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Abstract

The Natario warp drive appeared for the first time in 2001.([1])Natario defined a warp drive vector
nX = vs x (dx) where vs is the constant speed of the warp bubble and #(dz) is the Hodge Star taken
over the x-axis of motion in Polar Coordinates.We compute the Natario warp drive vector for variable
velocities. Also we introduced a new warp drive vector nX = vs*(dz) where vs is the constant speed of the
warp bubble and *(dx) is the Hodge Star taken over the x-axis of motion in Cylindrical Coordinates.We
also compute the cylindrical warp drive vector for variable velocities.
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1 Introduction:

The Natario warp drive appeared for the first time in 2001.([1])

Natario (See pg 5 in [1]) defined a warp drive vector nX = wvs * (dx) where vs is the constant speed
of the warp bubble and *(dx) is the Hodge Star taken over the x-axis of motion in Polar Coordinates(See
pg 4 in [1].(See also Appendices A and B for the detailed calculations)(see Appendix D about Polar
Coordinates).The final form of the original Natario warp drive vector is given by:

nX = 2v,f cosfe, — vs(2f + rf') sin Oey (1)

The Hodge Star actually must be taken over the product (xvs) giving the expression nX = x(xvs) =
vs * (dx) + x % (dvs) but due to a constant speed vs the term z * d(vs) = 0.Now we must examine what
happens when the velocity is variable and then the term x *d(vs) no longer vanishes.Remember that a real
warp drive must accelerate or de-accelerate in order to be accepted as a physical valid model. The complete
expression of the Hodge star that generates the Natario vector nX for a variable velocity vs is now given
by(see Appendix C' for detailed calculations)(The term #(dx) is again taken in Polar Coordinates):

nX = 2f(r)rcosbae; + 2[2f(r)? + rf'(r)]atcosbe, — 2f(r)at[2f(r) + rf'(r)] sin feg (2)

We defined a new warp drive vector nX = vs * (dx) where vs is the constant speed of the warp bubble
and x(dz) is the Hodge Star taken over the x-axis of motion in Cylindrical Coordinates(See Appendices I
and J for the detailed calculations)(see Appendix F' about Cylindrical Coordinates).Our warp drive vector
is given by:

nX = vs(t)f(r) cosbe, —vs(t)sinO[f(r) +rf'(r)]ey (3)

Due to constant speed vs the term z * d(vs) = 0 but the Hodge Star must be taken over the product
(xvs) giving the expression n.X = x(zvs) = vs* (dz) + x * (dvs).Now we must examine what happens when
the velocity is variable and then the term x * d(vs) no longer vanishes.Remember that a real warp drive
must accelerate or de-accelerate in order to be accepted as a physical valid model. The complete expression
of the Hodge star that generates the cylindrical warp drive vector nX for a variable velocity vs is now given
by(see Appendix K for detailed calculations)(The term x(dz) is again taken in Cylindrical Coordinates):

nX = f(r)rcosbaes + [f(r)% + rf'(r)]atcosbe, — f(r)at[f(r) + rf'(r)] sinfeq (4)

Natario used Polar Coordinates(See pg 4 in [1]) but for a real 3D Spherical Coordinates another warp
drive vector must be calculated.This will appear in a future work.(see Appendix F for 3D Spherical Coor-
dinates)

In order to fully understand the idea presented in this work(a new cylindrical warp drive vector) ac-
quaintance with the Natario original warp drive paper is required but we provide all the mathematical
demonstration QED(Quod Erad Demonstratum) in the Appendices.



2 The equation of the Natario warp drive vector with a constant speed
Us

The equation of the Natario vector nX (pg 2 and 5 in [1]) is given by:

nX = X"drs + X%rsdf (5)

With the contravariant shift vector components X" and X given by:(see pg 5 in [1])(see also Appendix
A for details )

X" = 2ugn(rs) cos (6)

X% = —v,(2n(rs) + (rs)n’(rs)) sin 6 (7)

Considering a valid n(rs) as a Natario shape function being n(rs) = % for large rs(outside the warp
bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 3 in the walls of the
warp bubble also known as the Natario warped region(pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dz with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1))

Natario in its warp drive uses the spherical coordinates rs and 6.In order to simplify our analysis we
consider motion in the z — axis or the equatorial plane rs where 6 = 0 sin(f) = 0 and cos(#) = 1.(see pgs
4,5 and 6 in [1]).

In a 1+ 1 spacetime the equatorial plane we get;:

nX = X"drs (8)

The contravariant shift vector component X" is then:

X" = 2ugn(rs) 9)

Remember that Natario(pg 4 in [1]) defines the z axis as the axis of motion.Inside the bubble n(rs) = 0
resulting in a X" = 0 and outside the bubble n(rs) = % resulting in a X" = vs and this illustrates the

Natario definition for a warp drive spacetime.See Appendix D



3 The equation of the Natario warp drive vector with a variable speed
vs due to a constant acceleration a

The equation of the Natario vector nX is given by:

nX = Xtdt + X"*drs + X%rsd (10)

The contravariant shift vector components X*, X" and X? of the Natario vector are defined by(see
Appendices B and C):

X' = 2n(rs)rscosfa (11)
X" = 2[2n(rs)* + rsn’(rs)]atcosd (12)
X% = —2n(rs)at[2n(rs) 4+ rsn’(rs)]sin 0 (13)

Considering a valid n(rs) as a Natario shape function being n(rs) = % for large rs(outside the warp
bubble) and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 3 in the walls of the
warp bubble also known as the Natario warped region(pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of
rs defined by Natario as the interior of the warp bubble and nX = vs(t) x dz + z * dvs with X = vs for a
large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(pg 4 in [1])

Natario in its warp drive uses the spherical coordinates rs and 6.In order to simplify our analysis we
consider motion in the = — axis or the equatorial plane rs where 6 = 0 sin(f) = 0 and cos(#) = 1.(see pgs

4,5 and 6 in [1]).

In a 1 + 1 spacetime the equatorial plane we get;:

nX = X'dt + X"*drs (14)
X! = 2n(rs)rsa (15)
X" = 2[2n(rs)? + rsn'(rs)]at (16)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = 2n(rs)at (17)

Remember that Natario(pg 4 in [1]) defines the z axis as the axis of motion.Inside the bubble n(rs) =0

resulting in a vs = 0 and outside the bubble n(rs) = % resulting in a vs = at as expected from a variable



velocity vs in time ¢ due to a constant acceleration a.Since inside and outside the bubble n(rs) always
possesses the same values of 0 or % then the derivative n’(rs) of the Natario shape function n(rs) is zero and
the shift vector X" = 2[2n(rs)?at with X"® = 0 inside the bubble and X" = 2[2n(rs)*at = 2[21]at =
at = wvs outside the bubble and this illustrates the Natario definition for a warp drive spacetime.See
Appendix D



4 The equation of the cylindrical warp drive vector with a constant
speed vs

The equation of the cylindrical warp drive vector nX is given by:

nX = X"drs + X’rsdf (18)

With the contravariant shift vector components X" and X? given by:(see Appendix I for details )

X" =wgn(rs)cosb (19)

X% = —vy(n(rs) + (rs)n’(rs)) sin @ (20)

Considering a valid n(rs) as a shape function being n(rs) = 1 for large rs(outside the warp bubble)
and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1 in the walls of the warp
bubble the warped region:

We must demonstrate that the cylindrical warp drive vector given above satisfies the Natario require-
ments for a warp bubble defined by:

any cylindrical vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small
value of s defined by Natario as the interior of the warp bubble and nX = vs(t)dz with X = vs for a
large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the
warp bubble.(pg 4 in [1])

In order to simplify our analysis we consider motion in the z — axis or the equatorial plane rs where

0 =0 sin(f) = 0 and cos(f) = 1.
In a 1+ 1 spacetime the equatorial plane we get;:

nX = X"drs (21)

The contravariant shift vector component X"* is then:

X" = wvgn(rs) (22)

Remember that Natario(pg 4 in [1]) defines the z axis as the axis of motion.Inside the bubble n(rs) = 0
resulting in a X" = 0 and outside the bubble n(rs) = 1 resulting in a X" = vs and this illustrates the
Natario definition for a warp drive spacetime.See Appendix F



5 The equation of the cylindrical warp drive vector with a variable
speed vs due to a constant acceleration a

The equation of the cylindrical warp drive vector nX is given by:

nX = Xtdt + X"*drs + X%rsd (23)

The contravariant shift vector components X*, X" and X of the cylindrical warp drive vector are
defined by(see Appendices J and K):

X' = n(rs)rscosba (24)
X"$ = [n(rs)® + rsn/(rs)]atcosd (25)
X% = —n(rs)at[n(rs) + rsn’(rs)] sin @ (26)

Considering a valid n(rs) as a shape function being n(rs) = 1 for large rs(outside the warp bubble)
and n(rs) = 0 for small rs(inside the warp bubble) while being 0 < n(rs) < 1 in the walls of the warp
bubble also known as the warped region:

We must demonstrate that the cylindrical warp drive vector given above satisfies the Natario require-
ments for a warp bubble defined by:

any cylindrical vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small
value of rs defined by Natario as the interior of the warp bubble and nX = vs(t)*dx + x *dvs with X = vs
for a large value of rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of
the warp bubble.(pg 4 in [1])

Natario in its warp drive uses the spherical coordinates rs and 6.In order to simplify our analysis we
consider motion in the z — axis or the equatorial plane rs where § = 0 sin(6) = 0 and cos(¢) = 1.

In a 1+ 1 spacetime the equatorial plane we get,:

nX = X'dt + X"*drs (27)
X' = n(rs)rsa (28)
X" = [n(rs)? + rsn/(rs)]at (29)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = n(rs)at (30)

Remember that Natario(pg 4 in [1]) defines the z axis as the axis of motion.Inside the bubble n(rs) =0
resulting in a vs = 0 and outside the bubble n(rs) = 1 resulting in a vs = at as expected from a variable
velocity vs in time t due to a constant acceleration a.Since inside and outside the bubble n(rs) always



possesses the same values of 0 or 1 then the derivative n'(rs) of the shape function n(rs) is zero and the
shift vector X" = [n(rs)?]at with X"* = 0 inside the bubble and X"* = [n(rs)?]at = vs outside the bubble
and this illustrates the Natario definition for a warp drive spacetime.See Appendix F



6 Conclusion

In this work we introduced a new cylindrical warp drive vector using the Natario mathematical tech-
niques.We focused ourselves in the application of the Hodge Star in cylindrical coordinates for both con-
stant and variable speeds.

Our focus was concentrated in the Natario methods to obtain a warp drive vector.

The application of the cylindrical warp drive vector to the ADM equation in General Relativitby will
appear in a future work.

Natario used Polar Coordinates(See pg 4 in [1]) but for a real 3D Spherical Coordinates another warp
drive vector must be calculated.This will appear in a future work.(see Appendix F for 3D Spherical Coor-
dinates)



7 Appendix A:differential forms,Hodge star and the mathematical demon-
stration of the Natario vectors nX = —wsdr and nX = vsdx for a
constant speed vs in a R? space basis

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods Natario used to arrive at the final expression of the Natario Vector nX

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in
[1],eq 3.72 pg 69(a)(b) in [2]):

er = (i ~ dr ~ (rdf) A (rsinfdp) ~ r?sin 0(d6 A dy) (31)
10 . .
€= "55 "~ rdf ~ (rsinfdp) A dr ~ rsinf(de A dr) (32)
1 9 )
~ rsinfdp ~ dr A (rdf) ~ r(dr A df) (33)

= rsinﬁ%

From above we get the following results

dr ~ r%sin0(df A dyp) (34)
rdf ~ rsinf(de A dr) (35)
rsinfdy ~ r(dr A df) (36)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(see eq 3.72 pg 69(a)(b) in [2]):

sdr = 12 sin 0(df A dy) (37)
srdf = rsinf(de A dr) (38)
w1 sin Odp = r(dr A df) (39)

Back again to the Natario equivalence between spherical and cartezian coordinates(pg 5 in [1]):

1
aa ~ dx = d(r cos ) = cos Odr —rsin 0df ~ r? sin 6 cos 0df A dp +rsin? fdr Adp = d <2r2 sin? ed@> (40)
X

10



Look that

dx = d(r cos @) = cosOdr — rsin 6df (41)

dx = d(r cos @) = cos @dr — sin Ordf (42)
Applying the Hodge Star operator * to the above expression:

«dx = *d(r cos ) = cos O(xdr) — sin 0(xrdf) (43)
sdx = *d(r cos ) = cos O[r? sin O(df A dy)] — sin O[r sin O(dy A dr)] (44)
sdz = xd(r cosf) = [r?sinf cos 8(dO A dy)] — [rsin? 8(dp A dr)] (45)

We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2]):

dp Ndr = —dr N dp (46)

Then we have

xdx = *d(r cos 0) = [r?sinf cos (df A d)] + [rsin® (dr A dy)] (47)

And the above expression matches exactly the term obtained by Natario using the Hodge Star operator
applied to the equivalence between cartezian and spherical coordinates(pg 5 in [1]).

Now examining the expression:

1
d (27“2 sin? 0dg0> (48)
We must also apply the Hodge Star operator to the expression above

And then we have:
*d <;r2 sin? 6dg0> (49)
*d (;TQ sin? 0dg0> ~ %72 % d[(sin® 0)dyp] + %sin2 0 x [d(r?)dyp] + %72 sin? @  d[(dyp)] (50)
According to eq 3.90 pg 74(a)(b) in [2] the term $r?sin? 0 x d[(dyp)] = 0
This leaves us with:

1 1 1 1
57“2 % d[(sin? 0)dyp)] + 5 sin? @ « [d(r?)dy] ~ 57‘22 sin @ cos 6(dO A dy) + 3 sin? 02r (dr A dyp) (51)

11



1 1 1 1
57"2 % d[(sin? 0)dyp) + 3 sin? 0 « [d(r?)dy] ~ 57‘22 sin 6 cos 6(dO A dy) + 5 sin® 021 (dr A dyp) (52)

Because and according to egs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

*d(o+ B) = da+dp (53)
xd(fa)=df N\a+ (=1)PfANda--» p=2--+ xd(fa)=df Na+ f Nda (54)
xd(dx) = d(dy) = d(dz) =0 (55)

From above we can see for example that

sd[(sin” 0)dy] = d(sin? 0) A dp + sin” O A ddp = 2sinf cos 0(dO A dip) (56)

[d(r®)de] = 2rdr A dp + 12 A dde = 2r(dr A dp) (57)
And then we derived again the Natario result of pg 5 in [1]

2 sin 6 cos O(df A dy) + rsin® 0(dr A dy) (58)

Now we will examine the following expression equivalent to the one of Natario pg 5 in [1] except that
we replaced 3 by the function f(r) :

sd[f(r)r? sin? Ody] (59)

From above we can obtain the next expressions

f(r)r? « d[(sin® 0)dg] + f(r)sin’ 0 * [d(r?)de] + v sin? @ = d[ f (r)d) (60)
f(r)r*2sind cos 0(dO A dp) + f(r)sin? 02r(dr A dp) + 2 sin® 0 (r) (dr A dy) (61)
2f (r)r?sind cos 0(dO A dp) + 2f(r)rsin® O(dr A dp) + 2 sin® 0 (r) (dr A dy) (62)

12



2f(r)r?sinf cos 0(df A dp) + 2f (r)rsin? 0(dr A dp) + 2 sin? 0 f'(r) (dr A d)

Comparing the above expressions with the Natario definitions of pg 4 in [1]):

er = 5) ~ dr ~ (rdf) A (rsinfdp) ~ r?sin 0(dd A d)
T

ep = 71*(‘;90 ~ rdf ~ (rsinfdp) Adr ~ rsinf(de Adr) ~ —rsinf(dr A dp)

L 9 rsinfdy ~ dr A (rdf) ~ r(dr A df)

= rsinf dp

We can obtain the following result:

2f(r) cosBr?sinf(dO A dp)] + 2f(r) sinf[rsinf(dr A dp)] + f'(r)rsin O[rsin (dr A dy)]

2f(r) cosfe, — 2f(r) sinfeg — rf'(r) sin fey

sd[f(r)r?sin® 0dy] = 2f(r) cosbe, — [2f(r) + rf'(r)] sin feg

Defining the Natario Vector as in pg 5 in [1] with the Hodge Star operator * explicitly written :

nX = wvs(t) xd (f(r)r2 sin? 2y

nX = —wvs(t) xd (f(r)r2 sin? Ode)

We can get finally the latest expressions for the Natario Vector nX also shown in pg 5 in [1]

nX = 2vus(t)f(r) cosbe, —vs(t)[2f(r) + rf (r)] sinfey

nX = —2vs(t)f(r) cosbe, +vs(t)[2f(r) +rf'(r)] sin Oeq

With our pedagogical approaches

nX = 2vs(t)f(r) cosOdr — vs(t)[2f(r) + rf'(r)]r sin dO

nX = —2vs(t) f(r) cosOdr + vs(t)[2f(r) + rf'(r)]r sin 6dO

13
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8 Appendix B:differential forms,Hodge star and the mathematical demon-

stration of the Natario vectors nX = —wvsdr and nX = wvsdr for a
constant speed vs or for the first term vsdr from the Natario vector
nX = vsdx + xdvs(a variable speed) in a R? space basis

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods Natario used to arrive at the final expression of the Natario Vector nX

The Canonical Basis of the Hodge Star in spherical coordinates can be defined as follows(see pg 4 in
[1],eqs 3.135 and 3.137 pg 82(a)(b) in [2],eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and pg 92 in

[3]):

er = (98 ~dr ~ dt A (rdf) A (rsinfdg) ~ r? sin 6(dt A df A dp) (76)
r
10 . .
ep = ~90 "~ rdf ~ dt A (rsin@de) Adr ~ rsin@(dt A de A dr) (77)
=L 9 sinGdp ~ di Adr A (rd0) ~ r(di A dr A dB) (78)
% = rsinf dp " 4 TAV " '

From above we get the following results

dr ~ r?sin@(dt A df A d) (79)
rdf ~ rsin@(dt A dp A dr) (80)
rsin@de ~ r(dt A dr A df) (81)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
spherical coordinates as given by(see eq 3.74 pg 69(a)(b) in [2]):

sdr = r*sin O(dt A df A dy) (82)
«rdf = rsin(dt A dp A dr) (83)
«rsin Ode = r(dt A\ dr A df) (84)

Back again to the Natario equivalence between spherical and cartezian coordinates(pg 5 in [1]):

1
ag ~ dx = d(r cos §) = cos fdr—rsin df ~ 12 sin 0 cos Odt AdO Adp -+ sin® Odt Adr Adp = d <27‘2 sin? dy
x
(85)

14



Look that

dx = d(r cos @) = cos Odr — rsin 6df (86)

dx = d(r cos #) = cos Odr — sin Ordf (87)
Applying the Hodge Star operator * to the above expression:

«dx = *d(r cos ) = cos O(xdr) — sin 0(xrdf) (88)
sdx = *d(r cos 0) = cos O[r? sin O(dt A d A dip)] — sin 0[r sin @(dt A d A dr)] (89)
sdx = xd(rcos @) = [r?sinf cosO(dt A df A de)] — [rsin® 6(dt A dp A dr)] (90)

We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2])):

dp Ndr = —dr N dp (91)

Then we have

sdx = *d(r cos @) = [r?sinf cos O(dt A dO A dy)] + [rsin® O(dt A dr A dyp)] (92)

And the above expression matches exactly the term obtained by Natario using the Hodge Star operator
applied to the equivalence between cartezian and spherical coordinates(pg 5 in [1]).

Now examining the expression:

1
d (27“2 sin? 0dg0> (93)
We must also apply the Hodge Star operator to the expression above

And then we have:
1
*d <2r2 sin? 6dg0> (94)

1 1 1 1
*d (27"2 sin? 0dg0> ~ 57"2 % d[(sin® 0)dyp] + 3 sin? @  [d(r?)dy] + 57“2 sin? @  d[(dyp)] (95)
According to eq 3.90 pg 74(a)(b) in [2] the term $r?sin? 0 x d[(dyp)] = 0

This leaves us with:

1 1 1 1
§r2 * d[(sin” 0)de] + 3 sin? 0 * [d(r?)dy] ~ 5722 sin g cos 0(dt A df A dp) + 5 sin? 02r(dt A dr A dp)  (96)

15



1 1 1 1
57'2 * d[(sin” 0)de] + 5 sin? 0 * [d(r?)dy] ~ 57’22 sin @ cos O(dt A dO A dp) + 3 sin? 02r(dt A dr A dp)  (97)

Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.3 pg 68(a)(b) in [2]:

xd(o + ) = da + dj (98)
xd(fa)=df Nha+ (=1)PfANda --»p=3--»x*d(fa) =df Na— f Ada (99)
xd(dz) = d(dy) = d(dz) =0 (100)

From above we can see for example that
xd[(sin” 0)dy] = dt A d(sin®0) A dp — dt A sin? 0 A ddp = 2sinf cos 0(dt A df A d) (101)
«[d(r?)dp] = 2rdt Adr Ade — dt A1 A dde = 2r(dt A dr A dp) (102)
And then we derived again the Natario result of pg 5 in [1]

2 sin 6 cos O(dt A df A dy) + rsin® 0(dt A dr A dp) (103)

Now we will examine the following expression equivalent to the one of Natario pg 5 in [1] except that
we replaced % by the function f(r) :

sd[f (r)r? sin® Ody] (104)
From above we can obtain the next expressions

f(r)r? s« d[(sin® 8)de] + f(r)sin? 0 * [d(r?)de] + 2 sin? 0 = d[f (r)dy] (105)

f(r)r?2sin cos O(dt A dO A dp) + f(r)sin® 02r(dt A dr A de) + r? sin® 0 f'(r)(dt A dr A dip) (106)

2f(r)r2sind cos O(dt A dO A dp) + 2f (r)rsin? O(dt A dr A d) + r2 sin® 0 f' () (dt A dr A dip) (107)

16



2f(r)r2sin cos O(dt A dO A dp) + 2f (r)rsin? O(dt A dr A d) + r* sin® 0 f'(r)(dt A dr A dip) (108)

Comparing the above expressions with the Natario definitions of pg 4 in [1]):

er = (98 ~dr ~dt A (rdf) A (rsinfde) ~ r?sin6(dt A df A dp) (109)
T
10 . . .
€= 55"~ rdf ~ dt A (rsinfde) Adr ~ rsin@(dt A de A dr) ~ —rsin@(dt A dr A dp) (110)
L0 sinbdp ~ di A dr A (rdf) ~ r(dt A dr A dO) (111)
ep = ————— ~rsin ~ rA(rdf) ~r r
7 rsinf 0p > v

We can obtain the following result:
2f(r) cosB[r?sind(dt Adf A dp)] +2f(r) sind[rsin O(dt Adr Ade)] + f/(r)rsin [r sin 0(dt A dr Ady)] (112)

2f(r) cosfe, — 2f(r) sinfeg — rf'(r) sin feg (113)

sd[f(r)r? sin® 0dy] = 2f(r) cosbe, — [2f(r) + rf'(r)] sin feg (114)
Defining the Natario Vector as in pg 5 in [1] with the Hodge Star operator * explicitly written :
nX = wvs(t) xd (f(?“)r2 sin? 2y (115)

nX = —vs(t) « d (f(r)r?sin® 0dy) (116)

We can get finally the latest expressions for the Natario Vector nX also shown in pg 5 in [1]

nX = 2vs(t)f(r) cosbe, —vs(t)[2f(r) +rf (r)] sinfey (117)

nX = —2vs(t)f(r) cosbe, +vs(t)[2f(r) +rf'(r)] sin Oeq (118)

With our pedagogical approaches

nX = 2vs(t)f(r) cosOdr — vs(t)[2f(r) + rf'(r)]r sin dO (119)

nX = —2vs(t) f(r) cosOdr + vs(t)[2f(r) + rf'(r)]r sin 6dO (120)
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9 Appendix C:differential forms,Hodge star and the mathematical demon-
stration of the Natario vector nX = x(vsz) for a variable speed vs and
a constant acceleration a

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of
defined by Natario as the interior of the warp bubble and nX = vs(t)dz with X = vs for a large value of
r defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])

In the Appendices A and B we gave the mathematical demonstration of the Natario vector nX in the
R3 and R* space basis when the velocity vs is constant.Hence the complete expression of the Hodge star

that generates the Natario vector nX for a constant velocity vs is given by:

nX = x(vsz) = vs * (dz) (121)

1
xdx = xd(rcost) = *d <2r2 sin? 0d<p> = xd[f(r)r? sin? Ody] (122)

The equation of the Natario vector nX (pg 2 and 5 in [1]) is given by:

nX = X"e, + X%, (123)

nX = X"dr + X%rdf (124)

nX = 2us(t)f(r) cosbe, — vs(t)[2f(r) + rf'(r)] sin feg (125)
nX = 2us(t)f(r) cosbdr — vs(t)[2f(r) + rf (r)]r sin §d6 (126)

With the contravariant shift vector components explicitly given by:

X" = 2vsf(r)cosd (127)

X0 = —vs(2f (r) + (1) f'(r)) sin 0 (128)

Because due to a constant speed vs the term x * d(vs) = 0.Now we must examine what happens when
the velocity is variable and then the term x * d(vs) no longer vanishes.Remember that a real warp drive
must accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression
of the Hodge star that generates the Natario vector nX for a variable velocity vs is now given by:

nX = x(vsr) = vs * (dz) + x * (dvs) (129)
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In order to study the term z * d(vs) we must introduce a new Canonical Basis for the coordinate time
in the R* space basis defined as follows:(see eqs 10.102 and 10.103 pgs 363(a)(b) and 364(a)(b) in [2] with
the terms S = u = 11,eq 3.74 pg 69(a)(b) in [2],eqs 11.131 and 11.133 with the term m = 0% pg 417(a)(b)
in [2].)(see pg 47 egs 2.67 to 2.70 and pg 92 in [3]):

e = % ~ dt ~ dr A (rd) A (rsin@dp) ~ 2 sinO(dr A df A dp) (130)

dt ~ r2sin@(dr A df A dyp) (131)
The Hodge star operator defined for the coordinate time is given by:(see eq 3.74 pg 69(a)(b) in [2]):

xdt = r2sinO(dr A dO A dp) (132)

The valid expression for a variable velocity vs(t) in the Natario warp drive spacetime due to a constant
acceleration a must be given by:

vs = 2f(r)at (133)

Because and considering a valid f(r) as a Natario shape function being f(r) = 3 for large r(outside
the warp bubble where X = wvs(t) and nX = vs(t) * dr + x x d(vs(t))) and f(r) = 0 for small r(inside
the warp bubble where X = 0 and nX = 0) while being 0 < f(r) < 1 in the walls of the warp bub-
ble also known as the Natario warped region(pgs 4 and 5 in [1]) and considering also that the Natario
warp drive is a ship-frame based coordinates system(a reference frame placed in the center of the warp
bubble where the ship resides-or must reside!!) then an observer in the ship inside the bubble sees every
point inside the bubble at the rest with respect to him because inside the bubble vs(t) = 0 because f(r) = 0.

To illustrate the statement pointed above imagine a fish inside an aquarium and the aquarium is floating in
the surface of a river but carried out by the river stream.The stream varies its velocity with time.The warp
bubble in this case is the aquarium and the walls of the aquarium are the walls of the warp bubble-Natario
warped region.An observer in the margin of the river would see the aquarium passing by him at a large
speed considering a coordinates system(a reference frame) placed in the margin of the river but inside the
aquarium the fish is at the rest with respect to his local neighborhoods.Then for the fish any point inside
the aquarium is at the rest with respect to him because inside the aquarium vs = 2f(r)at with f(r) =0
and consequently giving a vs(t) = 0.Again with respect to the fish the fish ”sees” the margin passing by
him with a large relative velocity. The margin in this case is the region outside the bubble ”seen” by the
fish with a variable velocity vs(t) = vl in the time ¢1 and vs(t) = v2 in the time ¢2 because outside the
bubble the generic expression for a variable velocity vs is given by vs = 2f(r)at and outside the bubble
flr) = % giving a generic expression for a variable velocity vs as vs(t) = at and consequently a vl = atl
in the time t1 and a v2 = at2 in the time ¢2.Then the variable velocity in not only a function of time
alone but must consider also the position of the bubble where the measure is being taken wether inside or
outside the bubble.So the velocity must also be a function of r.Its total differential is then given by:

dvs = 2[atf'(r)dr + f(r)tda + f(r)adt] (134)

!These terms are needed to deal with the Robertson-Walker equation in Cosmology using differential forms.We dont need
these terms here and we can make S =u =1

2This term is needed to describe the Dirac equation in the Schwarzschild spacetime we dont need the term here so we can
make m = 1.Remember also that here we consider geometrized units in which ¢ =1
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Applying the Hodge star to the total differential dvs we get:

xdvs = 2[atf'(r) « dr + f(r)t = da+ f(r)a * dt] (135)

But we consider here the acceleration a a constant.Then the term f(r)tda = 0 and in consequence
f(r)t « da = 0.This leaves us with:

xdvs = 2[atf'(r) x dr + f(r)a x dt] (136)

sdvs = 2[atf'(r) * dr 4 f(r)a * dt] = 2[atf' (r)r® sin@(dt A df A d) + f(r)ar®sin@(dr A dO A dp)] (137)

xdvs = 2[atf'(r) * dr + f(r)a * dt] = 2[atf'(r)e, + f(r)aei] (138)

The complete expression of the Hodge star that generates the Natario vector nX for a variable velocity
vs is given by:

nX = x(vsz) = vs * (dr) + = * d(vs) (139)

The term *dx was obtained in the Appendices A and B as follows:(see pg 5 in [1])

xdx = 2f(r) cosbe, — [2f(r) + rf'(r)] sinfeq (140)

The complete expression of the Hodge star that generates the Natario vector n.X for a variable velocity
vs is now given by:

nX = *(vsx) = vs(2f(r) cosbe, — [2f(r) +rf'(r)]sinOeq) + z(2]at f'(r)e, + f(r)aet]) (141)

But remember that x = rcosf(see pg 5 in [1]) and this leaves us with:

nX = x(vsz) = vs(2f(r) cosbe, — [2f(r) +rf'(r)]sinbeq) + rcosd(2[at f'(r)e, + f(r)aet]) (142)

But we know that vs = 2f(r)at.Hence we get:

nX = x(vsx) = 2f(r)at(2f(r) cosbe, — [2f(r) + rf'(r)]sinbeg) + rcosd(2[at f' (r)e, + f(r)aes])  (143)

Then we can start with a warp bubble initially at the rest using the Natario vector shown above and
accelerate the bubble to a desired speed of 200 times faster than light.When we achieve the desired speed
we turn off the acceleration and keep the speed constant.The terms due to the acceleration now disappears
and we are left again with the Natario vector for constant speeds shown below:

nX = 2vs(t)f(r) cosbe, — vs(t)[2f(r) + rf'(r)] sin feg (144)
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Working some algebra with the Natario vector for variable velocities we get:

nX = x(vsx) = 2f(r)at(2f(r) cosbe, — [2f(r) + rf (r)]sinbeg) + rcosd(2[at f' (r)e, + f(r)aes])  (145)

nX = 4f(r)%at cosbe, — 2f(r)at[2f(r) +rf'(r)]sin e + 2at f'(r)rcosbe, + 2 f (r)rcosbae; (146)

nX = 2f(r)rcosfae; + 4f(r)at cosbe, + 2atf’ (r)rcosbe, — 2f(r)at[2f(r) + rf'(r)] sinfeq (147)

nX = 2f(r)rcosBae; + 2[2f(r)? + rf'(r)]atcosBe, — 2f (r)at[2f(r) + rf'(r)] sin feg (148)

Then the Natario vector for variable velocities defined using contravariant shift vector components is
given by the following expressions:

nX = Xle; 4+ X"e, + X% (149)
nX = X'dt + X"dr + X’rdf (150)
Or being;
nX = 2f(r)rcosfae; + 2[2f(r)2 + rf'(r)]atcosbe, — 2f(r)at[2f(r) + 1 (r)] sin feg (151)
nX = 2f(r)rcosadt 4 2[2f (r)? + rf'(r)]atcosOdr — 2f (r)at[2f () + rf'(r)]r sin 0d6 (152)

The contravariant shift vector components are respectively given by the following expressions:

X' = 2f(r)rcosba (153)
X" =2[2f(r)* + rf'(r)]atcosd (154)
X% = —2f(r)at[2f(r) + rf'(r)]sind (155)
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10 Appendix D:Polar Coordinates

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs * (dz) where vs is the constant speed of
the warp bubble and *(dx) is the Hodge Star taken over the x-axis of motion in Polar Coordinates(See
pg 4 in [1].(See also Appendices A and B for the detailed calculations).

1
9 dx = d(r cos §) = cos @dr — rsinfdf ~ ~ 12sinf cosdh A dp + rsin’® Odr A dp = d (21“2 sin? ed¢> .

Ox

(156)

Consequently if we set exactly what Natario did in pg 5 in [1]:
X ~ —vg(t)d [f(r)r® sin® 0dp]| ~ —2v,f cos Oe, + vg(2f + 7 f') sin feq (157)
X ~vg(t)d [f(r)rQ sin? dp| ~ 20, f cosbe, — vg(2f + rf') sinfeg (158)
nX = X"e, + X%, (159)
X" = 2v,f cos (160)
X% = —v (2f +7f)sin6 (161)
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Considering a valid f as a Natario shape function being f = % for large r(outside the warp bubble)
and f = 0 for small r(inside the warp bubble) while being 0 < f < % in the walls of the warp bubble also
known as the Natario warped region(pg 5 in [1]):

We must demonstrate that the Natario warp drive vector given above satisfies the Natario requirements
for a warp bubble defined by:

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])

Inside the bubble f = 0 and the Natario vector components are zero too.Outside the bubble f = %,X TS =
vs cos @ and X? = —u, sin 6.In motion over the x-axis only in the equatorial plane X"* = v, because cosf = 1

Due to a constant speed vs the term z % d(vs) = 0.Now we must examine what happens when the
velocity is variable and then the term x * d(vs) no longer vanishes.Remember that a real warp drive must
accelerate or de-accelerate in order to be accepted as a physical valid model. The complete expression of the
Hodge star that generates the Natario vector nX for a variable velocity vs is now given by(see Appendix
C for detailed calculations):

nX = x(vsz) = vs * (dz) + = * (dvs) (162)

The term *(dx) is again taken in Polar Coordinates

nX = X'e; + X"e, + X%, (163)

nX = 2f(r)rcosBae; + 2[2f(r)? + rf'(r)]atcosbe, — 2f(r)at[2f(r) + rf'(r)] sin Oeg (164)
X' =2f(r)rcosba (165)

X" =2[2f(r)* + rf'(r)]atcosd (166)

X% = —2f(r)at[2f(r) + rf'(r)] sin (167)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = 2fat (168)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Inside the bubble f = 0
resulting in a vs = 0 and outside the bubble f = % resulting in a vs = at as expected from a variable
velocity vs in time ¢ due to a constant acceleration a.Since inside and outside the bubble f always possesses
the same values of 0 or % then the derivative f’ of the Natario shape function f is zero and the shift vector
X"s = 2[2f?]at with X" = 0 inside the bubble and X" = 2[2f?]at = 2[2}]at = at = vs outside the bubble
and this illustrates the Natario definition for a warp drive spacetime.See Appendix G
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11 Appendix E:Tridimensional Spherical Coordinates

Natario (See pg 5 in [1]) defined a warp drive vector nX = vs * (dz) where vs is the constant speed of
the warp bubble and *(dx) is the Hodge Star taken over the x-axis of motion in Polar Coordinates(See

pg 4 in [1].(See also Appendix D).

ox

1
9 dx = d(r cos §) = cos @dr — rsinfdf ~ ~ 12sinf cosOdf A dp + rsin’® Odr A dp = d §r2 sin? Ody

Note that in this case the Hodge Star must be taken no longer over d(rcosf) but instead over

d(psin ¢ cosf) and this demands more calculations that will appear in a future work.
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Appendix F:Tridimensional Cylindrical Coordinates

We defined a warp drive vector nX = vs x (dx) where vs is the constant speed of the warp bubble and
*(dzx) is the Hodge Star taken over the x-axis of motion in Cylindrical Coordinates(See Appendices [
and J for the detailed calculations).

0
F dx = d(rcos @)

0
3~ dx = d(r cos0)

= cosfdr — rsinfdf ~ cosr(df A dz) — sinf(dz A dr) = d (rsin0dz)

= cosOdr — sinOrdf ~ cosOr(df A dz) —sin@(dz A dr) = d (rsinfdz)

nX = vs(t) f(r) cos Be, — vs(t) sinO[f (r) + 71 (r)]ey
nX = X"e, + X,
X" = v, f cos
X% = —v,(f+rf)sing
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Considering a valid f as a Natario shape function being f = 1 for large r(outside the warp bubble)
and f = 0 for small r(inside the warp bubble) while being 0 < f < 1 in the walls of the warp bubble also
known as the warped region:

We must demonstrate that the cylindrical warp drive vector given above satisfies the Natario require-
ments for a warp bubble defined by:

any vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dx with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])

Inside the bubble f = 0 and the cylindrical warp drive vector components are zero too.Outside the bubble
f=1X" = vscos0 and X? = —vssinf because f is constant.In motion over the x-axis only in the
equatorial plane X = v, because cosf =1

Due to a constant speed vs the term z x d(vs) = 0.Now we must examine what happens when the
velocity is variable and then the term x * d(vs) no longer vanishes.Remember that a real warp drive must
accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression of
the Hodge star that generates the cylindrical warp drive vector nX for a variable velocity vs is now given
by(see Appendix K for detailed calculations):

nX = x(vsx) = vs * (dx) + = * (dvs) (176)

The term *(dz) is again taken in Cylindrical Coordinates

nX = X'e; + X"e, + XPe (177)

nX = f(r)rcosfae, + [f(r)? + rf'(r)latcosbe, — f(r)at[f(r) +rf (r)]sinfeq (178)
X! = f(r)rcosba (179)

X" = [f(r)* + rf'(r)]atcost (180)

X = —f(r)at[f(r) +rf'(r)]sinf (181)

The variable velocity vs due to a constant acceleration a is given by the following equation:

vs = fat (182)

Remember that Natario(pg 4 in [1]) defines the x axis as the axis of motion.Inside the bubble f =0
resulting in a vs = 0 and outside the bubble f = 1 resulting in a vs = at as expected from a variable velocity
vs in time ¢ due to a constant acceleration a.Since inside and outside the bubble f always possesses the
same values of 0 or 1 then the derivative f’ of the shape function f is zero and the shift vector X"* = [f?]at
with X" = 0 inside the bubble and X"* = [f?]at = vs outside the bubble and this illustrates the Natario
definition for a warp drive spacetime.See Appendix G
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Figure 4: Artistic Presentation of a Warp Bubble.(Source:Internet)

13 Appendix G:Artistic Presentation of a Warp Bubble

In 2001 the Natario warp drive appeared.([1]).This warp drive deals with the spacetime as a ”strain” tensor
of Fluid Mechanics(pg 5 in [1]). Imagine a fish inside an aquarium and the aquarium is floating in the
surface of a river but carried out by the river stream.The warp bubble in this case is the aquarium.An
observer at the rest in the margin of the river would see the aquarium passing by him at a large speed but
inside the aquarium the fish is at the rest with respect to his local neighborhoods.Since the fish is at the
rest inside the aquarium the fish would see the observer in the margin passing by him with a large relative
speed since for the fish is the margin that moves with a large relative velocity

any Natario vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of rs
defined by Natario as the interior of the warp bubble and nX = vs(t)dz with X = vs for a large value of
rs defined by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg
4 in [1])

Lets explain better this statement:Natario considered in this case a coordinates reference frame placed
inside the bubble where the fish inside the aquarium or the astronaut in a spaceship inside the bubble

27



depicted above are at the rest with respect to their local neighborhoods.Then any Natario vector must be
zero inside the bubble or the aquarium or the spaceship.

On the other hand since the fish sees the margin passing by him with a large relative velocity or the
astronaut would see a stationary observer in outer space outside the bubble passing by him with a large
relative velocity then any Natario vector outside the bubble must have a value equal to the relative velocity
seen by both the fish and the astronaut.

Considering a valid f as a Natario shape function being f = % for large r(outside the warp bubble)
and f = 0 for small r(inside the warp bubble) while being 0 < f < % in the walls of the warp bubble
also known as the Natario warped region(pg 5 in [1]):The walls of the bubble the Natario warped region
corresponds to the distorted region in the picture depicted in this Appendix.

The cylindrical warp drive vector is an identical case:the only difference is the value of the shape function
outside the bubble which is 1.

See also Appendix H.
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14 Appendix H:Another Artistic Presentation of a Warp Bubble

Natario considered a coordinates reference frame placed inside the bubble.Now we must consider a coordi-
nates reference frame placed outside the bubble:In this case the observer at the rest in the margin of the
river would see the aquarium passing by him with a large velocity with the fish inside.Also a stationary
observer at the rest in outer space would see the spaceship depicted in the picture above passing by him

with a large velocity with the astronaut inside.

Now the rules originally defined by Natario are interchanged:

Since the observer in the margin and the observer in outer space are at the rest any Natario vector in

this case must be zero outside the bubble.

But since the fish and the spaceship are being seen by the observer at the rest in the margin and the
observer at the rest in outer space both fish and spaceship with a large velocity then the Natario vector
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inside the bubble must have a value equal to the velocity seen by both observers.

Considering a valid f as a Natario shape function being f = 0 for large r(outside the warp bubble)
and f = % for small r(inside the warp bubble) while being 0 < f < % in the walls of the warp bubble also
known as the Natario warped region:The walls of the bubble the Natario warped region corresponds to the
distorted region the ”blue circle” in the picture depicted in this Appendix.

The cylindrical warp drive vector is an identical case:the only difference is the value of the shape function
inside the bubble which is 1.
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15 Appendix I:differential forms,Hodge star and the mathematical demon-
stration of the cylindrical warp drive vectors nX = —vsdx and nX =
vsdx for a constant speed vs in a R® space basis

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods used to obtain the final expression of the cylindrical warp drive vectors.
The Canonical Basis of the Hodge Star in cylindrical coordinates can be defined as follows(see eq 3.72

pg 69(a)(b) in [2]):

er = g ~dr ~ (rdf) Ndz ~ r(df N dz) (183)
r
=19 0~ (d2) Adr ~ (dz A dr) (184)
o= o5~ z) Adr z Adr
0
€= 5o~ (dz) ~ dr A (rdf) ~ r(dr A df) (185)
2

From above we get the following results

dr ~ r(df A dz) (186)
rdf ~ (dz A dr) (187)
dz ~ r(dr A df) (188)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
cylindrical coordinates as given by(see eq 3.72 pg 69(a)(b) in [2]):

xdr = r(df N\ dz) (189)
xrdf = (dz A dr) (190)
xdz = r(dr A df) (191)

Applying the Hodge Star to the x-axis as the motion axis we get:

ag ~ dx = d(r cosf) = cos 0dr — rsin 0df ~ cos 0r(df A dz) — sin@(dz A dr) = d (rsin0dz) (192)
x

% ~ dx = d(r cosf) = cos Odr — sin Ordf ~ cos 0r(df A dz) — sinf(dz A dr) = d (rsin 0dz) (193)
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Look that

dx = d(r cos @) = cosOdr — rsin 6df

dx = d(r cos @) = cos @dr — sin Ordf
Applying the Hodge Star operator * to the above expression:

«dx = *d(r cos ) = cos O(xdr) — sin 0(xrdf)
xdx = xd(rcos @) = cosOr(df N dz) — sin@(dz A dr)
xdx = *d(r cos #) = cos fe, — sin fey

Now examining the expression:

d (rsinfdz)

We must also apply the Hodge Star operator to the expression above
And then we have:

«d (rsin 0dz)

xd (rsinfdz) ~ r* d[(sin 0)dz] 4 sin 0 * d[rdz] 4+ rsin 0 * d[(dz)]
According to eq 3.90 pg 74(a)(b) in [2] the term rsin @ x d[(dz)] =0

This leaves us with:

«d (rsinfdz) ~ rx d[(sin@)dz] + sin 0 *x d[rdz] ~ cosOr(df N dz) — sin0(dz A dr)
Because and according to egs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

xd(a+ ) = da+dg
xd(fa)=df Na+ (=1)PfAda--+» p=2--+ xd(fa)=df Na+ f Nda

xd(dx) = d(dy) = d(dz) =0

From above we can see for example that

«d[(sin0)dz] = d(sinf) A dz + sinf A ddz = cos 0(df N dz)

xd[rdz] = dr Ndz +r ANddz = (dr AN dz) = —(dz A dr)
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We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2])):

dz Ndr = —dr Ndz

And then we have:

«d (rsinfdz) ~ r x d[(sin 0)dz] + sin 6 * d[rdz]
With:

*d[(sin@)dz] = d(sinf) A dz + sinf A ddz = cos 0(df N dz)
xd[rdz] = dr Ndz +r ANddz = (dr AN dz) = —(dz A dr)
«d (rsinfdz) ~ 1« d[(sin0)dz] + sin 0 * d[rdz] ~ rcosf(df N dz) + sin 0(dr A dz)
«d (rsinfdz) ~ 1« d[(sin0)dz] + sin 0 * d[rdz] ~ cosOr(df N dz) — sin 0(dz A dr)

xd (rsinfdz) ~ 1+ d[(sin 0)dz] + sin 0 * d[rdz] ~ cosbe, — sin feg

Now we will examine the following expression:

«d[f (r)r sin 0dz]

From above we can obtain the next expressions

F(r)r+ d[(sin0)dz] + f(r)sin * d[rdz] + f(r)rsind = d(dz) + rsin 0 % d[f (r)dz]
F(r)r+ d[(sin 0)dz] + f(r) sin 0 * dfrdz] + r sin 0 * d[f (r)dz]
sd[f(r)dz] = df(r) Adz + f(r) Addz = f'(r)(dr Adz) = —f'(r)(dz A dr)
F(r)rcos0(df A dz) + £(r)sin@(—(dz A dr)) +rsin0(—f'(r)(dz A dr))
F(r)rcos0(dO A dz) — f(r)sinO(dz A dr) — rsin0f (r)(dz A dr)
F(r)rcos0(do A dz) — £(r)sin0(dz A dr) — sin 0r f'(r)(dz A dr)
F(r)rcos0(d6 A dz) — sinO[f (r) + rf'(r)](dz A dr)

F(r) cosOr(do A dz) — sin O (r) + rf'(r)] (dz A dr)

xd[f (r)rsin0dz] ~ f(r)cosOr(d A dz) — sin0[f(r) +rf'(r)](dz A dr)
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xd[f(r)rsin@dz] ~ f(r) cosOr(dd A dz) — sin0[f(r) + rf'(r)](dz A dr)

(225)

Comparing the above expression with the Canonical Basis of the Hodge Star in cylindrical coordinates:

er = g ~dr ~ (rdd) Ndz ~ r(df A dz)
T

10
69:;%Nrdﬁw(dz)/\drw(dz/\dr)

e, = % ~ (dz) ~ dr A (rdf) ~ r(dr A df)

We can obtain the following result:

xd[f(r)rsinfdz] ~ f(r)cosOr(d0 A dz) —sin0[f(r) +rf'(r)](dz A dr)

xd[f(r)rsin@dz] ~ f(r)cosfe, —sinO[f(r) +rf'(r)]ey

Defining the cylindrical warp drive vectors with the Hodge Star operator * explicitly written :

nX = vs(t) « d[f(r)rsinOdz]

nX = —vs(t) * d[f(r)rsin0dz]

We can get finally the latest expressions for the cylindrical warp drive vectors nX

nX = vs(t)f(r)cosBe, —vs(t)sinO[f(r) +rf'(r)]es

nX = —vs(t) f(r) cosbe, + vs(t)sinO[f(r) + rf'(r)]eq
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16 Appendix J:differential forms,Hodge star and the mathematical demon-
stration of the cylindrical warp drive vectors nX = —vsdx and nX =
vsdx for a constant speed vs or for the first term vsdx from the cylin-
drical warp drive vector nX = vsdz + zdvs(a variable speed) in a R?
space basis

This appendix is being written for novice or newcomer students on Warp Drive theory still not acquainted
with the methods used to arrive at the final expression of the cylindrical warp drive vector nX

The Canonical Basis of the Hodge Star in cylindrical coordinates can be defined as follows(see eq 3.74
pg 69(a)(b) in [2])(see pg 47 egs 2.67 to 2.70 and pg 92 in [3]):

er = 86 ~dr ~dt A (rdd) Ndz ~ r(dt Adf A dz) (235)
r
10
€= 55"~ rdf ~ dt A\ (dz) Ndr ~ (dt Adz Adr) (236)
r
0
€ =5~ (dz) ~ dt Ndr A (rdf) ~ r(dt A dr A df) (237)

From above we get the following results

dr ~r(dt ANdO A dz) (238)
rdf ~ (dt A\ dz A dr) (239)
dz ~ r(dt Adr A db) (240)

Note that this expression matches the common definition of the Hodge Star operator * applied to the
cylindrical coordinates as given by(see eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and pg 92 in

[3]):

xdr = r(dt ANdf N dz) (241)
xrdf = (dt A\ dz A dr) (242)
xdz = r(dt Ndr A df) (243)

Applying the Hodge Star to the x-axis as the motion axis we get:

aﬁ ~ dx = d(rcosf) = cos0dr — rsin0df ~ cosOr(dt Ndf Ndz) —sinO(dt Ndz ANdr) = d (rsinfdz) (244)
x
0
92~ dx = d(rcos ) = cosOdr — sinfrdf ~ cos Or(dt NdO ANdz) —sinO(dt AN dz A dr) = d(rsinfdz) (245)
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Look that

dx = d(r cos @) = cosOdr — rsin 6df

dx = d(r cos @) = cos @dr — sin Ordf
Applying the Hodge Star operator * to the above expression:

«dx = *d(r cos ) = cos O(xdr) — sin 0(xrdf)
xdx = xd(r cos @) = cosOr(dt A dfO A dz) — sinO(dt A dz A dr)
xdx = *d(r cos #) = cos fe, — sin fey

Now examining the expression:

d (rsinfdz)

We must also apply the Hodge Star operator to the expression above
And then we have:

«d (rsin 0dz)

xd (rsinfdz) ~ r* d[(sin 0)dz] 4 sin 0 * d[rdz] 4+ rsin 0 * d[(dz)]
According to eq 3.90 pg 74(a)(b) in [2] the term rsin @ x d[(dz)] =0

This leaves us with:

«d (rsinfdz) ~ 1« d[(sin0)dz] + sin 0 * d[rdz] ~ cos Or(dt A df A dz) — sin 0(dt A dz A dr)

Because and according to eqs 3.90 and 3.91 pg 74(a)(b) in [2],tb 3.2 pg 68(a)(b) in [2]:

*d(a+ ) =da+dp
xd(fa) =df Nha+ (—1)PfANda--»p=2--»x*d(fa) =df Na+ f Ada

xd(dx) = d(dy) = d(dz) =0

From above we can see for example that

«d[(sin 0)dz] = dt A d(sinf) A dz + dt Asinf A ddz = cosO(dt A df A dz)
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xd[rdz] =dt Ndr Ndz+dt Ar ANddz = (dr Ndz) = —(dz A dr)
We know that the following expression holds true(see eq 3.79 pg 70(a)(b) in [2])):

dz Ndr = —dr Ndz
And then we have:

«d (rsinfdz) ~ r* d[(sin6)dz] + sin 0 * d[rdz]
With:

*d[(sin@)dz] = dt A d(sinf) A dz + dt Asinf A ddz = cos@(dt A dO A dz)

xd[rdz] =dt Ndr Ndz+dt Ar ANddz = (dt Adr ANdz) = —(dt Adz A dr)

«d (rsin0dz) ~ r x d[(sin §)dz] + sin 0 * d[rdz| ~ rcosf(dt A df A dz) + sinO(dt A dr A dz)

xd (rsinfdz) ~ r* d[(sin0)dz] + sin 0 x d[rdz] ~ cosfr(dt A df A dz) — sin§(dt A dz A dr)

«d (rsinfdz) ~ r x d[(sin0)dz] + sin 0 * d[rdz] ~ cosbe, — sinfey

Now we will examine the following expression:

xd[f (r)rsin 0dz]

From above we can obtain the next expressions

f(r)r+d[(sin@)dz] + f(r)sin@ x d[rdz] + f(r)rsin@ * d(dz) + rsin @ * d[ f(r)dz]

f(r)r*d[(sinf)dz] + f(r)sinf = d[rdz] + rsin @ = d[f(r)dz]

xd[f(r)dz] = dt Ndf(r) Ndz +dt A f(r) Addz = f'(r)(dt Adr Adz) = —f'(r)(dt Adz A dr)

f(r)rcosO(dt AdO Adz)+ f(r)sin@(—(dt Adz Adr)) +rsin@(—f (r)(dt Adz A dr))
f(r)rcos@(dt AdO Adz) — f(r)sin@(dt Adz Adr) —rsin@f (r)(dt Adz Adr)

f(r)rcos@(dt AdO Adz) — f(r)sin@(dt Adz Adr) —sin0rf'(r)(dt A dz A dr)
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f(r)rcos@(dt AdO A dz) —sin@[f(r) +rf (r)](dt Adz Adr)
f(r)cosOr(dt AdO Adz) —sinO[f(r) +rf (r)](dt A dz A dr)
xd[f(r)rsin@dz] ~ f(r)cosOr(dt A dO A dz) —sin0[f(r) +rf'(r)](dt A dz A dr)

xd[f(r)rsin@dz] ~ f(r)cosOr(dt A dO A dz) —sin6[f(r) +rf'(r)](dt A dz A dr)

(274)

(275)

(276)

(277)

Comparing the above expression with the Canonical Basis of the Hodge Star in cylindrical coordinates:

0
erzaNdrth/\(rde)/\dZNr(dt/\dH/\dz)

1
695;%NTd9th/\(dz)/\d’l"N(dt/\dz/\d’l“)

e, = % ~ (dz) ~dt Ndr A (rdf) ~ r(dt A dr A dO)

We can obtain the following result:

xd[f (r)rsin0dz] ~ f(r)cosOr(dt Adf A dz) —sin@[f(r) +rf'(r)](dt A dz A dr)

*d[f(r)rsin0dz] ~ f(r) cosfe, —sinO[f(r) +rf'(r)]eq

Defining the cylindrical warp drive vectors with the Hodge Star operator * explicitly written :

nX = vs(t) * d[f(r)rsin 0dz]

nX = —vs(t) * d[f(r)rsinfdz]

We can get finally the latest expressions for the cylindrical warp drive vectors nX

nX = vs(t)f(r)cosbe, —vs(t)sinO[f(r) +rf'(r)]ey

nX = —vs(t)f(r)cos e, + vs(t)sinO[f(r) +rf'(r)]eq
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17 Appendix K:differential forms,Hodge star and the mathematical
demonstration of the cylindrical warp drive vector nX = *(vsz) for
a variable speed vs and a constant acceleration a

any vector nX generates a warp drive spacetime if nX = 0 and X = vs = 0 for a small value of r defined

by Natario as the interior of the warp bubble and nX = vs(t)dz with X = vs for a large value of r defined
by Natario as the exterior of the warp bubble with vs(t) being the speed of the warp bubble.(pg 4 in [1])

In the Appendices I and J we gave the mathematical demonstration of the cylindrical warp drive vec-
tor nX in the R? and R* space basis when the velocity vs is constant.Hence the complete expression of
the Hodge star that generates the cylindrical warp drive vector nX for a constant velocity vs is given by:
nX = x(vsz) = vs * (dz) (287)

xdxr = *d(rcos) = xd (rsinfdz) = xd[f(r)r sin 0dz] (288)

The equation of the cylindrical warp drive vector nX is given by:

nX = X"e, + X%, (289)

nX = X"dr + X%rdf (290)

nX = vs(t)f(r) cosfe, — vs(t) sinO[f(r) + rf'(r)]es (291)
nX = —uvs(t) f(r) cosBe, + vs(t) sinO[f(r) + rf'(r)leg (292)

With the contravariant shift vector components explicitly given by:

X" =wvsf(r)cosb (293)

X0 = —vg(f(r) + (r)f'(r))sin 6 (294)

Because due to a constant speed vs the term z * d(vs) = 0.Now we must examine what happens when
the velocity is variable and then the term x * d(vs) no longer vanishes.Remember that a real warp drive
must accelerate or de-accelerate in order to be accepted as a physical valid model.The complete expression
of the Hodge star that generates the Natario vector nX for a variable velocity vs is now given by:

nX = x(vsx) = vs * (dr) + x * (dvs) (295)
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In order to study the term z * d(vs) we must introduce a new Canonical Basis for the coordinate time
in the R* space basis defined as follows:(see eq 3.74 pg 69(a)(b) in [2])(see pg 47 eqs 2.67 to 2.70 and pg
92 in [3]):

0

e = 5, ~ db ~ dr A\ (rdf) A (dz) ~ r(dr £ d6 A dz) (296)

dt ~ r(dr Ndf A dz) (297)
The Hodge star operator defined for the coordinate time is given by:(see eq 3.74 pg 69(a)(b) in [2]):

xdt = r(dr A df A dz) (298)

The valid expression for a variable velocity vs(t) in the cylindrical warp drive spacetime due to a
constant acceleration a must be given by:

vs = f(r)at (299)

Because and considering a valid f(r) as a shape function being f(r) = 1 for large r(outside the warp
bubble where X = vs(t) and nX = vs(t) * de + = x d(vs(t))) and f(r) = 0 for small r(inside the warp
bubble where X = 0 and nX = 0) while being 0 < f(r) < 1 in the walls of the warp bubble also known as
the warped region and considering also that the cylindrical warp drive is a ship-frame based coordinates
system(a reference frame placed in the center of the warp bubble where the ship resides-or must reside!!)
then an observer in the ship inside the bubble sees every point inside the bubble at the rest with respect
to him because inside the bubble vs(t) = 0 because f(r) = 0.

To illustrate the statement pointed above imagine a fish inside an aquarium and the aquarium is floating
in the surface of a river but carried out by the river stream.The stream varies its velocity with time.The
warp bubble in this case is the aquarium and the walls of the aquarium are the walls of the warp bubble-
warped region.An observer in the margin of the river would see the aquarium passing by him at a large
speed considering a coordinates system(a reference frame) placed in the margin of the river but inside the
aquarium the fish is at the rest with respect to his local neighborhoods.Then for the fish any point inside
the aquarium is at the rest with respect to him because inside the aquarium vs = f(r)at with f(r) = 0
and consequently giving a vs(t) = 0.Again with respect to the fish the fish ”sees” the margin passing by
him with a large relative velocity. The margin in this case is the region outside the bubble ”seen” by the
fish with a variable velocity vs(t) = vl in the time ¢1 and vs(t) = v2 in the time ¢2 because outside the
bubble the generic expression for a variable velocity vs is given by vs = f(r)at and outside the bubble
f(r) =1 giving a generic expression for a variable velocity vs as vs(t) = at and consequently a vl = atl
in the time t1 and a v2 = at2 in the time ¢2.Then the variable velocity in not only a function of time
alone but must consider also the position of the bubble where the measure is being taken wether inside or
outside the bubble.So the velocity must also be a function of r.Its total differential is then given by:

dvs = [atf'(r)dr + f(r)tda + f(r)adt] (300)
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Applying the Hodge star to the total differential dvs we get:

xdvs = [atf'(r) = dr + f(r)t * da + f(r)a * dt] (301)

But we consider here the acceleration a a constant.Then the term f(r)tda = 0 and in consequence
f(r)t « da = 0.This leaves us with:

xdvs = [atf'(r)  dr + f(r)a = dt] (302)
xdvs = [atf'(r) x dr + f(r)a = dt] = [atf (r)r(dt AdO A dz) + f(r)ar(dr A dO A dz)) (303)
xdvs = [atf' (r) * dr + f(r)a*dt] = [atf'(r)e, + f(r)aes] (304)

The complete expression of the Hodge star that generates the cylindrical warp drive vector nX for a
variable velocity vs is given by:

nX = x(vsz) = vs * (dz) + x * d(vs) (305)

The term *dx was obtained in the Appendices I and .J as follows:

xdz = f(r)cosfOe, —sinO[f(r) +rf'(r)|eq (306)

The complete expression of the Hodge star that generates the cylindrical warp drive vector nX for a
variable velocity vs is now given by:

nX = x(vsx) = vs(f(r) cosbe, — [f(r) +rf (r)]sinfeq) + z([atf (r)e, + f(r)ae]) (307)

But remember that x = rcosf(see Appendix F') and this leaves us with:

nX = x(vsx) = vs(f(r) cosbe, — [f(r) + rf' (r)]sinfey) + rcosd([atf' (r)e, + f(r)aes]) (308)

But we know that vs = f(r)at.Hence we get:

nX = x(vsx) = f(r)at(f(r) cosbe, — [f(r) + rf (r)]sinfey) + rcosd([atf' (r)e, + f(r)aes]) (309)

Then we can start with a warp bubble initially at the rest using the cylindrical warp drive vector shown
above and accelerate the bubble to a desired speed of 200 times faster than light.When we achieve the
desired speed we turn off the acceleration and keep the speed constant.The terms due to the acceleration
now disappears and we are left again with the cylindrical warp drive vector for constant speeds shown
below:

nX = vs(t)f(r) cosbe, —vs(t)[f(r) + rf (r)] sin ey (310)
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Working some algebra with the cylindrical warp drive vector for variable velocities we get:
nX = x(vsx) = f(r)at(f(r) cosbe, — [f(r) + rf (r)]sinbey) + rcosd([atf' (r)e, + f(r)aes])
nX = f(r)%at cosbe, — f(r)at[f(r) + rf (r)]sinOeg + atf'(r)rcosbe, + f(r)rcosae;

nX = f(r)rcosbae; + f(r)2at cosbe, + atf'(r)rcosbe, — f(r)at[f(r) +rf (r)]sinfeg

nX = f(ryreostac; + [f(r)? + v (ratcosbe, — f(r)at[2f(r) + r'(r)] sinfey

(311)

(312)

(313)

(314)

Then the cylindrical warp drive vector for variable velocities defined using contravariant shift vector

components is given by the following expressions:

nX = Xte; + X"e, + XV

nX = Xtdt + X"dr + X% do

Or being;:

nX = f(r)rcosbae;, + [f(r)* + rf'(r)]atcosfe, — f(r)at[f(r) + rf(r)]sinbeq

nX = f(r)rcosbadt + [f(r)* + rf'(r)|atcosddr — f(r)at[f(r) + rf'(r)]rsin 6dO

The contravariant shift vector components are respectively given by the following expressions:

X' = f(r)rcosba
X" = [f(r)2 +rf(r)]atcosd

X0 = —f()at[f(r) +rf'(r)]sind
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