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Abstract—Organizations are frequently overwhelmed by the
sheer volume of alerts about vulnerabilities discovered within
their systems. These alerts are typically prioritized based on
severity levels categorized by Common Vulnerabilities and Ex-
posures (CVE) [2], a standard glossary used in Vulnerability
Management Systems. However, this severity classification often
fails to consider the specific operational context of the systems,
leading to misaligned priorities and the potential oversight
of more critical vulnerabilities that demand immediate atten-
tion. This paper investigates whether Large Language Models
(LLMs)[25] can offer a solution by integrating contextual aware-
ness into the vulnerability management process, thus enhancing
the efficiency and effectiveness of organizational responses to
cybersecurity threats.
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I. INTRODUCTION

ULNERABILITY management remains a cornerstone

of strategic cybersecurity practices within organizations
globally. It involves the identification, prioritization, and mit-
igation of software vulnerabilities that emerge due to fail-
ures or flaws in computer systems, networks, databases, and
applications. These vulnerabilities, if exploited, can lead to
significant losses—both financial and reputational [26]. Ef-
fective management of these vulnerabilities is thus crucial
to maintaining the security and integrity of organizational IT
infrastructure.

A. The Nature of Software Vulnerabilities

Software vulnerabilities are essentially errors or flaws in the
source code of applications and systems that can be exploited
by attackers to gain unauthorized access or cause harm [8].
These vulnerabilities vary widely in their nature and severity,
ranging from minor issues that have little impact on system
functionality to critical flaws that can compromise entire
networks or data integrity. The process of identifying and
addressing these vulnerabilities forms the core of vulnerability
management practices.

B. Challenges in Vulnerability Management

Despite the critical importance of managing vulnerabilities
effectively [26], organizations face several challenges in this
domain:

1) Volume and Complexity The sheer number of vulner-
abilities discovered in software systems can be over-
whelming [19]. Each day, new vulnerabilities are iden-
tified, adding to the already extensive list of issues that
need to be addressed.

2) Prioritization Determining which vulnerabilities pose the
greatest risk and should therefore be prioritized is a com-
plex task. Traditional vulnerability management systems
utilize scoring systems like the Common Vulnerability
Scoring System (CVSS) [5] to assign severity levels to
vulnerabilities. However, these systems often lack the
context-specific insight needed to accurately assess the
actual risk posed by each vulnerability in an operational
environment.

3) Resource Allocation Given the high volume of vulner-
abilities and the varying levels of threat they pose [19],
efficiently allocating resources to address these vulner-
abilities is a significant challenge. Organizations must
balance the need to fix critical vulnerabilities quickly
with the practical limitations of their Cybersecurity
resources.

4) Generic Assessments Many vulnerability management
systems provide assessments that are too generic. These
systems typically assign a 'High’ severity level to a
large number of vulnerabilities [9], which can lead
to inefficient prioritization. As a result, less critical
vulnerabilities may receive undue attention, while more
critical ones may be overlooked.

5) Manual Efforts and Human Error The need for further
manual prioritization due to the generic nature of as-
sessments introduces human error and delays. Manual
review processes are not only time-consuming but also
prone to mistakes, as security teams must make quick
decisions under pressure.



C. The Role of Large Language Models in Vulnerability
Management

In response to these challenges, this paper proposes the
use of Large Language Models (LLMs) [25] as a novel
approach to enhance the vulnerability management process.
LLMs, such as OpenAI’'s GPT-4 [14], represent a significant
advancement in artificial intelligence and natural language
processing technologies. These models have shown remarkable
capabilities in understanding and generating human-like text
based on the input provided to them.

The hypothesis driving this research is that LLMs can be
trained and utilized to provide context-aware assessments of
vulnerabilities. By understanding the specific context in which
a software system operates, LLMs could potentially offer
more precise vulnerability prioritization, thereby reducing the
reliance on generic severity scores and minimizing the need
for manual intervention.

D. Objectives
The primary objectives of this paper are to:

1) Explore the feasibility of using LLMs to improve the
accuracy and efficiency of vulnerability assessments in
organizational IT environments.

2) Evaluate the performance of LLMs in identifying and
prioritizing vulnerabilities based on contextual relevance
rather than generic severity scores.

3) Assess the potential of LLMs to reduce manual efforts
and human error in the vulnerability management
process.

II. LITERATURE REVIEW
A. Introduction to Current Vulnerability Scoring Systems

Vulnerability management is a pivotal aspect of cybersecu-
rity, essential for assessing and mitigating risks associated with
software vulnerabilities. The Common Vulnerability Scoring
System (CVSS) provides a standardized framework to rate the
severity of security vulnerabilities, utilizing metrics divided
into Base, Temporal, and Environmental categories. Although
widely adopted, CVSS has limitations in context sensitivity
and often fails to account for unique environmental factors
that could significantly alter a vulnerability’s impact on an
organization [5].

B. The Emergence of Large Language Models in Cybersecu-
rity

Recent advancements in artificial intelligence, particularly
the development of Large Language Models (LLMs) [25],
offer new potentials for refining traditional vulnerability
management systems. LLMs are adept at processing and gen-
erating human-like text, enabling them to analyze unstructured
data like security reports and software documentation exten-
sively. This capability suggests that LLMs could play a crucial
role in re-evaluating vulnerability severity more contextually
and dynamically.

C. Insights from Penetration Testing

The application of LLMs in penetration testing provides
valuable insights into their potential for broader cybersecurity
roles. The study "PENTESTGPT: An LLM-empowered Auto-
matic Penetration Testing Tool” illustrates that while LLMs
excel at specific sub-tasks within penetration testing—such
as utilizing tools and interpreting outputs—they struggle with
maintaining an integrated understanding of complex security
environments [3]. These findings underscore the challenges
LLMs face in context retention and holistic scenario analysis,
which are critical for effective vulnerability management.

D. Integrating LLMs into Vulnerability Severity Re-assessment

This research explores the feasibility of using LLMs to
reassess the severity of Common Vulnerabilities and Expo-
sures (CVEs) [2] based on specific codebase contexts. By
leveraging the nuanced text processing capabilities of LLMs,
it is possible to analyze detailed descriptions of vulnerabilities
against the backdrop of an organization’s specific operational
environment. This approach aims to adjust CVSS scores
to better reflect the actual risks posed to an organization,
considering factors such as asset criticality, existing security
measures, and prior incident data.

The integration of LLMs into vulnerability management
represents a significant step towards more context-aware and
dynamic cybersecurity practices. Although challenges such
as context loss and the integration of complex environmental
data remain, the potential for LLMs to transform vulnerability
assessment practices is promising. Further research is needed
to develop effective methodologies for integrating these
models into existing security infrastructures, potentially
leading to a more accurate and responsive approach to
managing security risks.

ITI. METHODOLOGY
A. Preparation

1) Data Source: The primary source of vulnerability data
for this study is the National Vulnerability Database (NVD)
[12], curated by the National Institute of Standards and Tech-
nology (NIST) [11]. The NVD provides a comprehensive cat-
alog of information about security vulnerabilities in publicly
released software packages.

2) Dataset Construction: The dataset, termed the CVE-
Context Dataset, includes vulnerabilities filtered based on
specific criteria:

Severity Filtering: Only vulnerabilities rated as 'High’ or
"Critical’ were included in order to focus on those with
potentially severe impacts. Technology Filtering: The vulnera-
bilities selected pertain to Python [7], Node.js [6], Linux [18],
and OpenSSL [20] — technologies that are prevalent in the
scenarios considered for this study.

3) Dataset: This study uses a dataset that comprises of
860 common Vulnerabilities and Exposures (CVE) against
their evaluations made by Large Language Model. The dataset
includes the correct responses along with the Model’s re-
sponses across the 5 different cases. Each row of the dataset



corresponds to a unique CVE and it’s Severity. In this study we
have 360 critical severity cases and 500 High severity cases.
Each row in the dataset also has the correct response and the
LLM’s response to the 5 different cases.

The full dataset and cases are published publicly [1].

B. Model Selection and Setup

1) Model Description: GPT-4 [14] by OpenAl [16] is
an advanced generative pre-trained transformer capable of
understanding and generating natural language responses [15].
Its architecture is designed to handle a wide range of Al tasks,
making it ideal for interpreting complex and nuanced cyber
security data.

We used the latest gpt-4 model in 2023 [14]. The model
was selected because it had the highest reasoning benchmarks
at the time we ran the experiment [14].

2) Interaction with the Model: Prompt Engineering: The
prompts were crafted to clearly define the context of each CVE
[2] within specific operational scenarios, asking the model to
decide on the potential impact (Yes, No, Unsure).

3) Response Handling: : The responses from GPT-4 were
meticulously recorded, forming a structured output that was
later analyzed against expert evaluations.

4) SDK Interactions: : We interacted with GPT-4 via the
API using the Open Al Python SDK [13].

C. Operational Scenarios

The scenarios were chosen to reflect typical and critical
use cases in modern IT operations, ranging from cloud-based
services to traditional on-premise deployments.

Scenario Descriptions:

1) Debian-based Container [4] on AWS ECS [22]: Exam-
ines the implications of a Python web application that
does not handle SSL termination, a common setup in
cloud-native environments.

2) Ubuntu-based [10] Container [4] Running Node.js [6] on
AWS Fargate [23]: Focuses on event-driven applications
in a server less architecture, assessing the impact of
node-specific vulnerabilities.

3) Python AWS Lambda Function Behind an API Gateway:
Tests the security robustness of server less computing
frameworks [24], which are increasingly used for scal-
able web applications.

4) Ubuntu-based [10] EC2 [21] Instance Hosting a Nodejs
[6] Web App: Represents traditional cloud deployments,
examining how node vulnerabilities affect web services.

5) Ubuntu-based Container Running CI Scripts on AWS:
Addresses the security concerns in automated build
and deployment processes, critical for maintaining the
integrity of software development pipelines.

D. Experiment Overview

We pass the following template to the LLM for each case
for each vulnerability:

1 f"This is a CVE {cve_id} detail:
— {cve_description}. Reply by only
— returning yes or no or unsure, would
— this affect me if {case_description}"

At the same timewe filled the correct answer as determined
by a senior engineer. The results are recorded in a CSV with
a row for each vulnerability and columns that have the LLM
and Human result for each case [1].

E. Metrics
The key metrics used in the evaluation included:

1) Accuracy: Measures the proportion of total correct pre-
dictions made by the model.

2) Precision and Recall: Assess the model’s effectiveness
in identifying relevant CVEs without false positives or
negatives.

E Limitations and Other Considerations

1) Model Limitations: While GPT-4 is a robust model, it is
constrained by the data on which it was trained, which may not
fully encompass the specific technical nuances of cybersecurity
threat assessment.

2) Expert Subjectivity: The interpretations by the panel of
experts, while informed, are inherently subjective and could
vary based on individual expertise and experience.

3) Generalizability: The findings from this study are based
on a select set of technologies and scenarios, which may
not be universally applicable across all possible CVEs or IT
configurations.

G. Analysis

The data was analysed on across all the different dimen-
sions. Figure 1 is a radar chart showing the performance of the
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Fig. 1: Severity Radar Chart



LLM on severity levels amongst the 5 cases. The evaluation on
the two severity levels tested reveals that the Large Language
Model performs well on the 'High’ severity cases achieving
a 100% alignment in cases 1, 2 and 3 and then showing a
extreme drop for case 4 to 70% and case 5 to a drastic 1%.
For ’Critical’ Severity the LLM shows high accuracy for case
2, 3 and 4 but plummeted considerably in cases 1 and 5 to
59% and 48% respectively.

For each Case we compare the the large large model’s
judgement with the anticipated correct answer. For this pur-
pose we construct a 3X3 confusion matrix with the x-axis
as the LLM’s answer and the Y-axis as the correct answer.
The confusion matrix demonstrates the count of CVEs in 9
possible combinations. By examining these matrices we can
determine the accuracy to identify specific areas the LLM
performs better. High values along the diagonal suggest strong
performance while the rest of the cells suggest possibility of
improvement.

Figure 2 shows the distribution for Case 1 Debian-based
Container [4] on AWS. The accuracy is 82.9%

o Precision:

— Yes: 0.896

— No: 0.822

— Unsure: 0.795
e Recall:

— Yes: 0.502

— No: 0.944

— Unsure: 1.00

Fig. 2: Case 1 Confusion Matrix
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Figure 3 shows the distribution for Case 2 Ubuntu-based [10]
Container [4] Running Node.js [6] on AWS Fargate [23].The
accuracy is 93.7%
o Precision:
— Yes: 0.890
— No: 0.996
— Unsure: 0.822
e Recall:

— Yes: 0913

Fig. 3: Case 2 Confusion Matrix
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Figure 4 shows the distribution for Case 3 Python AWS
Lambda Function Behind an API Gateway.The accuracy is
91.9%

o Precision:

— Yes: 0.807

— No: 0.989

— Unsure: 0.833
o Recall:

— Yes: 0.977

— No: 0.890

— Unsure: 1

Fig. 4: Case 3 Confusion Matrix
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Figure 6 shows the distribution for Case 4 Ubuntu-based
[10] EC2 [21] Instance Hosting a Nodejs [6] Web App. The
accuracy is 77.3%

e Precision:
— Yes: 0.702
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Fig. 6: Case 4 Confusion Matrix Figure 7 shows the distribution for Case 5 Ubuntu-based
Container Running CI Scripts on AWS.The accuracy is 20.4%

¢ Precision:

9 101 o - Yes: 0.256

— No: 0.432

— Unsure: 0 *Undefined due to no true unsure predic-
tions

250

200

Unsure 1 0 BO 0 o Recall:

150 — Yes: 0.213

— No: 0.193

100 — Unsure: NaN *Undefined due to no actual unsure
instances

H. Results

No Unsure As a result of the analysis each case showed a different
Predicted Label accuracy level. Fig 5 shows a bar graph of accuracy against
each case as a comparison. The average accuracy across all
was found to be 73.24%, however it is important to note that
certain cases exhibited higher accuracy rates than others.
— Unsure: 0.650 ;
Case 1 demonstrated an accuracy rate of approximately
* Recall: 83%, indicating a relatively high level of accuracy in the large
- Yes: 0.737 model’s judgment. Similarly, Case 2 exhibited an impressive
— No: 0.759 accuracy rate of 93.7%, while Case 3 achieved a commendable
— Unsure: 1.00 accuracy rate of 91.8%. In contrast, Case 4 displayed a lower
accuracy rate of 77.3%. The most challenging case, Case 5,
yielded the lowest accuracy rate of 20.5%.

Fig. 7: Case 5 Confusion Matrix The Precision and Recalls of the different cases showed
that while the LLM acheived a high precision and recall
for "No” and “Unsure” categories in most of the cases, the

750 performance lacks for the ”Yes” category.
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IV. FURTHER WORK

The current study has exclusively utilized GPT-4 due to
its leading performance in relevant benchmarks [17] at the
time of our research. Recognizing the rapid advancement in
the field of artificial intelligence, further work is proposed
to expand our approach to include a broader range of Large
103 - 50 Language Models. This will allow us to validate the robustness
of our findings and explore the potential of newer or alternative
L Lo models that may offer unique advantages. Specifically, future

No Unsure s work should focus on the following areas:
Predicted Label

Unsure 4 0 0 0 8- 150

~100

93.71362% 91.85099%

82.88708%
77.29919%

20.48894%

case 1 case 2 case 3 case 4 case 5
Cases

Fig. 5: Accuracy by Case



1) Model Comparison: Incorporating a comparative study
of different LLMs to assess their effectiveness in
vulnerability management. This will help identify
whether newer or different models provide improved
accuracy, contextual understanding, or operational effi-
ciency compared to GPT-4.

2) Integration Guidelines: Developing detailed guidelines
on how LLM outputs can be seamlessly integrated
into existing vulnerability management systems. This
involves creating standardized protocols for interpreting
Al assessments and implementing these insights within
the decision-making processes of IT security teams.

3) Case Studies: Conducting case studies in diverse organi-
zational contexts to demonstrate the practical application
of LLM assessments in real-world scenarios. These
studies should document the steps from Al output to
actionable insights, showcasing the tangible benefits and
potential hurdles in adopting Al-driven vulnerability
management.

4) Automation Tools: Investigating the development of
automation tools that can directly ingest LLM outputs to
adjust vulnerability prioritization and response strategies
automatically. This would help in minimizing human
intervention and accelerating response times, enhancing
the overall efficacy of cybersecurity measures..

5) Feedback Loops: Establishing feedback loops within the
Al models to refine their accuracy and relevance based
on real-time data and user feedback. By continuously
training the LLM on updated data and outcomes, the
model can evolve to better meet the specific needs of
different IT environments.

6) Feedback Loops: Establishing feedback loops within the
Al models to refine their accuracy and relevance based
on real-time data and user feedback. By continuously
training the LLM on updated data and outcomes, the
model can evolve to better meet the specific needs of
different IT environments.

By expanding the scope of Al models tested and developing
a comprehensive framework for their integration, future work
will aim to solidify the role of LLMs in enhancing
cybersecurity practices, ensuring that organizations can
leverage the full potential of Al in managing vulnerabilities.

V. CONCLUSION

In conclusion, the research findings suggest that Large Lan-
guage Models have the potential to overcome the limitations of
Common Vulnerabilities and Exposures (CVE) classifications
by incorporating project context and scenario details.

The results of the study highlights the varying performance
levels of the large language model across different cases.
While the average accuracy of 73.24% provides an overall
assessment, it is evident that the model’s accuracy is heavily
influenced by the specific case being evaluated. The higher
accuracy rates observed in Cases 1, 2, and 3 suggest that the
model excels in certain scenarios, while the lower accuracy
rates in Cases 4 and 5 indicate areas where improvement may
be necessary.

The model is more reliable to determine when the CVE has
”No” impact on the scenario or when the impact is uncertain
i.e. "Unsure” compared to the ”Yes” category when there is
an impact.

Overall, these findings emphasize that while the Large
Language Model shows promise, considerations should be
made about the specific operational scenario when evaluating
the usage of large language models for CVE classifications.
Future work should focus on understanding the causes of the
inconsistencies and developing targeted strategies to address
them.
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