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Abstract

Using GA’s capacities for rotating and reflecting vectors, we solve the

classic 2-D version of the Snellious-Pothenot surveying problem. The

method used here provides two solutions, which can be averaged to better

estimate the location of the unknown point P . A link to a GeoGebra

worksheet of the solutions is provided so that the reader may test the

validity of the method.

The vector p is the reflection of a with respect to wa, where wa = a + b +

[(a− b) i] / tanα. The vector p is also the reflection of c with respect to wc, where

wc = c+ b− [(c− b) i] / tanβ. The vector s = vi/ tan (α+ β).

1

https://www.linkedin.com/groups/8278281/


1 Statement of the Problem

Fig. 1 Shows the problem statement.

Figure 1: Problem statement: Express the location of point P in terms of the

locations of points A, B, C and the angles α y β.

2 Ideas that We Will Use

See also Macdonald [1].

1. For any two vectors q and t, q ∧ t = [(qi) · t] i = − [q · (ti)] i.

2. For any two vectors q and t, q ∧ t = ⟨qt⟩2.

3. The vectors qeiθ and qe−iθ are rotations of q by the same angle θ, but in

opposite directions.

4. The reflection of a vector q with respect to vector t can be written as the

product tqt−1, which is equal to [tqt] /∥t∥2 (Fig. 2).
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Figure 2: The reflection of a vector q with respect to vector t can be written as

the product tqt−1, which is equal to [tqt] /∥t∥2.

3 Formulation in GA Terms

Fig. 3 Shows the formulation. Note the sign convention for the angles α and β.

Figure 3: Formulation in terms of GA. As our origin, we use the midpoint of AC

(point O). The vector s is from O to the center of K, and the vector v is from

O to point A. Vector p is from S to point P . Regarding the algebraic signs

of α and β: Angles are measured in the same direction as the rotation of i. In

this diagram, α —the angle of rotation from PB to PA—is in the same sense as i.

Therefore, the angle α in this diagram is positive. The angle β is the rotation from

PC to PB. This rotation, too, is in the same sense as i. Therefore, the angle β in

this diagram is positive.
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4 Solution Strategy

We will begin by determining the location of the center of circle K (Fig. 3).

Then, we will right-multiply the vector a− p by e−iα to make it parallel to

b− p, after which we use the fact that (b− p) ∧
[
(a− p) e−iα

]
= 0 to obtain

an equation for p. We will obtain a separate equation for p by right-multiplying

the vector c − p by eiβ to make it parallel to b − p, then using the fact that

(b− p) ∧
[
(c− p) eiβ

]
= 0.

5 Solution

Readers who wish to test the solutions that are derived here can access the

associated interactive GeoGebra worksheet ([2]).

5.1 Determining the Location of the Center of Circle K

The vector s, from the midpoint of AC to the center of K, is

s =
vi

tan (α+ β)
. (5.1)

Figs. 4 and 5 present two cases that show why this relationship holds.

5.2 Finding p from the Rotations of the Vectors a−p and

c− p.

We will see that each rotation provides a separate solution. These could be

averaged to better estimate the location of P .

5.2.1 Finding p from the Rotation of a− p.

The vector (a− p) e−iα is parallel to b− p. Therefore,

(b− p) ∧
[
(a− p) e−iα

]
= 0, and

⟨(b− p)
[
(a− p) e−iα

]
⟩2 = 0.

Expanding the exponential and the geometric product (b− p) (a− p),

⟨
[
b · a+ b ∧ a− b · p− b ∧ p− p · a− p ∧ a+ p2

]
(cosα− i sinα)⟩2 = 0.

Because the product of any outer product with i is a scalar, the preceding

equation simplifies to

[b ∧ a− b ∧ p− p ∧ a] cosα−
(
b · a− b · p− p · a+ p2

)
i sinα = 0
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Figure 4: One of the arrangements of points used in deriving an equation for

the location of the center of the circle K. Point P is on the arc APC, and

B is on the opposite side of chord AC. To find the length of s, we must first

find the central angle that subtends v. To do so, we note that the magnitude

of the central angle that subtends the same arc as ∠CPA is 2 (α+ β). (See

Fig. 3 regarding the sign convention for α and β.) Thus, the magnitude of the

central angle that subtends AC is 2π − 2 (α+ β), and the magnitude of the angle

that subtends v is
1

2
[2π − 2 (α+ β)] = π − (α+ β). Using the trigonometric

identity ∥ tan [π − (θ + ϕ)] ∥ = ∥ tan (θ + ϕ) ∥, we find that the length of s is

∥v∥/∥ tan (α+ β) ∥. Vector s is perpendicular to v because the bisector of any

chord (in this case, AC) is perpendicular to that chord. The sense of rotation from

v to s is contrary to the sense of i. For that reason, s = −∥v∥i/∥ tan (α+ β) ∥.
Because α + β is a positive angle between π/2 and π, tan (α+ β) is a negative

number. From the foregoing, we can see that the equation s = vi/ tan (α+ β)

captures both the magnitude of s and the sense of vector s’s rotation with respect

to v.
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Figure 5: Another arrangement of points used in deriving an equation for the

location of the center of circle K. Point P is on the arc APC, and B is on the

same side of chord AC as point P . (Compare to Fig. 4.) As in the case of Fig.

4, we must find the magnitude of the angle that subtends v. From elementary

geometry, that magnitude is the same as the magnitude of ∠APC. Because the

angles α and β are of opposite signs, the magnitude of that angle is ∥α+ β∥. The
negative angle (β) is larger than the positive one (α); therefore, α+ β is negative.

In addition, ∥α+ β∥ < π/2 because the arc that is subtended by ∠APC is smaller

than π . Thus, just as in Fig. 4, tan (α+ β) is negative, leading once again to

s = vi/ tan (α+ β).

6



Now, we divide by cosα, then use the identities q ∧ t = [(qi) · t] i and =

[(qi) · t]− [q · (ti)]:

[(bi) · a] i− [(bi) · p] i− [(pi) · a] i−
(
b · a− b · p− p · a+ p2

)
i tanα = 0

[a · (bi)] i− [p · (bi)] i+ [p · (ai)] i−
(
a · b− p · a− p · b+ p2

)
i tanα = 0.

Multiplying both sides by −i, then rearranging,

p ·
[
a+ b+

(a− b) i

tanα

]
= p2 + a ·

[
b− bi

tanα

]
.

Now, we define wa = a+b+
(a− b) i

tanα
, in order to transform the right-hand

side:

p ·wa = p2 + a ·
[
a+ b+

(a− b) i

tanα

]
︸ ︷︷ ︸

wa

−a · a︸︷︷︸
a2

−a · ai

tanα︸ ︷︷ ︸
=0

Because a and p are radii of the same circle (K), a2 = p2. Therefore,

p ·wa = a ·wa.

Next, we recognize that because ∥a∥ = ∥p∥, and because p ̸= a, p must be the We don’t treat the possibility that

p = a because for a surveyor in

the field, point P would not be

“unknown” if it were the same

point as A!

An identity: For any two vectors

q and t, qt = 2q · t− tq.

reflection of a with respect to wa. That is,

p = [wa]a
[
w−1

a

]
=

[wa]a [wa]

∥wa∥2

=
wa {2a · [wa]− [wa]a}

∥wa∥2

= 2

[
wa · a
∥wa∥2

]
wa − a. (5.2)

Therefore, the location of P with respect to the midpoint of AC is given by

the vector p∗ (Fig. 6):

p∗ = s+ p

=
vi

tan (α+ β)
+ 2

[
wa · a
∥wa∥2

]
wa − a. (5.3)

5.2.2 Finding p from the Rotation of c− p.

The vector (c− p) eiβ is parallel to b− p. Therefore,

(b− p) ∧
[
(c− p) eiβ

]
= 0, and

⟨(b− p)
[
(c− p) eiβ

]
⟩2 = 0.
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Figure 6: Vector p is the reflection of a with respect to wa, where wa = a+ b+

[(a− b) i] / tanα. Vector p is also the reflection of c with respect to wc, where

wc = c + b − [(c− b) i] tanβ. Therefore, the location of P with respect to the

midpoint of AC is given by the vector p∗ =
vi

tan (α+ β)
+ 2

[
wa · a
∥wa∥2

]
wa − a ,

and also by p∗ =
vi

tan (α+ β)
+ 2

[
wc · c
∥wa∥2

]
wc − c.

Expanding the the exponential and the geometric product (b− p) (c− p),

⟨
[
b · c+ b ∧ c− b · p− b ∧ p− p · c− p ∧ c+ p2

]
(cosβ + i sinβ)⟩2 = 0.

Because the product of any outer product with i is a scalar, the preceding

equation simplifies to

[b ∧ c− b ∧ p− p ∧ c] cosα+
(
b · c− b · p− p · c+ p2

)
i sinβ = 0.

Dividing by cosβ, then using the identities q ∧ t = [(qi) · t] i and = [(qi) · t]−
[q · (ti)],

[c · (bi)] i− [p · (bi)] i+ [p · (ci)] i+
(
c · b− p · b− p · c+ p2

)
i tanβ = 0.

Multiplying both sides by −i, then rearranging,

p ·
[
c+ b− (c− b) i

tanβ

]
︸ ︷︷ ︸

wc

= p2 + c ·
[
b+

bi

tanβ

]
.
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Continuing as we did when finding p from the rotation of a− p,

p ·wc = p2 + c ·
[
c+ b− (c− b) i

tanβ

]
︸ ︷︷ ︸

wc

− c · c︸︷︷︸
c2

+ c ·
[

ci

tanβ

]
︸ ︷︷ ︸

=0

, and

p ·wc = c ·wc,

leading to

p = [wc] c
[
w−1

c

]
= 2

[
wc · c
∥wc∥2

]
wc − c. (5.4)

Therefore, the derivation that starts from the rotation of c− p finds that the

location of P with respect to the midpoint of AC is given by the same vector

p∗ that we found when starting from the rotation of a− p. However, the vector

p is now expressed in terms of c (Fig. 6):

p∗ = s+ p

=
vi

tan (α+ β)
+ 2

[
wc · c
∥wa∥2

]
wc − c. (5.5)
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