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Abstract

After reviewing Maclaurin series and the Alternating Series Estimation
Theorem (ASET), we show how these can be combined with some algebraic
observations to prove that 7 is irrational.

Introduction

There are many proofs of the irrationality of 7 [[4, 4], but beginning calculus books
tend not to use them [, X]. They are too hard. Even analysis books tend not to
mention 7’s irrationality [Z] and, if they do, they don’t prove it in the text proper.
In Apostol’s Mathematical Analysis [[I] it’s relegated to a exercise. Here is a new
proof that is a relatively easy way to prove this result. It is at the level of e’s
irrationality proofs that are generally in beginning calculus and analysis books
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This is easily derived using the formula for a Taylor series
— () n
n=0

The Maclaurin series is just a Taylor series with ¢ = 0. The derivatives of f(x) =
sin(z) at 0 are sin(0) = 0, cos(0) = 1, —sin(0) = 0 and — cos(0) = —1. Witha
little reflection this becomes ().

To calculate the value of sin(x) at a particular point, approximations must be
used and these give rise to Taylor and Maclaurin polynomials. When a value of
x is substituted into (@) it becomes an alternating series and these polynomials
become partial sums of this series. Alternating series have a key property we will
use.

ASET has three parts. They are all implied by oscillations in partial sums; first
too much, then too little, but the distance between the two goes to zero. Thus part
liss, < L < s,4+1 where L is the limit of the series and s;’s are partial sums; part
2 is the absolute value of the error is less than the absolute value of a,,.1, the first
omitted term of the series approximating partial; and part 3 is the sign of the tail,
L — s, is the same as this first omitted term. There are many youtube animations
that show all three parts.

We’ll give a quick proof of part 3; we’ll need it later. Consider

D a0 = an+ (ang1 + angz) + (Gngs + anea) + -
n=1 n=1

If the first omitted term, a,1 is negative then, as |a,| is a descending sequence,
(@nt1 + any2) < 0, note a,2 has to be positive; they’re alternating. This pattern
is maintained for all such pairings, so the tail is negative, thus the same sign as
an+1. Likewise, if a,1 is positive then a,, o is negative and (a1 + Gpi2) > 0
and this pattern holds for subsequent pairs; the tail is positive, the same sign as
Ap41-

It follows that if r is a root of sin(x), then all Maclaurin polynomials can’t be
0 at 7: head(r) + tail(r) = 0; by way of ASET, tail(r) # 0; implies head(r) # 0 and
head(r) is the partial. We’ll need this implication as our particular interest is in the
roots of Maclaurin polynomials.

First, let’s get a picture. A TI84-CE calculator can be used to graph Maclau-
rin polynomials. The first few for our sin(z) series are given in Figure [ll and
graphed in Figure Bl The sin(z) curve is slowly being formed. As the degree of
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Figure 1: The first few Maclaurin polynomials for sin(x).

the polynomial grows the number of turning points [#] in the curve increases and
the accuracy of the zero estimates of sin(z) get better; the non-zero root estimates
are never perfect, per ASET as previously stated. In Figure B we can see that
Y, (m) = 0.006, almost zero.

Per the periodicity of sin(x), the roots of sin(z) are of the form nr for integer
n. The series (@M converges to sin(z) for all of the reals; an infinite circle of
convergence.
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Figure 2: A few Maclaurin polynomials.

Algebraic Observations

Consider the zeros for the first few Maclaurin polynomials for sin(z) [B, H]:
3
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Figure 3: The calc feature of this TI84 calculator gives the value of T(7).

and

As stated above, Maclaurin polynomials when evaluated at a point define partial
sums of the alternating series (ll). ASET [H]] indicates that the sign of the remain-
der terms, the tail is the same as the first omitted term. As the terms are never zero
at non-zero points, if the infinite series sums to 0, the partial can’t be zero. They
must be equal to the negative of the non-zero tail. This translates, as we showed,
into the Maclaurin polynomials don’t share roots with sin(z).

We can also observe that the roots of these 7 () will have to be the same as

3ITy(z) = —x(2? — 3),

5ITs(x) = z(z* — 5 - 42 4 5!),

and
Ty (r) = —w(z® = 7-62" +7-6-5- 42 — 7).

Zero times even a large factorial number is still 0.
The non-zero roots of these will have to be the same as those of

~

Ts(z) = 2* — 3!, (2)
Ts(z) = 2* — 5 - 42 4 5, (3)

and )
To(z)=2% 762" +7-6-5-42® — 7. 4)

We are now ready to prove 7 is irrational.



Proof

Theorem 1. 7 is irrational.
Proof. Define the partial series of the Maclaurin expansion of sin(x) as
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. T
Ti(z) = J ;(x) where z # 0 .

and consider

Then T}(z) is an integer polynomial that shares non-zero roots with Tj(z). The
sequence of these roots converges to the roots of sin(x) as

o0 (—1)k_11‘2k_1

k=1
Next, assume for a contradiction that 7 = p/q then gm = p and sin(p) = 0.
This means X
lim 75(p) = 0.
j—o0

But this implies that given an € such that 0 < € < 1, there exists /V such that for
allj > N, )
0 <|Ti(p)| <, (%)

but all T](x) are integer polynomials (see (@), (@, and (@) and when evaluated at
the integer p have to be a non-zero integer. A contradiction. Note, the left hand
inequality in (@) is implied by ASET. U

Remarks

One can come to an understanding of the nature of this proof and of irrational
numbers by considering what
lim 75 (x) (6)

j—oo

must be. This is a power series with coefficients consisting of sequences that go to
infinity. Hard to write down! With an integer = value and a finite j value it must
evaluate to an integer. But if x is irrational, say 7 then

klim Apm — By =0



is a possibility, where A; and By are integer sequences going to infinity. The
terms Ay and By always have infinite decimals and the difference can shrink to
0.

It is likely that (@) can define a function, but it must have a complicated nature.
We just need the roots of T; () and T} (z) are the same and as the former converges
to roots of sin(z), so too will the latter.

Conclusion

This proof seems to be easier and as short as Niven’s classic integral based 1947
proof [&]]. It does require knowledge of infinite series, a topic later than integration
in calculus textbooks. But the steps are simpler and not too removed from the
level of beginning calculus. It almost seems to be simple algebra in nature. It
might make a good application within a section on alternating series in calculus
textbooks.
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