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Abstract

After reviewing Maclaurin series and the Alternating Series Estimation

Theorem, we show how these can be combined with some arithmetic and

algebraic observations to prove that π is irrational.

Introduction

There are many proofs of the irrationality of π [2, 4], but beginning calculus books

tend not to use them [6, 9]. Niven’s proof [2, 7, 5] is a top contender for inclusion;

it is short, but difficult. Even analysis books tend not to use it [8] and, if they do,

they don’t prove it in the text proper. In Apostol’s Mathematical Analysis [1] it’s

relegated to an exercise. Here is a new proof that we claim is easy enough for a

calculus course. It seems at the level of e’s irrationality proofs that are generally

in beginning calculus and analysis books [1, 6, 8, 9].

The hope is to make this article readable by calculus students; we start with a

review of the pre-requisites.

Review

We use the Maclaurin series

sin(x) =
∞∑

k=1

(−1)k−1x2k−1

(2k − 1)!
. (1)
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This is easily derived using the formula for a Taylor series

∞∑

k=0

f (k)(c)

k!
(x − c)k.

The Maclaurin series is just a Taylor series with c = 0. The derivatives of f(x) =
sin(x) at 0 are sin(0) = 0, cos(0) = 1, − sin(0) = 0 and − cos(0) = −1. With a

little reflection this becomes (1).

To calculate the value of sin(x) at a particular point, approximations must be

used and these give rise to Taylor and Maclaurin polynomials. When a value of

x is substituted into (1) it becomes an alternating series and these polynomials

become partial sums of this series. Alternating series have a key property we will

use: the Alternating Series Estimation Theorem (ASET) [10].

ASET has three parts. They are all implied by oscillations in partial sums; first

too much, then too little, but the distance between the two goes to zero. Thus part

1 is sn+1 < L < sn where L is the limit of the series and sk’s are partial sums; part

2 is the absolute value of the error is less than the absolute value of ak+1, the first

omitted term of the series approximating partial; and part 3 is the sign of the tail,

L − sn is the same as this first omitted term. There are many youtube animations

that show all three parts.

We’ll give a quick proof of part 3; we’ll need it later. Consider

∞∑

k=1

ak =
n∑

k=1

ak + (an+1 + an+2) + (an+3 + an+4) + . . . .

If the first omitted term, an+1 is negative then, as |an| is a descending sequence,

(an+1 + an+2) < 0, note an+2 has to be positive; they’re alternating. This pattern

is maintained for all such pairings, so the tail is negative, thus the same sign as

an+1. Likewise, if an+1 is positive then an+2 is negative and (an+1 + an+2) > 0
and this pattern holds for subsequent pairs; the tail is positive, the same sign as

an+1.

It follows that if r is a root of sin(x), then all Maclaurin polynomials can’t be

0 at r: head(r) + tail(r) = 0; by way of ASET, tail(r) 6= 0; implies head(r) 6= 0 and

head(r) is the partial. We’ll need this implication as our particular interest is in the

roots of Maclaurin polynomials.
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Figure 1: Maclaurin polynomials for sin(x).

Figure 2: A few Maclaurin polynomials.

Graphs

First, let’s get a picture. A TI84-CE calculator can be used to graph Maclaurin

polynomials. The first few for our sin(x) series are given in Figure 1. Figure 2

shows the graph for the first four. The sin(x) curve is slowly being formed. As

the degree of the polynomial grows the number of turning points [3] in the curve

increases and the accuracy of the zero estimates of sin(x) get better. In Figures 3

and 4 we can see that the first non-zero root of Y6 is close to π and that of Y7 is

closer still: 3.1416138 and 3.1415919.

Per the periodicity of sin(x), the roots of sin(x) are of the form nπ for integer

n. The series (1) converges to sin(x) for all of the reals; an infinite circle of

convergence. Thus each additional Maclaurin polynomial crosses the x-axis and

gives an additional approximation to the roots (or zeros) of sin(x). The limit of

these polynomial roots are the same as those of sin(x): ±nπ.
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Figure 3: Y6(X) has a first root of 3.1416138, π with three digit accuracy.

Figure 4: Y7(X) has a first root of 3.1415919: π with five digit accuracy.

Arithmetic Observations

If π = p/q then k!π for sufficiently large k is always an integer and equal to a

multiple of π. This follows from the arithmetic observations that

p

q
·
pqk!

pq

is an integer if k has q2 factor, i.e. if k ≥ q2. But, in turn this means that for

sufficiently large k
sin(k!) = 0,

if π is assumed to be rational: p/q.
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Algebraic Observations

Consider the roots for the first few Maclaurin polynomials for sin(k!) [6, 9]:

T3(x) = x −
x3

3!
implies T3(3!) = 3!(1 − (3!)2)

T5(x) = x−
x3

3!
+

x5

5!
implies T5(5!) = 5!(1 −

(5!)2

3!
+

(5!)4

5!
)

and

T7(x) = x −
x3

3!
+

x5

5!
−

x7

7!
implies T7(7!) = 7!(1 −

(7!)3

3!
+

(7!)5

5!
−

(7!)7

7!
).

It is clear that all Tk(k!) are integers. We are now ready to prove π is irrational.

Proof

Theorem 1. π is irrational.

Proof. Define the partial series of the Maclaurin expansion of sin(x) as

Tj(x) =

j∑

k=1

(−1)k−1x2k−1

(2k − 1)!
.

The sequence of the roots of Tj(x) converges to the roots of sin(x) as

lim
j→∞

Tj(x) =
∞∑

k=1

(−1)k−1x2k−1

(2k − 1)!
= sin(x).

But if π = p/q this implies

lim
j→∞

Tj(j!) = lim
j→∞

sin(j!) = 0.

Given ε < 1 there exists a N such that for all j > N

Tj(j!)| < ε < 1.

But Tj(j!) is an integer polynomial evaluated at an integer. It is not zero because

the roots of Tj(j!) are not shared with sin(x). That’s our use of ASET. This forces

the existence of a positive integer less than one, a contradiction.
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Remarks

One can come to an understanding of the nature of this proof and of irrational

numbers by considering what

lim
j→∞

T̂j(x) (2)

must be. This is a power series with coefficients consisting of sequences that go to

infinity. Hard to write down! With an integer x value and a finite j value it must

evaluate to an integer. But if x is irrational, say π then

lim
k→∞

Akπ − Bkπ = 0

is a possibility, where Ak and Bk are integer sequences going to infinity. The

terms Akπ and Bkπ always have infinite decimals and the difference can shrink to

0.

It is likely that (2) can define a function, but it must have a complicated nature.

We just need the roots of Tj(x) and T̂j(x) are the same and as the former converges

to roots of sin(x), so too will the latter.

Conclusion

This proof seems to be easier than the proof by Niven [7]. It does require knowl-

edge of infinite series, a topic later than integration (what Niven’s proof uses) in

calculus textbooks. But the steps are simpler and not too removed from the level of

beginning calculus. It almost seems to be simple algebra in nature. It might make

a good application within a section on alternating series in calculus textbooks.
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