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Abstract

The Natario warp drive appeared for the first time in 2001.([1])Natario defined a warp drive vector
nX = vs ∗ (dx) where vs is the constant speed of the warp bubble and ∗(dx) is the Hodge Star taken
over the x-axis of motion in Polar Coordinates.We compute the Natario warp drive vector for variable
velocities.Also we introduced a new warp drive vector nX = vs∗(dx) where vs is the constant speed of the
warp bubble and ∗(dx) is the Hodge Star taken over the x-axis of motion in Cylindrical Coordinates.We
also compute the cylindrical warp drive vector for variable velocities.
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1 Introduction:

The Natario warp drive appeared for the first time in 2001.([1])

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs ∗ (dx) where vs is the constant speed
of the warp bubble and ∗(dx) is the Hodge Star taken over the x-axis of motion in Polar Coordinates(See
pg 4 in [1].(See also Appendices A and B for the detailed calculations)(see Appendix D about Polar
Coordinates).The final form of the original Natario warp drive vector is given by:

nX = 2vsf cos θer − vs(2f + rf ′) sin θeθ (1)

The Hodge Star actually must be taken over the product (xvs) giving the expression nX = ∗(xvs) =
vs ∗ (dx) + x ∗ (dvs) but due to a constant speed vs the term x ∗ d(vs) = 0.Now we must examine what
happens when the velocity is variable and then the term x∗d(vs) no longer vanishes.Remember that a real
warp drive must accelerate or de-accelerate in order to be accepted as a physical valid model.The complete
expression of the Hodge star that generates the Natario vector nX for a variable velocity vs is now given
by(see Appendix C for detailed calculations)(The term ∗(dx) is again taken in Polar Coordinates):

nX = 2f(r)rcosθaet + 2[2f(r)2 + rf ′(r)]atcosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ (2)

We defined a new warp drive vector nX = vs ∗ (dx) where vs is the constant speed of the warp bubble
and ∗(dx) is the Hodge Star taken over the x-axis of motion in Cylindrical Coordinates(See Appendices I
and J for the detailed calculations)(see Appendix F about Cylindrical Coordinates).Our warp drive vector
is given by:

nX = vs(t)f(r) cos θer − vs(t) sin θ[f(r) + rf ′(r)]eθ (3)

Due to constant speed vs the term x ∗ d(vs) = 0 but the Hodge Star must be taken over the product
(xvs) giving the expression nX = ∗(xvs) = vs∗ (dx)+x∗ (dvs).Now we must examine what happens when
the velocity is variable and then the term x ∗ d(vs) no longer vanishes.Remember that a real warp drive
must accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression
of the Hodge star that generates the cylindrical warp drive vector nX for a variable velocity vs is now given
by(see Appendix K for detailed calculations)(The term ∗(dx) is again taken in Cylindrical Coordinates):

nX = f(r)rcosθaet + [f(r)2 + rf ′(r)]atcosθer − f(r)at[f(r) + rf ′(r)] sin θeθ (4)

Natario used Polar Coordinates(See pg 4 in [1]) but for a real 3D Spherical Coordinates another warp
drive vector must be calculated.This will appear in a future work.(see Appendix E for 3D Spherical Coor-
dinates)

In order to fully understand the idea presented in this work(a new cylindrical warp drive vector) ac-
quaintance with the Natario original warp drive paper is required but we provide all the mathematical
demonstration QED(Quod Erad Demonstratum) in the Appendices.
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2 The equation of the Natario warp drive vector with a constant speed
vs

The equation of the Natario vector nX(pg 2 and 5 in [1]) is given by:

nX = Xrsdrs + Xθrsdθ (5)

With the contravariant shift vector components Xrs and Xθ given by:(see pg 5 in [1])(see also Appendix
A for details )

Xrs = 2vsn(rs) cos θ (6)

Xθ = −vs(2n(rs) + (rs)n′(rs)) sin θ (7)

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])

Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [1]).

In a 1 + 1 spacetime the equatorial plane we get¿:

nX = Xrsdrs (8)

The contravariant shift vector component Xrs is then:

Xrs = 2vsn(rs) (9)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Inside the bubble n(rs) = 0
resulting in a Xrs = 0 and outside the bubble n(rs) = 1

2 resulting in a Xrs = vs and this illustrates the
Natario definition for a warp drive spacetime.See Appendix D
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3 The equation of the Natario warp drive vector with a variable speed
vs due to a constant acceleration a

The equation of the Natario vector nX is given by:

nX = Xtdt + Xrsdrs + Xθrsdθ (10)

The contravariant shift vector components Xt,Xrs and Xθ of the Natario vector are defined by(see
Appendices B and C):

Xt = 2n(rs)rscosθa (11)

Xrs = 2[2n(rs)2 + rsn′(rs)]atcosθ (12)

Xθ = −2n(rs)at[2n(rs) + rsn′(rs)] sin θ (13)

Considering a valid n(rs) as a Natario shape function being n(rs) = 1
2 for large rs(outside the warp

bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1
2 in the walls of the

warp bubble also known as the Natario warped region(pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of
rs defined by Natario as the interior of the warp bubble and nX = vs(t) ∗ dx + x ∗ dvs with X = vs for a
large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(pg 4 in [1])

Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.(see pgs
4,5 and 6 in [1]).

In a 1 + 1 spacetime the equatorial plane we get¿:

nX = Xtdt + Xrsdrs (14)

Xt = 2n(rs)rsa (15)

Xrs = 2[2n(rs)2 + rsn′(rs)]at (16)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = 2n(rs)at (17)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Inside the bubble n(rs) = 0
resulting in a vs = 0 and outside the bubble n(rs) = 1

2 resulting in a vs = at as expected from a variable
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velocity vs in time t due to a constant acceleration a.Since inside and outside the bubble n(rs) always
possesses the same values of 0 or 1

2 then the derivative n′(rs) of the Natario shape function n(rs) is zero and
the shift vector Xrs = 2[2n(rs)2]at with Xrs = 0 inside the bubble and Xrs = 2[2n(rs)2]at = 2[21

4 ]at =
at = vs outside the bubble and this illustrates the Natario definition for a warp drive spacetime.See
Appendix D
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4 The equation of the cylindrical warp drive vector with a constant
speed vs

The equation of the cylindrical warp drive vector nX is given by:

nX = Xrsdrs + Xθrsdθ (18)

With the contravariant shift vector components Xrs and Xθ given by:(see Appendix I for details )

Xrs = vsn(rs) cos θ (19)

Xθ = −vs(n(rs) + (rs)n′(rs)) sin θ (20)

Considering a valid n(rs) as a shape function being n(rs) = 1 for large rs(outside the warp bubble)
and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1 in the walls of the warp
bubble the warped region:

We must demonstrate that the cylindrical warp drive vector given above satisfies the Natario require-
ments for a warp bubble defined by:

any cylindrical vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small
value of rs defined by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a
large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(pg 4 in [1])

In order to simplify our analysis we consider motion in the x − axis or the equatorial plane rs where
θ = 0 sin(θ) = 0 and cos(θ) = 1.

In a 1 + 1 spacetime the equatorial plane we get¿:

nX = Xrsdrs (21)

The contravariant shift vector component Xrs is then:

Xrs = vsn(rs) (22)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Inside the bubble n(rs) = 0
resulting in a Xrs = 0 and outside the bubble n(rs) = 1 resulting in a Xrs = vs and this illustrates the
Natario definition for a warp drive spacetime.See Appendix F
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5 The equation of the cylindrical warp drive vector with a variable
speed vs due to a constant acceleration a

The equation of the cylindrical warp drive vector nX is given by:

nX = Xtdt + Xrsdrs + Xθrsdθ (23)

The contravariant shift vector components Xt,Xrs and Xθ of the cylindrical warp drive vector are
defined by(see Appendices J and K):

Xt = n(rs)rscosθa (24)

Xrs = [n(rs)2 + rsn′(rs)]atcosθ (25)

Xθ = −n(rs)at[n(rs) + rsn′(rs)] sin θ (26)

Considering a valid n(rs) as a shape function being n(rs) = 1 for large rs(outside the warp bubble)
and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1 in the walls of the warp
bubble also known as the warped region:

We must demonstrate that the cylindrical warp drive vector given above satisfies the Natario require-
ments for a warp bubble defined by:

any cylindrical vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small
value of rs defined by Natario as the interior of the warp bubble and nX = vs(t)∗dx+x∗dvs with X = vs
for a large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of
the warp bubble.(pg 4 in [1])

Natario in its warp drive uses the spherical coordinates rs and θ.In order to simplify our analysis we
consider motion in the x− axis or the equatorial plane rs where θ = 0 sin(θ) = 0 and cos(θ) = 1.

In a 1 + 1 spacetime the equatorial plane we get¿:

nX = Xtdt + Xrsdrs (27)

Xt = n(rs)rsa (28)

Xrs = [n(rs)2 + rsn′(rs)]at (29)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = n(rs)at (30)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Inside the bubble n(rs) = 0
resulting in a vs = 0 and outside the bubble n(rs) = 1 resulting in a vs = at as expected from a variable
velocity vs in time t due to a constant acceleration a.Since inside and outside the bubble n(rs) always
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possesses the same values of 0 or 1 then the derivative n′(rs) of the shape function n(rs) is zero and the
shift vector Xrs = [n(rs)2]at with Xrs = 0 inside the bubble and Xrs = [n(rs)2]at = vs outside the bubble
and this illustrates the Natario definition for a warp drive spacetime.See Appendix F
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6 Conclusion

In this work we introduced a new cylindrical warp drive vector using the Natario mathematical tech-
niques.We focused ourselves in the application of the Hodge Star in cylindrical coordinates for both con-
stant and variable speeds.

Our focus was concentrated in the Natario methods to obtain a warp drive vector.

The application of the cylindrical warp drive vector to the ADM equation in General Relativit5y will
appear in a future work.

Natario used Polar Coordinates(See pg 4 in [1]) but for a real 3D Spherical Coordinates another warp
drive vector must be calculated.This will appear in a future work.(see Appendix E for 3D Spherical Coor-
dinates)
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7 Appendix A:differential forms,Hodge star and the mathematical demon-
stration of the Natario vectors nX = −vsdx and nX = vsdx for a
constant speed vs in a R3 space basis

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods Natario used to arrive at the final expression of the Natario Vector nX

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in
[1],eq 3.72 pg 69(a)(b) in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (31)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) (32)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (33)

From above we get the following results

dr ∼ r2 sin θ(dθ ∧ dϕ) (34)

rdθ ∼ r sin θ(dϕ ∧ dr) (35)

r sin θdϕ ∼ r(dr ∧ dθ) (36)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(see eq 3.72 pg 69(a)(b) in [2]):

∗dr = r2 sin θ(dθ ∧ dϕ) (37)

∗rdθ = r sin θ(dϕ ∧ dr) (38)

∗r sin θdϕ = r(dr ∧ dθ) (39)

Back again to the Natario equivalence between spherical and cartezian coordinates(pg 5 in [1]):

∂

∂x
∼ dx = d(r cos θ) = cos θdr−r sin θdθ ∼ r2 sin θ cos θdθ∧dϕ+r sin2 θdr∧dϕ = d

(
1
2
r2 sin2 θdϕ

)
(40)
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Look that

dx = d(r cos θ) = cos θdr − r sin θdθ (41)

Or

dx = d(r cos θ) = cos θdr − sin θrdθ (42)

Applying the Hodge Star operator * to the above expression:

∗dx = ∗d(r cos θ) = cos θ(∗dr)− sin θ(∗rdθ) (43)

∗dx = ∗d(r cos θ) = cos θ[r2 sin θ(dθ ∧ dϕ)]− sin θ[r sin θ(dϕ ∧ dr)] (44)

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dθ ∧ dϕ)]− [r sin2 θ(dϕ ∧ dr)] (45)

We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2]):

dϕ ∧ dr = −dr ∧ dϕ (46)

Then we have

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dθ ∧ dϕ)] + [r sin2 θ(dr ∧ dϕ)] (47)

And the above expression matches exactly the term obtained by Natario using the Hodge Star operator
applied to the equivalence between cartezian and spherical coordinates(pg 5 in [1]).

Now examining the expression:

d

(
1
2
r2 sin2 θdϕ

)
(48)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2
r2 sin2 θdϕ

)
(49)

∗d
(

1
2
r2 sin2 θdϕ

)
∼ 1

2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] +
1
2
r2 sin2 θ ∗ d[(dϕ)] (50)

According to eq 3.90 pg 74(a)(b) in [2] the term 1
2r2 sin2 θ ∗ d[(dϕ)] = 0

This leaves us with:

1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dθ ∧ dϕ) +

1
2

sin2 θ2r(dr ∧ dϕ) (51)
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1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dθ ∧ dϕ) +

1
2

sin2 θ2r(dr ∧ dϕ) (52)

Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

∗d(α + β) = dα + dβ (53)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (54)

∗d(dx) = d(dy) = d(dz) = 0 (55)

From above we can see for example that

∗d[(sin2 θ)dϕ] = d(sin2 θ) ∧ dϕ + sin2 θ ∧ ddϕ = 2sinθ cos θ(dθ ∧ dϕ) (56)

∗[d(r2)dϕ] = 2rdr ∧ dϕ + r2 ∧ ddϕ = 2r(dr ∧ dϕ) (57)

And then we derived again the Natario result of pg 5 in [1]

r2 sin θ cos θ(dθ ∧ dϕ) + r sin2 θ(dr ∧ dϕ) (58)

Now we will examine the following expression equivalent to the one of Natario pg 5 in [1] except that
we replaced 1

2 by the function f(r) :

∗d[f(r)r2 sin2 θdϕ] (59)

From above we can obtain the next expressions

f(r)r2 ∗ d[(sin2 θ)dϕ] + f(r) sin2 θ ∗ [d(r2)dϕ] + r2 sin2 θ ∗ d[f(r)dϕ] (60)

f(r)r22sinθ cos θ(dθ ∧ dϕ) + f(r) sin2 θ2r(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (61)

2f(r)r2sinθ cos θ(dθ ∧ dϕ) + 2f(r)r sin2 θ(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (62)
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2f(r)r2sinθ cos θ(dθ ∧ dϕ) + 2f(r)r sin2 θ(dr ∧ dϕ) + r2 sin2 θf ′(r)(dr ∧ dϕ) (63)

Comparing the above expressions with the Natario definitions of pg 4 in [1]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dθ ∧ dϕ) (64)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (r sin θdϕ) ∧ dr ∼ r sin θ(dϕ ∧ dr) ∼ −r sin θ(dr ∧ dϕ) (65)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (66)

We can obtain the following result:

2f(r) cosθ[r2sinθ(dθ ∧ dϕ)] + 2f(r) sinθ[r sin θ(dr ∧ dϕ)] + f ′(r)r sin θ[r sin θ(dr ∧ dϕ)] (67)

2f(r) cosθer − 2f(r) sinθeθ − rf ′(r) sin θeθ (68)

∗d[f(r)r2 sin2 θdϕ] = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (69)

Defining the Natario Vector as in pg 5 in [1] with the Hodge Star operator * explicitly written :

nX = vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(70)

nX = −vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(71)

We can get finally the latest expressions for the Natario Vector nX also shown in pg 5 in [1]

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (72)

nX = −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (73)

With our pedagogical approaches

nX = 2vs(t)f(r) cosθdr − vs(t)[2f(r) + rf ′(r)]r sin θdθ (74)

nX = −2vs(t)f(r) cosθdr + vs(t)[2f(r) + rf ′(r)]r sin θdθ (75)
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8 Appendix B:differential forms,Hodge star and the mathematical demon-
stration of the Natario vectors nX = −vsdx and nX = vsdx for a
constant speed vs or for the first term vsdx from the Natario vector
nX = vsdx + xdvs(a variable speed) in a R4 space basis

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods Natario used to arrive at the final expression of the Natario Vector nX

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in
[1],eqs 3.135 and 3.137 pg 82(a)(b) in [2],eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and pg 92 in
[3]):

er ≡
∂

∂r
∼ dr ∼ dt ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (76)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ dt ∧ (r sin θdϕ) ∧ dr ∼ r sin θ(dt ∧ dϕ ∧ dr) (77)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dt ∧ dr ∧ (rdθ) ∼ r(dt ∧ dr ∧ dθ) (78)

From above we get the following results

dr ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (79)

rdθ ∼ r sin θ(dt ∧ dϕ ∧ dr) (80)

r sin θdϕ ∼ r(dt ∧ dr ∧ dθ) (81)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(see eq 3.74 pg 69(a)(b) in [2]):

∗dr = r2 sin θ(dt ∧ dθ ∧ dϕ) (82)

∗rdθ = r sin θ(dt ∧ dϕ ∧ dr) (83)

∗r sin θdϕ = r(dt ∧ dr ∧ dθ) (84)

Back again to the Natario equivalence between spherical and cartezian coordinates(pg 5 in [1]):

∂

∂x
∼ dx = d(r cos θ) = cos θdr−r sin θdθ ∼ r2 sin θ cos θdt∧dθ∧dϕ+r sin2 θdt∧dr∧dϕ = d

(
1
2
r2 sin2 θdϕ

)
(85)
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Look that

dx = d(r cos θ) = cos θdr − r sin θdθ (86)

Or

dx = d(r cos θ) = cos θdr − sin θrdθ (87)

Applying the Hodge Star operator * to the above expression:

∗dx = ∗d(r cos θ) = cos θ(∗dr)− sin θ(∗rdθ) (88)

∗dx = ∗d(r cos θ) = cos θ[r2 sin θ(dt ∧ dθ ∧ dϕ)]− sin θ[r sin θ(dt ∧ dϕ ∧ dr)] (89)

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dt ∧ dθ ∧ dϕ)]− [r sin2 θ(dt ∧ dϕ ∧ dr)] (90)

We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2])):

dϕ ∧ dr = −dr ∧ dϕ (91)

Then we have

∗dx = ∗d(r cos θ) = [r2 sin θ cos θ(dt ∧ dθ ∧ dϕ)] + [r sin2 θ(dt ∧ dr ∧ dϕ)] (92)

And the above expression matches exactly the term obtained by Natario using the Hodge Star operator
applied to the equivalence between cartezian and spherical coordinates(pg 5 in [1]).

Now examining the expression:

d

(
1
2
r2 sin2 θdϕ

)
(93)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d
(

1
2
r2 sin2 θdϕ

)
(94)

∗d
(

1
2
r2 sin2 θdϕ

)
∼ 1

2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] +
1
2
r2 sin2 θ ∗ d[(dϕ)] (95)

According to eq 3.90 pg 74(a)(b) in [2] the term 1
2r2 sin2 θ ∗ d[(dϕ)] = 0

This leaves us with:

1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dt ∧ dθ ∧ dϕ) +

1
2

sin2 θ2r(dt ∧ dr ∧ dϕ) (96)
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1
2
r2 ∗ d[(sin2 θ)dϕ] +

1
2

sin2 θ ∗ [d(r2)dϕ] ∼ 1
2
r22 sin θ cos θ(dt ∧ dθ ∧ dϕ) +

1
2

sin2 θ2r(dt ∧ dr ∧ dϕ) (97)

Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.3 pg 68(a)(b) in [2]::

∗d(α + β) = dα + dβ (98)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 3 99K ∗d(fα) = df ∧ α− f ∧ dα (99)

∗d(dx) = d(dy) = d(dz) = 0 (100)

From above we can see for example that

∗d[(sin2 θ)dϕ] = dt ∧ d(sin2 θ) ∧ dϕ− dt ∧ sin2 θ ∧ ddϕ = 2sinθ cos θ(dt ∧ dθ ∧ dϕ) (101)

∗[d(r2)dϕ] = 2rdt ∧ dr ∧ dϕ− dt ∧ r2 ∧ ddϕ = 2r(dt ∧ dr ∧ dϕ) (102)

And then we derived again the Natario result of pg 5 in [1]

r2 sin θ cos θ(dt ∧ dθ ∧ dϕ) + r sin2 θ(dt ∧ dr ∧ dϕ) (103)

Now we will examine the following expression equivalent to the one of Natario pg 5 in [1] except that
we replaced 1

2 by the function f(r) :

∗d[f(r)r2 sin2 θdϕ] (104)

From above we can obtain the next expressions

f(r)r2 ∗ d[(sin2 θ)dϕ] + f(r) sin2 θ ∗ [d(r2)dϕ] + r2 sin2 θ ∗ d[f(r)dϕ] (105)

f(r)r22sinθ cos θ(dt ∧ dθ ∧ dϕ) + f(r) sin2 θ2r(dt ∧ dr ∧ dϕ) + r2 sin2 θf ′(r)(dt ∧ dr ∧ dϕ) (106)

2f(r)r2sinθ cos θ(dt ∧ dθ ∧ dϕ) + 2f(r)r sin2 θ(dt ∧ dr ∧ dϕ) + r2 sin2 θf ′(r)(dt ∧ dr ∧ dϕ) (107)
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2f(r)r2sinθ cos θ(dt ∧ dθ ∧ dϕ) + 2f(r)r sin2 θ(dt ∧ dr ∧ dϕ) + r2 sin2 θf ′(r)(dt ∧ dr ∧ dϕ) (108)

Comparing the above expressions with the Natario definitions of pg 4 in [1]):

er ≡
∂

∂r
∼ dr ∼ dt ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dt ∧ dθ ∧ dϕ) (109)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ dt ∧ (r sin θdϕ) ∧ dr ∼ r sin θ(dt ∧ dϕ ∧ dr) ∼ −r sin θ(dt ∧ dr ∧ dϕ) (110)

eϕ ≡
1

r sin θ

∂

∂ϕ
∼ r sin θdϕ ∼ dt ∧ dr ∧ (rdθ) ∼ r(dt ∧ dr ∧ dθ) (111)

We can obtain the following result:

2f(r) cosθ[r2sinθ(dt∧ dθ∧ dϕ)]+2f(r) sinθ[r sin θ(dt∧ dr∧ dϕ)]+ f ′(r)r sin θ[r sin θ(dt∧ dr∧ dϕ)] (112)

2f(r) cosθer − 2f(r) sinθeθ − rf ′(r) sin θeθ (113)

∗d[f(r)r2 sin2 θdϕ] = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (114)

Defining the Natario Vector as in pg 5 in [1] with the Hodge Star operator * explicitly written :

nX = vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(115)

nX = −vs(t) ∗ d
(
f(r)r2 sin2 θdϕ

)
(116)

We can get finally the latest expressions for the Natario Vector nX also shown in pg 5 in [1]

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (117)

nX = −2vs(t)f(r) cosθer + vs(t)[2f(r) + rf ′(r)] sin θeθ (118)

With our pedagogical approaches

nX = 2vs(t)f(r) cosθdr − vs(t)[2f(r) + rf ′(r)]r sin θdθ (119)

nX = −2vs(t)f(r) cosθdr + vs(t)[2f(r) + rf ′(r)]r sin θdθ (120)
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9 Appendix C:differential forms,Hodge star and the mathematical demon-
stration of the Natario vector nX = ∗(vsx) for a variable speed vs and
a constant acceleration a

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of r
defined by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a large value of
r defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])

In the Appendices A and B we gave the mathematical demonstration of the Natario vector nX in the
R3 and R4 space basis when the velocity vs is constant.Hence the complete expression of the Hodge star
that generates the Natario vector nX for a constant velocity vs is given by:

nX = ∗(vsx) = vs ∗ (dx) (121)

∗dx = ∗d(rcosθ) = ∗d
(

1
2
r2 sin2 θdϕ

)
= ∗d[f(r)r2 sin2 θdϕ] (122)

The equation of the Natario vector nX(pg 2 and 5 in [1]) is given by:

nX = Xrer + Xθeθ (123)

nX = Xrdr + Xθrdθ (124)

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (125)

nX = 2vs(t)f(r) cosθdr − vs(t)[2f(r) + rf ′(r)]r sin θdθ (126)

With the contravariant shift vector components explicitly given by:

Xr = 2vsf(r) cos θ (127)

Xθ = −vs(2f(r) + (r)f ′(r)) sin θ (128)

Because due to a constant speed vs the term x ∗ d(vs) = 0.Now we must examine what happens when
the velocity is variable and then the term x ∗ d(vs) no longer vanishes.Remember that a real warp drive
must accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression
of the Hodge star that generates the Natario vector nX for a variable velocity vs is now given by:

nX = ∗(vsx) = vs ∗ (dx) + x ∗ (dvs) (129)
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In order to study the term x ∗ d(vs) we must introduce a new Canonical Basis for the coordinate time
in the R4 space basis defined as follows:(see eqs 10.102 and 10.103 pgs 363(a)(b) and 364(a)(b) in [2] with
the terms S = u = 11,eq 3.74 pg 69(a)(b) in [2],eqs 11.131 and 11.133 with the term m = 02 pg 417(a)(b)
in [2].)(see pg 47 eqs 2.67 to 2.70 and pg 92 in [3]):

et ≡
∂

∂t
∼ dt ∼ dr ∧ (rdθ) ∧ (r sin θdϕ) ∼ r2 sin θ(dr ∧ dθ ∧ dϕ) (130)

dt ∼ r2 sin θ(dr ∧ dθ ∧ dϕ) (131)

The Hodge star operator defined for the coordinate time is given by:(see eq 3.74 pg 69(a)(b) in [2]):

∗dt = r2 sin θ(dr ∧ dθ ∧ dϕ) (132)

The valid expression for a variable velocity vs(t) in the Natario warp drive spacetime due to a constant
acceleration a must be given by:

vs = 2f(r)at (133)

Because and considering a valid f(r) as a Natario shape function being f(r) = 1
2 for large r(outside

the warp bubble where X = vs(t) and nX = vs(t) ∗ dx + x ∗ d(vs(t))) and f(r) = 0 for small r(inside
the warp bubble where X = 0 and nX = 0) while being 0 < f(r) < 1

2 in the walls of the warp bub-
ble also known as the Natario warped region(pgs 4 and 5 in [1]) and considering also that the Natario
warp drive is a ship-frame based coordinates system(a reference frame placed in the center of the warp
bubble where the ship resides-or must reside!!) then an observer in the ship inside the bubble sees every
point inside the bubble at the rest with respect to him because inside the bubble vs(t) = 0 because f(r) = 0.

To illustrate the statement pointed above imagine a fish inside an aquarium and the aquarium is floating in
the surface of a river but carried out by the river stream.The stream varies its velocity with time.The warp
bubble in this case is the aquarium and the walls of the aquarium are the walls of the warp bubble-Natario
warped region.An observer in the margin of the river would see the aquarium passing by him at a large
speed considering a coordinates system(a reference frame) placed in the margin of the river but inside the
aquarium the fish is at the rest with respect to his local neighborhoods.Then for the fish any point inside
the aquarium is at the rest with respect to him because inside the aquarium vs = 2f(r)at with f(r) = 0
and consequently giving a vs(t) = 0.Again with respect to the fish the fish ”sees” the margin passing by
him with a large relative velocity.The margin in this case is the region outside the bubble ”seen” by the
fish with a variable velocity vs(t) = v1 in the time t1 and vs(t) = v2 in the time t2 because outside the
bubble the generic expression for a variable velocity vs is given by vs = 2f(r)at and outside the bubble
f(r) = 1

2 giving a generic expression for a variable velocity vs as vs(t) = at and consequently a v1 = at1
in the time t1 and a v2 = at2 in the time t2.Then the variable velocity in not only a function of time
alone but must consider also the position of the bubble where the measure is being taken wether inside or
outside the bubble.So the velocity must also be a function of r.Its total differential is then given by:

dvs = 2[atf ′(r)dr + f(r)tda + f(r)adt] (134)

1These terms are needed to deal with the Robertson-Walker equation in Cosmology using differential forms.We dont need
these terms here and we can make S = u = 1

2This term is needed to describe the Dirac equation in the Schwarzschild spacetime we dont need the term here so we can
make m = 1.Remember also that here we consider geometrized units in which c = 1
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Applying the Hodge star to the total differential dvs we get:

∗dvs = 2[atf ′(r) ∗ dr + f(r)t ∗ da + f(r)a ∗ dt] (135)

But we consider here the acceleration a a constant.Then the term f(r)tda = 0 and in consequence
f(r)t ∗ da = 0.This leaves us with:

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] (136)

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] = 2[atf ′(r)r2 sin θ(dt ∧ dθ ∧ dϕ) + f(r)ar2 sin θ(dr ∧ dθ ∧ dϕ)] (137)

∗dvs = 2[atf ′(r) ∗ dr + f(r)a ∗ dt] = 2[atf ′(r)er + f(r)aet] (138)

The complete expression of the Hodge star that generates the Natario vector nX for a variable velocity
vs is given by:

nX = ∗(vsx) = vs ∗ (dx) + x ∗ d(vs) (139)

The term ∗dx was obtained in the Appendices A and B as follows:(see pg 5 in [1])

∗dx = 2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ (140)

The complete expression of the Hodge star that generates the Natario vector nX for a variable velocity
vs is now given by:

nX = ∗(vsx) = vs(2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ) + x(2[atf ′(r)er + f(r)aet]) (141)

But remember that x = rcosθ(see pg 5 in [1]) and this leaves us with:

nX = ∗(vsx) = vs(2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ) + rcosθ(2[atf ′(r)er + f(r)aet]) (142)

But we know that vs = 2f(r)at.Hence we get:

nX = ∗(vsx) = 2f(r)at(2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ) + rcosθ(2[atf ′(r)er + f(r)aet]) (143)

Then we can start with a warp bubble initially at the rest using the Natario vector shown above and
accelerate the bubble to a desired speed of 200 times faster than light.When we achieve the desired speed
we turn off the acceleration and keep the speed constant.The terms due to the acceleration now disappears
and we are left again with the Natario vector for constant speeds shown below:

nX = 2vs(t)f(r) cosθer − vs(t)[2f(r) + rf ′(r)] sin θeθ (144)

20



Working some algebra with the Natario vector for variable velocities we get:

nX = ∗(vsx) = 2f(r)at(2f(r) cosθer − [2f(r) + rf ′(r)] sin θeθ) + rcosθ(2[atf ′(r)er + f(r)aet]) (145)

nX = 4f(r)2at cosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ + 2atf ′(r)rcosθer + 2f(r)rcosθaet (146)

nX = 2f(r)rcosθaet + 4f(r)2at cosθer + 2atf ′(r)rcosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ (147)

nX = 2f(r)rcosθaet + 2[2f(r)2 + rf ′(r)]atcosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ (148)

Then the Natario vector for variable velocities defined using contravariant shift vector components is
given by the following expressions:

nX = Xtet + Xrer + Xθeθ (149)

nX = Xtdt + Xrdr + Xθrdθ (150)

Or being:

nX = 2f(r)rcosθaet + 2[2f(r)2 + rf ′(r)]atcosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ (151)

nX = 2f(r)rcosθadt + 2[2f(r)2 + rf ′(r)]atcosθdr − 2f(r)at[2f(r) + rf ′(r)]r sin θdθ (152)

The contravariant shift vector components are respectively given by the following expressions:

Xt = 2f(r)rcosθa (153)

Xr = 2[2f(r)2 + rf ′(r)]atcosθ (154)

Xθ = −2f(r)at[2f(r) + rf ′(r)] sin θ (155)

21



Figure 1: Polar Coordinates.(Source:Internet)

10 Appendix D:Polar Coordinates

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs ∗ (dx) where vs is the constant speed of
the warp bubble and ∗(dx) is the Hodge Star taken over the x-axis of motion in Polar Coordinates(See
pg 4 in [1].(See also Appendices A and B for the detailed calculations).

∂

∂x
∼ dx = d(r cos θ) = cos θdr − r sin θdθ ∼ ∼ r2 sin θ cos θdθ ∧ dϕ + r sin2 θdr ∧ dϕ = d

(
1
2
r2 sin2 θdϕ

)
.

(156)
Consequently if we set exactly what Natario did in pg 5 in [1]:

X ∼ −vs(t)d
[
f(r)r2 sin2 θdϕ

]
∼ −2vsf cos θer + vs(2f + rf ′) sin θeθ (157)

X ∼ vs(t)d
[
f(r)r2 sin2 θdϕ

]
∼ 2vsf cos θer − vs(2f + rf ′) sin θeθ (158)

nX = Xrer + Xθeθ (159)

Xrs = 2vsf cos θ (160)

Xθ = −vs(2f + rf ′) sin θ (161)
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Considering a valid f as a Natario shape function being f = 1
2 for large r(outside the warp bubble)

and f = 0 for small r(inside the warp bubble) while being 0 < f < 1
2 in the walls of the warp bubble also

known as the Natario warped region(pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])

Inside the bubble f = 0 and the Natario vector components are zero too.Outside the bubble f = 1
2 ,Xrs =

vs cos θ and Xθ = −vs sin θ.In motion over the x-axis only in the equatorial plane Xrs = vs because cos θ = 1

Due to a constant speed vs the term x ∗ d(vs) = 0.Now we must examine what happens when the
velocity is variable and then the term x ∗ d(vs) no longer vanishes.Remember that a real warp drive must
accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression of the
Hodge star that generates the Natario vector nX for a variable velocity vs is now given by(see Appendix
C for detailed calculations):

nX = ∗(vsx) = vs ∗ (dx) + x ∗ (dvs) (162)

The term ∗(dx) is again taken in Polar Coordinates

nX = Xtet + Xrer + Xθeθ (163)

nX = 2f(r)rcosθaet + 2[2f(r)2 + rf ′(r)]atcosθer − 2f(r)at[2f(r) + rf ′(r)] sin θeθ (164)

Xt = 2f(r)rcosθa (165)

Xr = 2[2f(r)2 + rf ′(r)]atcosθ (166)

Xθ = −2f(r)at[2f(r) + rf ′(r)] sin θ (167)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = 2fat (168)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Inside the bubble f = 0
resulting in a vs = 0 and outside the bubble f = 1

2 resulting in a vs = at as expected from a variable
velocity vs in time t due to a constant acceleration a.Since inside and outside the bubble f always possesses
the same values of 0 or 1

2 then the derivative f ′ of the Natario shape function f is zero and the shift vector
Xrs = 2[2f2]at with Xrs = 0 inside the bubble and Xrs = 2[2f2]at = 2[21

4 ]at = at = vs outside the bubble
and this illustrates the Natario definition for a warp drive spacetime.See Appendix G
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Figure 2: Tridimensional Spherical Coordinates.(Source:Internet)

11 Appendix E:Tridimensional Spherical Coordinates

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs ∗ (dx) where vs is the constant speed of
the warp bubble and ∗(dx) is the Hodge Star taken over the x-axis of motion in Polar Coordinates(See
pg 4 in [1].(See also Appendix D).

∂

∂x
∼ dx = d(r cos θ) = cos θdr − r sin θdθ ∼ ∼ r2 sin θ cos θdθ ∧ dϕ + r sin2 θdr ∧ dϕ = d

(
1
2
r2 sin2 θdϕ

)
.

(169)
Note that in this case the Hodge Star must be taken no longer over d(r cos θ) but instead over

d(ρ sinφ cos θ) and this demands more calculations that will appear in a future work.
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Figure 3: Tridimensional Cylindrical Coordinates.(Source:Internet)

12 Appendix F:Tridimensional Cylindrical Coordinates

We defined a warp drive vector nX = vs ∗ (dx) where vs is the constant speed of the warp bubble and
∗(dx) is the Hodge Star taken over the x-axis of motion in Cylindrical Coordinates(See Appendices I
and J for the detailed calculations).

∂

∂x
∼ dx = d(r cos θ) = cos θdr − r sin θdθ ∼ cos θr(dθ ∧ dz)− sin θ(dz ∧ dr) = d (r sin θdz) (170)

∂

∂x
∼ dx = d(r cos θ) = cos θdr − sin θrdθ ∼ cos θr(dθ ∧ dz)− sin θ(dz ∧ dr) = d (r sin θdz) (171)

nX = vs(t)f(r) cos θer − vs(t) sin θ[f(r) + rf ′(r)]eθ (172)

nX = Xrer + Xθeθ (173)

Xrs = vsf cos θ (174)

Xθ = −vs(f + rf ′) sin θ (175)
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Considering a valid f as a Natario shape function being f = 1 for large r(outside the warp bubble)
and f = 0 for small r(inside the warp bubble) while being 0 < f < 1 in the walls of the warp bubble also
known as the warped region:

We must demonstrate that the cylindrical warp drive vector given above satisfies the Natario require-
ments for a warp bubble defined by:

any vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])

Inside the bubble f = 0 and the cylindrical warp drive vector components are zero too.Outside the bubble
f = 1,Xrs = vs cos θ and Xθ = −vs sin θ because f is constant.In motion over the x-axis only in the
equatorial plane Xrs = vs because cos θ = 1

Due to a constant speed vs the term x ∗ d(vs) = 0.Now we must examine what happens when the
velocity is variable and then the term x ∗ d(vs) no longer vanishes.Remember that a real warp drive must
accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression of
the Hodge star that generates the cylindrical warp drive vector nX for a variable velocity vs is now given
by(see Appendix K for detailed calculations):

nX = ∗(vsx) = vs ∗ (dx) + x ∗ (dvs) (176)

The term ∗(dx) is again taken in Cylindrical Coordinates

nX = Xtet + Xrer + Xθeθ (177)

nX = f(r)rcosθaet + [f(r)2 + rf ′(r)]atcosθer − f(r)at[f(r) + rf ′(r)] sin θeθ (178)

Xt = f(r)rcosθa (179)

Xr = [f(r)2 + rf ′(r)]atcosθ (180)

Xθ = −f(r)at[f(r) + rf ′(r)] sin θ (181)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = fat (182)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Inside the bubble f = 0
resulting in a vs = 0 and outside the bubble f = 1 resulting in a vs = at as expected from a variable velocity
vs in time t due to a constant acceleration a.Since inside and outside the bubble f always possesses the
same values of 0 or 1 then the derivative f ′ of the shape function f is zero and the shift vector Xrs = [f2]at
with Xrs = 0 inside the bubble and Xrs = [f2]at = vs outside the bubble and this illustrates the Natario
definition for a warp drive spacetime.See Appendix G
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Figure 4: Artistic Presentation of a Warp Bubble.(Source:Internet)

13 Appendix G:Artistic Presentation of a Warp Bubble

In 2001 the Natario warp drive appeared.([1]).This warp drive deals with the spacetime as a ”strain” tensor
of Fluid Mechanics(pg 5 in [1]). Imagine a fish inside an aquarium and the aquarium is floating in the
surface of a river but carried out by the river stream.The warp bubble in this case is the aquarium.An
observer at the rest in the margin of the river would see the aquarium passing by him at a large speed but
inside the aquarium the fish is at the rest with respect to his local neighborhoods.Since the fish is at the
rest inside the aquarium the fish would see the observer in the margin passing by him with a large relative
speed since for the fish is the margin that moves with a large relative velocity

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])

Lets explain better this statement:Natario considered in this case a coordinates reference frame placed
inside the bubble where the fish inside the aquarium or the astronaut in a spaceship inside the bubble
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depicted above are at the rest with respect to their local neighborhoods.Then any Natario vector must be
zero inside the bubble or the aquarium or the spaceship.

On the other hand since the fish sees the margin passing by him with a large relative velocity or the
astronaut would see a stationary observer in outer space outside the bubble passing by him with a large
relative velocity then any Natario vector outside the bubble must have a value equal to the relative velocity
seen by both the fish and the astronaut.

Considering a valid f as a Natario shape function being f = 1
2 for large r(outside the warp bubble)

and f = 0 for small r(inside the warp bubble) while being 0 < f < 1
2 in the walls of the warp bubble

also known as the Natario warped region(pg 5 in [1]):The walls of the bubble the Natario warped region
corresponds to the distorted region in the picture depicted in this Appendix.

The cylindrical warp drive vector is an identical case:the only difference is the value of the shape function
outside the bubble which is 1.

See also Appendix H.

28



Figure 5: Another Artistic Presentation of a Warp Bubble.(Source:Internet)

14 Appendix H:Another Artistic Presentation of a Warp Bubble

Natario considered a coordinates reference frame placed inside the bubble.Now we must consider a coordi-
nates reference frame placed outside the bubble:In this case the observer at the rest in the margin of the
river would see the aquarium passing by him with a large velocity with the fish inside.Also a stationary
observer at the rest in outer space would see the spaceship depicted in the picture above passing by him
with a large velocity with the astronaut inside.

Now the rules originally defined by Natario are interchanged:

Since the observer in the margin and the observer in outer space are at the rest any Natario vector in
this case must be zero outside the bubble.

But since the fish and the spaceship are being seen by the observer at the rest in the margin and the
observer at the rest in outer space both fish and spaceship with a large velocity then the Natario vector
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inside the bubble must have a value equal to the velocity seen by both observers.

Considering a valid f as a Natario shape function being f = 0 for large r(outside the warp bubble)
and f = 1

2 for small r(inside the warp bubble) while being 0 < f < 1
2 in the walls of the warp bubble also

known as the Natario warped region:The walls of the bubble the Natario warped region corresponds to the
distorted region the ”blue circle” in the picture depicted in this Appendix.

The cylindrical warp drive vector is an identical case:the only difference is the value of the shape function
inside the bubble which is 1.
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15 Appendix I:differential forms,Hodge star and the mathematical demon-
stration of the cylindrical warp drive vectors nX = −vsdx and nX =
vsdx for a constant speed vs in a R3 space basis

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods used to obtain the final expression of the cylindrical warp drive vectors.

The Canonical Basis of the Hodge Star in cylindrical coordinates can be defined as follows(see eq 3.72
pg 69(a)(b) in [2]):

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ dz ∼ r(dθ ∧ dz) (183)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (dz) ∧ dr ∼ (dz ∧ dr) (184)

ez ≡
∂

∂z
∼ (dz) ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (185)

From above we get the following results

dr ∼ r(dθ ∧ dz) (186)

rdθ ∼ (dz ∧ dr) (187)

dz ∼ r(dr ∧ dθ) (188)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
cylindrical coordinates as given by(see eq 3.72 pg 69(a)(b) in [2]):

∗dr = r(dθ ∧ dz) (189)

∗rdθ = (dz ∧ dr) (190)

∗dz = r(dr ∧ dθ) (191)

Applying the Hodge Star to the x-axis as the motion axis we get:

∂

∂x
∼ dx = d(r cos θ) = cos θdr − r sin θdθ ∼ cos θr(dθ ∧ dz)− sin θ(dz ∧ dr) = d (r sin θdz) (192)

∂

∂x
∼ dx = d(r cos θ) = cos θdr − sin θrdθ ∼ cos θr(dθ ∧ dz)− sin θ(dz ∧ dr) = d (r sin θdz) (193)
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Look that

dx = d(r cos θ) = cos θdr − r sin θdθ (194)

Or

dx = d(r cos θ) = cos θdr − sin θrdθ (195)

Applying the Hodge Star operator * to the above expression:

∗dx = ∗d(r cos θ) = cos θ(∗dr)− sin θ(∗rdθ) (196)

∗dx = ∗d(r cos θ) = cos θr(dθ ∧ dz)− sin θ(dz ∧ dr) (197)

∗dx = ∗d(r cos θ) = cos θer − sin θeθ (198)

Now examining the expression:

d (r sin θdz) (199)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d (r sin θdz) (200)

∗d (r sin θdz) ∼ r ∗ d[(sin θ)dz] + sin θ ∗ d[rdz] + r sin θ ∗ d[(dz)] (201)

According to eq 3.90 pg 74(a)(b) in [2] the term r sin θ ∗ d[(dz)] = 0

This leaves us with:

∗d (r sin θdz) ∼ r ∗ d[(sin θ)dz] + sin θ ∗ d[rdz] ∼ cos θr(dθ ∧ dz)− sin θ(dz ∧ dr) (202)

Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

∗d(α + β) = dα + dβ (203)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (204)

∗d(dx) = d(dy) = d(dz) = 0 (205)

From above we can see for example that

∗d[(sin θ)dz] = d(sin θ) ∧ dz + sin θ ∧ ddz = cos θ(dθ ∧ dz) (206)

∗d[rdz] = dr ∧ dz + r ∧ ddz = (dr ∧ dz) = −(dz ∧ dr) (207)
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We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2])):

dz ∧ dr = −dr ∧ dz (208)

And then we have:

∗d (r sin θdz) ∼ r ∗ d[(sin θ)dz] + sin θ ∗ d[rdz] (209)

With:

∗d[(sin θ)dz] = d(sin θ) ∧ dz + sin θ ∧ ddz = cos θ(dθ ∧ dz) (210)

∗d[rdz] = dr ∧ dz + r ∧ ddz = (dr ∧ dz) = −(dz ∧ dr) (211)

∗d (r sin θdz) ∼ r ∗ d[(sin θ)dz] + sin θ ∗ d[rdz] ∼ rcosθ(dθ ∧ dz) + sin θ(dr ∧ dz) (212)

∗d (r sin θdz) ∼ r ∗ d[(sin θ)dz] + sin θ ∗ d[rdz] ∼ cosθr(dθ ∧ dz)− sin θ(dz ∧ dr) (213)

∗d (r sin θdz) ∼ r ∗ d[(sin θ)dz] + sin θ ∗ d[rdz] ∼ cosθer − sin θeθ (214)

Now we will examine the following expression:

∗d[f(r)r sin θdz] (215)

From above we can obtain the next expressions

f(r)r ∗ d[(sin θ)dz] + f(r) sin θ ∗ d[rdz] + f(r)r sin θ ∗ d(dz) + r sin θ ∗ d[f(r)dz] (216)

f(r)r ∗ d[(sin θ)dz] + f(r) sin θ ∗ d[rdz] + r sin θ ∗ d[f(r)dz] (217)

∗d[f(r)dz] = df(r) ∧ dz + f(r) ∧ ddz = f ′(r)(dr ∧ dz) = −f ′(r)(dz ∧ dr) (218)

f(r)r cos θ(dθ ∧ dz) + f(r) sin θ(−(dz ∧ dr)) + r sin θ(−f ′(r)(dz ∧ dr)) (219)

f(r)r cos θ(dθ ∧ dz)− f(r) sin θ(dz ∧ dr)− r sin θf ′(r)(dz ∧ dr) (220)

f(r)r cos θ(dθ ∧ dz)− f(r) sin θ(dz ∧ dr)− sin θrf ′(r)(dz ∧ dr) (221)

f(r)r cos θ(dθ ∧ dz)− sin θ[f(r) + rf ′(r)](dz ∧ dr) (222)

f(r) cos θr(dθ ∧ dz)− sin θ[f(r) + rf ′(r)](dz ∧ dr) (223)

∗d[f(r)r sin θdz] ∼ f(r) cos θr(dθ ∧ dz)− sin θ[f(r) + rf ′(r)](dz ∧ dr) (224)
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∗d[f(r)r sin θdz] ∼ f(r) cos θr(dθ ∧ dz)− sin θ[f(r) + rf ′(r)](dz ∧ dr) (225)

Comparing the above expression with the Canonical Basis of the Hodge Star in cylindrical coordinates:

er ≡
∂

∂r
∼ dr ∼ (rdθ) ∧ dz ∼ r(dθ ∧ dz) (226)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ (dz) ∧ dr ∼ (dz ∧ dr) (227)

ez ≡
∂

∂z
∼ (dz) ∼ dr ∧ (rdθ) ∼ r(dr ∧ dθ) (228)

We can obtain the following result:

∗d[f(r)r sin θdz] ∼ f(r) cos θr(dθ ∧ dz)− sin θ[f(r) + rf ′(r)](dz ∧ dr) (229)

∗d[f(r)r sin θdz] ∼ f(r) cos θer − sin θ[f(r) + rf ′(r)]eθ (230)

Defining the cylindrical warp drive vectors with the Hodge Star operator * explicitly written :

nX = vs(t) ∗ d[f(r)r sin θdz] (231)

nX = −vs(t) ∗ d[f(r)r sin θdz] (232)

We can get finally the latest expressions for the cylindrical warp drive vectors nX

nX = vs(t)f(r) cos θer − vs(t) sin θ[f(r) + rf ′(r)]eθ (233)

nX = −vs(t)f(r) cos θer + vs(t) sin θ[f(r) + rf ′(r)]eθ (234)
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16 Appendix J:differential forms,Hodge star and the mathematical demon-
stration of the cylindrical warp drive vectors nX = −vsdx and nX =
vsdx for a constant speed vs or for the first term vsdx from the cylin-
drical warp drive vector nX = vsdx + xdvs(a variable speed) in a R4

space basis

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods used to arrive at the final expression of the cylindrical warp drive vector nX

The Canonical Basis of the Hodge Star in cylindrical coordinates can be defined as follows(see eq 3.74
pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and pg 92 in [3]):

er ≡
∂

∂r
∼ dr ∼ dt ∧ (rdθ) ∧ dz ∼ r(dt ∧ dθ ∧ dz) (235)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ dt ∧ (dz) ∧ dr ∼ (dt ∧ dz ∧ dr) (236)

ez ≡
∂

∂z
∼ (dz) ∼ dt ∧ dr ∧ (rdθ) ∼ r(dt ∧ dr ∧ dθ) (237)

From above we get the following results

dr ∼ r(dt ∧ dθ ∧ dz) (238)

rdθ ∼ (dt ∧ dz ∧ dr) (239)

dz ∼ r(dt ∧ dr ∧ dθ) (240)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
cylindrical coordinates as given by(see eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and pg 92 in
[3]):

∗dr = r(dt ∧ dθ ∧ dz) (241)

∗rdθ = (dt ∧ dz ∧ dr) (242)

∗dz = r(dt ∧ dr ∧ dθ) (243)

Applying the Hodge Star to the x-axis as the motion axis we get:

∂

∂x
∼ dx = d(r cos θ) = cos θdr− r sin θdθ ∼ cos θr(dt∧ dθ ∧ dz)− sin θ(dt∧ dz ∧ dr) = d (r sin θdz) (244)

∂

∂x
∼ dx = d(r cos θ) = cos θdr− sin θrdθ ∼ cos θr(dt ∧ dθ ∧ dz)− sin θ(dt ∧ dz ∧ dr) = d (r sin θdz) (245)
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Look that

dx = d(r cos θ) = cos θdr − r sin θdθ (246)

Or

dx = d(r cos θ) = cos θdr − sin θrdθ (247)

Applying the Hodge Star operator * to the above expression:

∗dx = ∗d(r cos θ) = cos θ(∗dr)− sin θ(∗rdθ) (248)

∗dx = ∗d(r cos θ) = cos θr(dt ∧ dθ ∧ dz)− sin θ(dt ∧ dz ∧ dr) (249)

∗dx = ∗d(r cos θ) = cos θer − sin θeθ (250)

Now examining the expression:

d (r sin θdz) (251)

We must also apply the Hodge Star operator to the expression above

And then we have:

∗d (r sin θdz) (252)

∗d (r sin θdz) ∼ r ∗ d[(sin θ)dz] + sin θ ∗ d[rdz] + r sin θ ∗ d[(dz)] (253)

According to eq 3.90 pg 74(a)(b) in [2] the term r sin θ ∗ d[(dz)] = 0

This leaves us with:

∗d (r sin θdz) ∼ r ∗ d[(sin θ)dz] + sin θ ∗ d[rdz] ∼ cos θr(dt ∧ dθ ∧ dz)− sin θ(dt ∧ dz ∧ dr) (254)

Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

∗d(α + β) = dα + dβ (255)

∗d(fα) = df ∧ α + (−1)pf ∧ dα 99K p = 2 99K ∗d(fα) = df ∧ α + f ∧ dα (256)

∗d(dx) = d(dy) = d(dz) = 0 (257)

From above we can see for example that

∗d[(sin θ)dz] = dt ∧ d(sin θ) ∧ dz + dt ∧ sin θ ∧ ddz = cos θ(dt ∧ dθ ∧ dz) (258)
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∗d[rdz] = dt ∧ dr ∧ dz + dt ∧ r ∧ ddz = (dr ∧ dz) = −(dz ∧ dr) (259)

We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2])):

dz ∧ dr = −dr ∧ dz (260)

And then we have:

∗d (r sin θdz) ∼ r ∗ d[(sin θ)dz] + sin θ ∗ d[rdz] (261)

With:

∗d[(sin θ)dz] = dt ∧ d(sin θ) ∧ dz + dt ∧ sin θ ∧ ddz = cos θ(dt ∧ dθ ∧ dz) (262)

∗d[rdz] = dt ∧ dr ∧ dz + dt ∧ r ∧ ddz = (dt ∧ dr ∧ dz) = −(dt ∧ dz ∧ dr) (263)

∗d (r sin θdz) ∼ r ∗ d[(sin θ)dz] + sin θ ∗ d[rdz] ∼ rcosθ(dt ∧ dθ ∧ dz) + sin θ(dt ∧ dr ∧ dz) (264)

∗d (r sin θdz) ∼ r ∗ d[(sin θ)dz] + sin θ ∗ d[rdz] ∼ cosθr(dt ∧ dθ ∧ dz)− sin θ(dt ∧ dz ∧ dr) (265)

∗d (r sin θdz) ∼ r ∗ d[(sin θ)dz] + sin θ ∗ d[rdz] ∼ cosθer − sin θeθ (266)

Now we will examine the following expression:

∗d[f(r)r sin θdz] (267)

From above we can obtain the next expressions

f(r)r ∗ d[(sin θ)dz] + f(r) sin θ ∗ d[rdz] + f(r)r sin θ ∗ d(dz) + r sin θ ∗ d[f(r)dz] (268)

f(r)r ∗ d[(sin θ)dz] + f(r) sin θ ∗ d[rdz] + r sin θ ∗ d[f(r)dz] (269)

∗d[f(r)dz] = dt ∧ df(r) ∧ dz + dt ∧ f(r) ∧ ddz = f ′(r)(dt ∧ dr ∧ dz) = −f ′(r)(dt ∧ dz ∧ dr) (270)

f(r)r cos θ(dt ∧ dθ ∧ dz) + f(r) sin θ(−(dt ∧ dz ∧ dr)) + r sin θ(−f ′(r)(dt ∧ dz ∧ dr)) (271)

f(r)r cos θ(dt ∧ dθ ∧ dz)− f(r) sin θ(dt ∧ dz ∧ dr)− r sin θf ′(r)(dt ∧ dz ∧ dr) (272)

f(r)r cos θ(dt ∧ dθ ∧ dz)− f(r) sin θ(dt ∧ dz ∧ dr)− sin θrf ′(r)(dt ∧ dz ∧ dr) (273)
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f(r)r cos θ(dt ∧ dθ ∧ dz)− sin θ[f(r) + rf ′(r)](dt ∧ dz ∧ dr) (274)

f(r) cos θr(dt ∧ dθ ∧ dz)− sin θ[f(r) + rf ′(r)](dt ∧ dz ∧ dr) (275)

∗d[f(r)r sin θdz] ∼ f(r) cos θr(dt ∧ dθ ∧ dz)− sin θ[f(r) + rf ′(r)](dt ∧ dz ∧ dr) (276)

∗d[f(r)r sin θdz] ∼ f(r) cos θr(dt ∧ dθ ∧ dz)− sin θ[f(r) + rf ′(r)](dt ∧ dz ∧ dr) (277)

Comparing the above expression with the Canonical Basis of the Hodge Star in cylindrical coordinates:

er ≡
∂

∂r
∼ dr ∼ dt ∧ (rdθ) ∧ dz ∼ r(dt ∧ dθ ∧ dz) (278)

eθ ≡
1
r

∂

∂θ
∼ rdθ ∼ dt ∧ (dz) ∧ dr ∼ (dt ∧ dz ∧ dr) (279)

ez ≡
∂

∂z
∼ (dz) ∼ dt ∧ dr ∧ (rdθ) ∼ r(dt ∧ dr ∧ dθ) (280)

We can obtain the following result:

∗d[f(r)r sin θdz] ∼ f(r) cos θr(dt ∧ dθ ∧ dz)− sin θ[f(r) + rf ′(r)](dt ∧ dz ∧ dr) (281)

∗d[f(r)r sin θdz] ∼ f(r) cos θer − sin θ[f(r) + rf ′(r)]eθ (282)

Defining the cylindrical warp drive vectors with the Hodge Star operator * explicitly written :

nX = vs(t) ∗ d[f(r)r sin θdz] (283)

nX = −vs(t) ∗ d[f(r)r sin θdz] (284)

We can get finally the latest expressions for the cylindrical warp drive vectors nX

nX = vs(t)f(r) cos θer − vs(t) sin θ[f(r) + rf ′(r)]eθ (285)

nX = −vs(t)f(r) cos θer + vs(t) sin θ[f(r) + rf ′(r)]eθ (286)
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17 Appendix K:differential forms,Hodge star and the mathematical
demonstration of the cylindrical warp drive vector nX = ∗(vsx) for
a variable speed vs and a constant acceleration a

any vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of r defined
by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a large value of r defined
by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg 4 in [1])

In the Appendices I and J we gave the mathematical demonstration of the cylindrical warp drive vec-
tor nX in the R3 and R4 space basis when the velocity vs is constant.Hence the complete expression of
the Hodge star that generates the cylindrical warp drive vector nX for a constant velocity vs is given by:

nX = ∗(vsx) = vs ∗ (dx) (287)

∗dx = ∗d(rcosθ) = ∗d (r sin θdz) = ∗d[f(r)r sin θdz] (288)

The equation of the cylindrical warp drive vector nX is given by:

nX = Xrer + Xθeθ (289)

nX = Xrdr + Xθrdθ (290)

nX = vs(t)f(r) cos θer − vs(t) sin θ[f(r) + rf ′(r)]eθ (291)

nX = −vs(t)f(r) cos θer + vs(t) sin θ[f(r) + rf ′(r)]eθ (292)

With the contravariant shift vector components explicitly given by:

Xr = vsf(r) cos θ (293)

Xθ = −vs(f(r) + (r)f ′(r)) sin θ (294)

Because due to a constant speed vs the term x ∗ d(vs) = 0.Now we must examine what happens when
the velocity is variable and then the term x ∗ d(vs) no longer vanishes.Remember that a real warp drive
must accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression
of the Hodge star that generates the Natario vector nX for a variable velocity vs is now given by:

nX = ∗(vsx) = vs ∗ (dx) + x ∗ (dvs) (295)
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In order to study the term x ∗ d(vs) we must introduce a new Canonical Basis for the coordinate time
in the R4 space basis defined as follows:(see eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and pg
92 in [3]):

et ≡
∂

∂t
∼ dt ∼ dr ∧ (rdθ) ∧ (dz) ∼ r(dr ∧ dθ ∧ dz) (296)

dt ∼ r(dr ∧ dθ ∧ dz) (297)

The Hodge star operator defined for the coordinate time is given by:(see eq 3.74 pg 69(a)(b) in [2]):

∗dt = r(dr ∧ dθ ∧ dz) (298)

The valid expression for a variable velocity vs(t) in the cylindrical warp drive spacetime due to a
constant acceleration a must be given by:

vs = f(r)at (299)

Because and considering a valid f(r) as a shape function being f(r) = 1 for large r(outside the warp
bubble where X = vs(t) and nX = vs(t) ∗ dx + x ∗ d(vs(t))) and f(r) = 0 for small r(inside the warp
bubble where X = 0 and nX = 0) while being 0 < f(r) < 1 in the walls of the warp bubble also known as
the warped region and considering also that the cylindrical warp drive is a ship-frame based coordinates
system(a reference frame placed in the center of the warp bubble where the ship resides-or must reside!!)
then an observer in the ship inside the bubble sees every point inside the bubble at the rest with respect
to him because inside the bubble vs(t) = 0 because f(r) = 0.

To illustrate the statement pointed above imagine a fish inside an aquarium and the aquarium is floating
in the surface of a river but carried out by the river stream.The stream varies its velocity with time.The
warp bubble in this case is the aquarium and the walls of the aquarium are the walls of the warp bubble-
warped region.An observer in the margin of the river would see the aquarium passing by him at a large
speed considering a coordinates system(a reference frame) placed in the margin of the river but inside the
aquarium the fish is at the rest with respect to his local neighborhoods.Then for the fish any point inside
the aquarium is at the rest with respect to him because inside the aquarium vs = f(r)at with f(r) = 0
and consequently giving a vs(t) = 0.Again with respect to the fish the fish ”sees” the margin passing by
him with a large relative velocity.The margin in this case is the region outside the bubble ”seen” by the
fish with a variable velocity vs(t) = v1 in the time t1 and vs(t) = v2 in the time t2 because outside the
bubble the generic expression for a variable velocity vs is given by vs = f(r)at and outside the bubble
f(r) = 1 giving a generic expression for a variable velocity vs as vs(t) = at and consequently a v1 = at1
in the time t1 and a v2 = at2 in the time t2.Then the variable velocity in not only a function of time
alone but must consider also the position of the bubble where the measure is being taken wether inside or
outside the bubble.So the velocity must also be a function of r.Its total differential is then given by:

dvs = [atf ′(r)dr + f(r)tda + f(r)adt] (300)
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Applying the Hodge star to the total differential dvs we get:

∗dvs = [atf ′(r) ∗ dr + f(r)t ∗ da + f(r)a ∗ dt] (301)

But we consider here the acceleration a a constant.Then the term f(r)tda = 0 and in consequence
f(r)t ∗ da = 0.This leaves us with:

∗dvs = [atf ′(r) ∗ dr + f(r)a ∗ dt] (302)

∗dvs = [atf ′(r) ∗ dr + f(r)a ∗ dt] = [atf ′(r)r(dt ∧ dθ ∧ dz) + f(r)ar(dr ∧ dθ ∧ dz)] (303)

∗dvs = [atf ′(r) ∗ dr + f(r)a ∗ dt] = [atf ′(r)er + f(r)aet] (304)

The complete expression of the Hodge star that generates the cylindrical warp drive vector nX for a
variable velocity vs is given by:

nX = ∗(vsx) = vs ∗ (dx) + x ∗ d(vs) (305)

The term ∗dx was obtained in the Appendices I and J as follows:

∗dx = f(r) cos θer − sin θ[f(r) + rf ′(r)]eθ (306)

The complete expression of the Hodge star that generates the cylindrical warp drive vector nX for a
variable velocity vs is now given by:

nX = ∗(vsx) = vs(f(r) cosθer − [f(r) + rf ′(r)] sin θeθ) + x([atf ′(r)er + f(r)aet]) (307)

But remember that x = rcosθ(see Appendix F ) and this leaves us with:

nX = ∗(vsx) = vs(f(r) cosθer − [f(r) + rf ′(r)] sin θeθ) + rcosθ([atf ′(r)er + f(r)aet]) (308)

But we know that vs = f(r)at.Hence we get:

nX = ∗(vsx) = f(r)at(f(r) cosθer − [f(r) + rf ′(r)] sin θeθ) + rcosθ([atf ′(r)er + f(r)aet]) (309)

Then we can start with a warp bubble initially at the rest using the cylindrical warp drive vector shown
above and accelerate the bubble to a desired speed of 200 times faster than light.When we achieve the
desired speed we turn off the acceleration and keep the speed constant.The terms due to the acceleration
now disappears and we are left again with the cylindrical warp drive vector for constant speeds shown
below:

nX = vs(t)f(r) cosθer − vs(t)[f(r) + rf ′(r)] sin θeθ (310)
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Working some algebra with the cylindrical warp drive vector for variable velocities we get:

nX = ∗(vsx) = f(r)at(f(r) cosθer − [f(r) + rf ′(r)] sin θeθ) + rcosθ([atf ′(r)er + f(r)aet]) (311)

nX = f(r)2at cosθer − f(r)at[f(r) + rf ′(r)] sin θeθ + atf ′(r)rcosθer + f(r)rcosθaet (312)

nX = f(r)rcosθaet + f(r)2at cosθer + atf ′(r)rcosθer − f(r)at[f(r) + rf ′(r)] sin θeθ (313)

nX = f(r)rcosθaet + [f(r)2 + rf ′(r)]atcosθer − f(r)at[2f(r) + rf ′(r)] sin θeθ (314)

Then the cylindrical warp drive vector for variable velocities defined using contravariant shift vector
components is given by the following expressions:

nX = Xtet + Xrer + Xθeθ (315)

nX = Xtdt + Xrdr + Xθrdθ (316)

Or being:

nX = f(r)rcosθaet + [f(r)2 + rf ′(r)]atcosθer − f(r)at[f(r) + rf ′(r)] sin θeθ (317)

nX = f(r)rcosθadt + [f(r)2 + rf ′(r)]atcosθdr − f(r)at[f(r) + rf ′(r)]r sin θdθ (318)

The contravariant shift vector components are respectively given by the following expressions:

Xt = f(r)rcosθa (319)

Xr = [f(r)2 + rf ′(r)]atcosθ (320)

Xθ = −f(r)at[f(r) + rf ′(r)] sin θ (321)
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