

compute the low-demensional space nii ,...,1,0, y by this eigenvectors.

Related works have advantages that are preserving the geometric constructions and the neighbor

information but disadvantages that aren’t ensuring linear characteristic obtained representations directly

from an outside new data.

Finally, in this paper, we propose a new algorithm that are preserving the geometric constructions of

training samples and are ensuring the linear characteristic by incorporating Isomap and LLE and adding a

linear feature approximation via.

2. Feature extraction by linear embedding

2.1 Problem formulation

We describe the optimization problem of our new algorithm that is based on the recent Isomap, but

improves it by extending the manifold feature learning to linear extension scenario and local feature

learning scenario at the same time. Given a set of N training samples in,
ND

N RxxxX  ),,,( 21  where D is the original dimensionality of samples. To preserve the geometric

constructions of points, it should be used  
ji

jiGjiY
xxdyyd

,

2)),(),((min . To enable the proposed

model to compute low-dimensional local features by using training data, a neighbor preserving

regularization  
 


N
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over reduced features is clearly incorporated into the



problem of Isomap to build the connection between training data by discovering the pairwise local

relationships, where  
i

iij xNNW )( ,1 denotes the neighbor set of ix ,
2
 is Euclidean distance. To

enable the proposed our algorithm to learn an explicit projection of feature extractor for handling the

outside new data, a feature approximation error 



N

i
ii yPx
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2

2
encoding the mismatch between the

embedded features by the extractor and the reduced manifold features is included so that learnt extractor P

can embed outside new data efficiently. Thus, the prosposed new algorithm can preserve local

neighborhood information and geometric construction of samples. These motivate us to define the

following objective function:
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where P is linear embedding matrix and α, β are the trade-off parameters. C denotes the numbers of points

constraints. Specifically, α mainly trades-off the points discrimination and neighborhood preservation via

  


N

i xNNxj jiji
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yWy
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2)(:
over training data, and β mainly trades-off the neighborhood

preserving discriminative manifold feature learning and the linear feature approximation via

 


N

i ii yPx
1

2

2
for handling outside new data. First, if α is set to a large value, the effects of the

neighborhood preservation over the training data would have a greater impact on the objective function

value than the feature approximation via. Second, the computation of the feature extractor P only depends

on the low-dimensional nonlinear manifold features Y. Thus, suppose α is also set to a small value less

than 1, in such cases suppose that β is set to a very large value, the effects of linear approximation would

have a greater impact on the objective function value than the effects of other terms, and else the objective

function value would be determined by trading-off the involved several terms jointly in the formulation.

Note that the reconstruction weights matrix W of the training samples can be computed by minimizing the

following LLE-style optimization problem in Equation (3).

 
ji

jiGjiY
xxdyydJ

,

2)),(),((min (7)

According to terms J of Isomap defined in Equation (7) and the objective function of our algorighm



formulation can be rewritten in matrix form as follows:

22
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1),( ,1 .. ),,(min
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PYYYtsPY   (8)

The above optimization problem can be solved by Eigen-decomposition.

2.2 Eigen-decomposion

In addition to solving the problem of our algorithm, we provide effective scheme by using

Eigen-decomposition. So we can rewrite the criterion of our algorithm as

),(min
,
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where each term in the above problem can be expressed as
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where Equation (10) is a constant term. The extractor P in Equation (13) can be obtained by setting the

derivative w.r.t. P to zero:
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Equation (11) is transformed as follows:
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Also, we can transform Equation (12) as follows:
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where W can be obtained by Equation (3) I is N*N unit matrix.

For convenience, we define ))(( WIWIM T   .

)()( TYMYtrY  (18)

Next, Equation (13) is transformed by Equation (14).
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If we define ))(( 1 XXXXIK TT   , Equation (19) is transformed as follows:

)(),( TYKYtrPY  (20)

The above Equation (9) is formulated by incorporation Equation (6), (14), (15), (18) and (20) as follows:

),(min
,

PYJ
pY
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con   (21)

Finally, the optimization problem can be rewritten as

1 .. ),)((max  TT

Y
YYtsYKMVYtr (22)

Let KMVA  , we can obtain the d-dimensional embedding as ],...,,[ 2211 dd vvvY  ,

where dvvv ,...,, 21 are the standard eigenvectors corresponding to first d leading eigenvalues

d ,...,, 21 (in decreasing order) of the matrix A. After the d-dimensional embedding Y is obtained, the

linear projection P can be similarly obtained by Equation (14). It is worth noting that the optimization

procedures of our algorithm by using Eigen-decomposition are summarized as follows: (1) Compute

,V ))(( ),)(( 1XXXXIKWIWIM TTT   . (2) Obtain the first d leading eigenvalues

d ,...,, 21 (in decreasing order) of the matrix A. (3) Obtain Y as ],...,,[ 2211 dd vvvY 

and obtain p by Equation (14).

Finally, we can perform feature extraction from outside new data directly by linear projection P.

3. Experimental results



In order to perform one-class classification by the proposed feature extraction algorithm, two

real-world datasets, i.e., YALE face database [20] and COIL-20 object database [21] are tested. For the

classification experiments, we describe the face and object recognition results.

Figure1.YALE Face database

Figure 2. COIL-20 object database

For face recognition, the YALE database are evaluated, while for object recognition, COIL-20 object

databases are evaluated.

Table 1. List of used datasets and dataset information.

Data type Dataset Name Images Class

Face image databases YALE 1650 15

Object image databases COIL-20 1440 20

In addition to visually evaluating the classification results, we also present the numerical result using

F-measure [16,22-24], which are the most commonly used classification evaluation metrics. The F-measure

is defined as follos:

callecision
callecisionF

Re  Pr
RePr)1(

2

2










In our experiments, we set parameter 1 . The values of the F-measure range from 0 to 1, that is, the

higher the value is, the better the corresponding classification result will be.

3.1 Benchmark database recognition

In this subsection, we evaluate our algorithm and other related methods for representing and

reconizing face images over several widely-used benchmark face image databases. Thus, the face

recognition performance of our algorithm is mainly compared with those of linear projection based PCA,

LE, Isomap, LLE.

Table 2. Face recognition comparisons on the YALE face database

Methods Settings



YALE COIL-20

Isomap 0.1979 0.1068

LE 0.4917 0.2330

PCA 0.6363 0.6033

LLE 0.7037 0.7382

New algorithm 0.7942 0.8428

We summarize the evaluation results in Table 2, that is, our new algorithm can deliver higher mean and

better records than other compared algorithms in most cases.

3.2 Investigation of parameter selections

Note that there are two model parameters in our objective function, i.e., α, β, but tuning the two

parameters at the same time is not easy. As a widely-used method for the parameter selection, the strategy

of grid search [25,26-28] is employed. Specifically, we aim at fixing one parameter and tuning the other

one by grid search. We explore the effects of different parameter setting by circulating from candidate set

{ -8-6-4-6-8 ,1010,,10,1010  } for YALE face database.

Table 3. Investigation results of parameter selection

α

β
-810 -610 -410 -210 010 210 410 610 810

-810 0.042 0.092 0.345 0.259 0.327 0.146 0.346 0.024 0.045

-610 0.076 0.157 0.767 0.652 0.435 0.327 0.542 0.326 0.087

-410 0.132 0.252 0.545 0.445 0.837 0.439 0.456 0.437 0.167

-210 0.147 0.436 0.576 0.452 0.787 0.768 0.767 0.459 0.145

010 0.107 0.342 0.545 0.659 0.767 0.897 0.865 0.729 0.245

210 0.096 0.246 0.647 0.329 0.843 0.668 0.678 0.526 0.145

410 0.143 0.154 0.589 0.445 0.867 0.547 0.675 0.767 0.047



610 0.087 0.143 0.767 0.659 0.235 0.329 0.767 0.326 0.142

810 0.037 0.042 0.565 0.438 0.347 0.134 0.436 0.246 0.054

We can see the investigation results that the efficiency is the highest when α= 210 ,β= 010 from the Table

3.

4. Conclusion

In this paper, we propose new algorithm to perform efficiently feature extraction of one-class for

one-class classification. We incorporate Isomap and LLE to preserve geometric constructions and neighbor

information of points and add linear approximation via to represent features directly from outside new data.

The experiment results show that the proposed algorithm is more efficient that related works.

In the future research, we will establish new ways so that a more efficient feature extraction algorithm can

be inseted.
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