Proof of Collatz conjecture

Abdelkrim ben Mohamed

Abstract

In this working paper we try to prove the Collatz conjecture also known the 3x+1 problem.

The conjecture:

let a_0 be a strictly positive integer and consider the recursive sequence $(a_n)_{n\geq 0}$

$$\forall \mathbf{n} \in \mathbb{N} \qquad a_{(n+1)} = \begin{cases} \frac{a_n}{2} & \text{, if } a_n = 2\mathbf{k} \text{ , } k \in \mathbb{N} \\ 3a_n + 1 & \text{, if } a_n = 2\mathbf{k} + 1 \text{ , } k \in \mathbb{N} \end{cases}$$

So there exist $n_0 \in \mathbb{N}$ such that $a_{n_0} = 1$.

Therfore
$$\forall k \in \mathbb{N} \begin{cases} a_{(n_0+3k)} = 1 \\ a_{(n_0+3k+1)} = 4 \\ a_{(n_0+3k+2)} = 2 \end{cases}$$

The sequence $(a_n)_{n \ge n_0}$ is the cycle (1,4,2)

Let $(u_n)_{n\geq 0}$ be the subsequence of $(a_n)_{n\geq 0}$ such that :

$$u_0 = a_0$$

$$\forall \mathbf{n} \in \mathbb{N} \qquad u_{(n+1)} = \begin{cases} \frac{u_n}{4} & \text{, } if \ u_n = 4k \ \text{, } k \in \mathbb{N} \\ \frac{u_n}{2} & \text{, } if \ u_n = 4k+2 \ \text{, } k \in \mathbb{N} \\ 3u_n+1 & \text{, } if \ u_n = 4k+1 or \ u_n = 4k+3 \ \text{, } k \in \mathbb{N} \end{cases}$$

Remark : the terms of the sequences $(a_n)_{n\geq 0}$ and $(u_n)_{n\geq 0}$ are strictly positive integers because a_0 is a strictly positive integer.

1

Lemma1:

There exist no integer n_0 such that $\forall n \geq n_0 \ u_n$ is a multiple of 5.

Proof:

Suppose that there exist an integer n_0 such that $\forall n \geq n_0$ u_n is a multiple of 5

take u_{n_0} and write $u_{n_0} = 5 \times 2^p q$ with $p \in \mathbb{N}$, $q \in \mathbb{N}$ and q odd

if p = 2k we have $u_{(n_0+k)} = 5q$ then $u_{(n_0+k+1)} = 15q + 1$ wich is not multiple of 5

if p = 2k + 1 we have $u_{(n_0+k+1)} = 5q$ then $u_{(n_0+k+2)} = 15q + 1$ wich is not multiple of 5

this is a contradiction

so there exist no integer n_0 such that $\forall n \geq n_0 \ u_n$ is a multiple of 5

let the sequence $(v_n)_{n\geq 0}$ such that :

$$v_0 = u_0 = a_0$$

$$\forall \mathbf{n} \in \mathbb{N} \ v_{(n+1)} = \left\{ \begin{array}{ccc} \frac{v_n}{4} & , & \text{if } v_n = 4k \text{ , } k \in \mathbb{N} \\ 3v_n + 10 & , & \text{if } v_n = 4k + 2 \text{ , } k \in \mathbb{N} \\ 3v_n + 1 & , & \text{if } v_n = 4k + 1 \text{ , } k \in \mathbb{N} \\ 3v_n + 11 & , & \text{if } v_n = 4k + 3 \text{ , } k \in \mathbb{N} \end{array} \right.$$

Lemma2:

there exist an integer n_0 such that $\forall n \geq n_0$ The sequence $(v_n)_{n \geq n_0}$ is the cycle (1,4) or the cycle (10,40) or the cycle (11,44).

Proof:

Let's consider the subsequence $(w_n)_{n\geq 0}$ of $(v_n)_{n\geq 0}$ such that :

$$w_0 = v_0 = a_0$$

$$\forall \mathbf{n} \in \mathbb{N} \ w_{(n+1)} = \left\{ \begin{array}{ll} \frac{w_n}{4} & \text{, if } w_n = 4k \text{ , } k \in \mathbb{N} \\ \frac{3w_n + 10}{4} & \text{, if } w_n = 4k + 2 \text{ , } k \in \mathbb{N} \\ \frac{3w_n + 1}{4} & \text{, if } w_n = 4k + 1 \text{ , } k \in \mathbb{N} \\ \frac{3w_n + 11}{4} & \text{, if } w_n = 4k + 3 \text{ , } k \in \mathbb{N} \end{array} \right.$$

Remark : the terms of the sequences $(v_n)_{n\geq 0}$ and $(w_n)_{n\geq 0}$ are strictly positive integers because a_0 is a strictly positive integer.

We have $\forall n \in \mathbb{N} \quad w_{(n+1)} \leq \frac{3w_n + 11}{4}$

So $\forall n \in \mathbb{N} \ 4w_{(n+1)} \le 3w_n + 11$

So $\forall n \in \mathbb{N} \ 4(w_{(n+1)} - 11) \le 3(w_n - 11)$

So
$$\forall n \in \mathbb{N} \ (w_{(n+1)} - 11) \le \frac{3(w_n - 11)}{4}$$

So if $\forall n \in \mathbb{N}$ $w_n > 11$ the sequence $(z_n)_{n \geq 0}$ where $z_n = w_n - 11$ satisfies :

$$\forall n \in \mathbb{N} \ z_n \ge 1 \ \text{ and } \forall n \in \mathbb{N} \ z_{(n+1)} < z_n \text{ (because } \frac{3(w_n - 11)}{4} < w_n - 11)$$

the sequence of integers $(z_n)_{n\geq 0}$ is decreasing strictly so it will reach 0 this is a contradiction

we deduce that There exist n_0 such that $w_{n_0} \leq 11$

(we can also use $\forall n \in \mathbb{N} \ (w_n - 11) \le \left(\frac{3}{4}\right)^n (w_0 - 11)$)

- 1) If $w_{n_0} = 1$ The sequence $(w_n)_{n \ge n_0}$ is 1,1,1 ... so $\forall n \in \mathbb{N}$ $n \ge n_0$ $w_n = 1$
- 2) If $w_{n_0} = 2$ The sequence $(w_n)_{n \ge n_0}$ is 2,4,1,1,1 ... so $\forall n \in \mathbb{N} \ n \ge (n_0 + 2) \ w_n = 1$
- 3) If $w_{n_0} = 3$ The sequence $(w_n)_{n \ge n_0}$ is 3,5,4,1,1,1 ... so $\forall n \in \mathbb{N} \ n \ge (n_0 + 3) \ w_n = 1$
- 4) If $w_{n_0}=4$ The sequence $(w_n)_{n\geq n_0}$ is 4,1,1,1 ... so $\forall n\in\mathbb{N}\ n\geq (n_0+1)\ w_n=1$
- 5) If $w_{n_0} = 5$ The sequence $(w_n)_{n \ge n_0}$ is 5,4,1,1,1 ... so $\forall n \in \mathbb{N} \ n \ge (n_0 + 2) \ w_n = 1$
- 6) If $w_{n_0}=6$ The sequence $(w_n)_{n\geq n_0}$ is 6,7,32,8,2,4,1,1,1 ... so $\forall n\in\mathbb{N}\ n\geq (n_0+6)\ w_n=1$
- 7) If $w_{n_0} = 7$ The sequence $(w_n)_{n \ge n_0}$ is 7,32,8,2,4,1,1,1 ... so $\forall n \in \mathbb{N} \ n \ge (n_0 + 5) \ w_n = 1$
- 8) If $w_{n_0} = 8$ The sequence $(w_n)_{n \ge n_0}$ is 8,2,4,1,1,1 ... so $\forall n \in \mathbb{N} \ n \ge (n_0 + 3) \ w_n = 1$

9) If $w_{n_0}=9$ The sequence $(w_n)_{n\geq n_0}$ is 9,7,32,8,2,4,1,1,1 ... so $\forall n\in\mathbb{N}\ n\geq (n_0+6)\ w_n=1$

10) If $w_{n_0}=10$ The sequence $(w_n)_{n\geq n_0}$ is 10,10,10 ... so $\forall n\in\mathbb{N}\ n\geq n_0\ w_n=10$

11) If $w_{n_0}=11$ The sequence $(w_n)_{n\geq n_0}$ is 11,11,11 ... so $\forall n\in\mathbb{N}\ n\geq n_0\ w_n=11$

Let $m_0 = n_0 + 6$

So we have $\forall n \in \mathbb{N} \ n \geq m_0 \ w_n = 1 \text{ or } \forall n \in \mathbb{N} \ n \geq m_0 \ w_n = 10 \text{ or } \forall n \in \mathbb{N} \ n \geq m_0 \ w_n = 11$

Since $(w_n)_{n\geq 0}$ is a subsequence of $(v_n)_{n\geq 0}$ We deduce that there exist an integer p_0 such that $v_{p_0}=w_{m_0}$

Since $w_{m_0}=1$ or $w_{m_0}=10$ or $w_{m_0}=11$ we have $v_{p_0}=1$ or $v_{p_0}=10$ or $v_{p_0}=11$

So The sequence $(v_n)_{n\geq p_0}$ is the cycle (1,4) or the cycle (10,40) or the cycle (11,44).

So there exist an integer p_0 such that The sequence $(v_n)_{n \ge p_0}$ is the cycle (1,4) or the cycle (10,40) or the cycle (11,44).

Consequence:

there exist an integer p'_0 such that The sequence $(v_n)_{n \ge p'_0}$ is the cycle (4,1) or the cycle (40,10) or the cycle (44,11).

$$(take p'_0 = p_0 + 1)$$

Lemma3:

in
$$\mathbb{Z}/5\mathbb{Z}$$
 $\forall n \in \mathbb{N}$ $\overline{u_n} = \overline{v_n}$

Proof:

$$\forall \mathbf{n} \in \mathbb{N} \qquad 4u_{(n+1)} = \begin{cases} u_n & \text{, if } u_n = 4k \text{ , } k \in \mathbb{N} \\ 2 \, u_n & \text{, if } u_n = 4k + 2 \text{ , } k \in \mathbb{N} \\ 4(3u_n + 1) & \text{, if } u_n = 4k + 1 \text{ or } u_n = 4k + 3 \text{ , } k \in \mathbb{N} \end{cases}$$

$$\forall \mathbf{n} \in \mathbb{N} \qquad \overline{4u_{(n+1)}} = \begin{cases} \overline{u_n} & \text{, if } u_n = 4k + 3 \text{ , } k \in \mathbb{N} \\ \overline{2 \, u_n} & \text{, if } u_n = 4k + 2 \text{ , } k \in \mathbb{N} \\ \overline{4(3u_n + 1)} & \text{, if } u_n = 4k + 1 \text{ or } u_n = 4k + 3 \text{ , } k \in \mathbb{N} \end{cases}$$

We multiply by $\overline{4}$

$$\forall \mathbf{n} \in \mathbb{N} \ v_{(n+1)} = \left\{ \begin{array}{ll} \frac{v_n}{4} & \text{, if } v_n = 4k \text{, } k \in \mathbb{N} \\ 3v_n + 10 & \text{, if } v_n = 4k + 2 \text{, } k \in \mathbb{N} \\ 3v_n + 1 & \text{, if } v_n = 4k + 1 \text{, } k \in \mathbb{N} \\ 3v_n + 11 & \text{, if } v_n = 4k + 3 \text{, } k \in \mathbb{N} \end{array} \right.$$
 So $\forall \mathbf{n} \in \mathbb{N} \ 4v_{(n+1)} = \left\{ \begin{array}{ll} v_n & \text{, if } v_n = 4k \text{, } k \in \mathbb{N} \\ 4(3v_n + 10) & \text{, if } v_n = 4k + 2 \text{, } k \in \mathbb{N} \\ 4(3v_n + 11) & \text{, if } v_n = 4k + 1 \text{, } k \in \mathbb{N} \\ 4(3v_n + 11) & \text{, if } v_n = 4k + 3 \text{, } k \in \mathbb{N} \end{array} \right.$ So $\forall \mathbf{n} \in \mathbb{N} \ \overline{4v_{(n+1)}} = \left\{ \begin{array}{ll} \overline{v_n} & \text{, if } v_n = 4k \text{, } k \in \mathbb{N} \\ \overline{4(3v_n + 10)} & \text{, if } v_n = 4k + 2 \text{, } k \in \mathbb{N} \\ \overline{4(3v_n + 11)} & \text{, if } v_n = 4k + 2 \text{, } k \in \mathbb{N} \\ \overline{4(3v_n + 11)} & \text{, if } v_n = 4k + 3 \text{, } k \in \mathbb{N} \end{array} \right.$

We multiply by $\bar{4}$

$$\text{So} \ \forall \mathbf{n} \in \mathbb{N} \ \ \overline{16v_{(n+1)}} = \left\{ \begin{array}{ll} \frac{\overline{4v_n}}{16(3v_n+10)} & \text{,} if \ v_n=4k \ , \ k \in \mathbb{N} \\ \frac{\overline{16(3v_n+1)}}{16(3v_n+1)} & \text{,} if \ v_n=4k+2 \ , \ k \in \mathbb{N} \\ \frac{\overline{16(3v_n+1)}}{16(3v_n+11)} & \text{,} if \ v_n=4k+3 \ , \ k \in \mathbb{N} \\ \end{array} \right.$$

$$\text{So} \ \forall \mathbf{n} \in \mathbb{N} \ \ \overline{v_{(n+1)}} = \left\{ \begin{array}{ll} \frac{\overline{4v_n}}{3v_n} & \text{,} if \ v_n=4k \ , \ k \in \mathbb{N} \\ \frac{\overline{3v_n}}{(3v_n+1)} & \text{,} if \ v_n=4k+2 \ , \ k \in \mathbb{N} \\ \frac{\overline{(3v_n+1)}}{(3v_n+1)} & \text{,} if \ v_n=4k+3 \ , \ k \in \mathbb{N} \\ \end{array} \right.$$

Since $\overline{u_0}=\overline{v_0}$ we deduce from (1) and (2) that the sequences $(\overline{u_n})_{n\geq 0}$ and $(\overline{v_n})_{n\geq 0}$ are equal

So in
$$\mathbb{Z}/5\mathbb{Z}$$
 $\forall n \in \mathbb{N}$ $\overline{u_n} = \overline{v_n}$

So there exist a sequence $(s_n)_{n\geq 0}$ with $s_n\in\mathbb{Z}$ such that $\forall n\in\mathbb{N}$ $u_n=v_n+5s_n$

1) if The sequence $(v_n)_{n\geq n_0}$ is the cycle (4,1)

we have
$$\forall \mathbf{p} \in \mathbb{N} \ \begin{cases} u_{(n_0+2p)} = 4 + 5q_p \\ u_{(n_0+2p+1)} = 1 + 5Q_p \end{cases}$$
 where $q_p and \ Q_p \in \mathbb{Z}$

2) if The sequence $(v_n)_{n\geq n_0}$ is the cycle (40,10)

we have
$$\forall \mathbf{p} \in \mathbb{N} \ \begin{cases} u_{(n_0+2p)} = 40 + 5q_p \\ u_{(n_0+2p+1)} = 10 + 5Q_p \end{cases}$$
 where $q_p and \ Q_p \in \mathbb{Z}$

3) if The sequence $(v_n)_{n\geq n_0}$ is the cycle (44,11)

we have
$$\forall \mathbf{p} \in \mathbb{N} \ \begin{cases} u_{(n_0+2p)} = 44 + 5q_p \\ u_{(n_0+2p+1)} = 11 + 5Q_p \end{cases}$$
 where $q_p and \ Q_p \in \mathbb{Z}$

in the case 2) we have $\forall n \geq n_0$ u_n is a multiple of 5 so it is not possible.

in the case 3) we have
$$\forall p \in \mathbb{N} \ \begin{cases} u_{(n_0+2p)} = \ 4+5(q_p+8) \\ u_{(n_0+2p+1)} = 1+5(Q_p+2) \end{cases}$$
 where q_p and $Q_p \in \mathbb{Z}$

So
$$\forall p \in \mathbb{N}$$

$$\begin{cases} u_{(n_0+2p)} = 4 + 5q'_p \\ u_{(n_0+2p+1)} = 1 + 5Q'_p \end{cases}$$
 where q'_p and $Q'_p \in \mathbb{Z}$

So we are in the case 1)

we deduce that:

$$\forall \mathbf{p} \in \mathbb{N} \ \begin{cases} u_{(n_0+2p)} = 4 + 5q_p \\ u_{(n_0+2p+1)} = 1 + 5Q_p \end{cases} \ \text{where} \ q_p and Q_p \in \mathbb{Z}$$

the sequence $(u_n)_{n\geq n_0}$ is in the form :

$$4 + 5q_0, 1 + 5Q_0, 4 + 5q_1, 1 + 5Q_1, 4 + 5q_2, 1 + 5Q_2, \dots \dots$$

1) if
$$q_p = 4k_p$$
 , $k_p \in \mathbb{Z}$

$$u_{(n_0+2p)} = 4 + 5q_p = 4 + 20k_p$$

So
$$u_{(n_0+2p+1)}=\frac{u_{(n_0+2p)}}{4}=1+5k_p$$
 wich is of the form $1+5Q_p$

2) if
$$q_p = 4k_p + 1$$
 , $k_p \in \mathbb{Z}$

$$u_{(n_0+2p)} = 4 + 5q_p = 4 + 5(4k_p + 1) = 9 + 20k_p$$

So
$$u_{(n_0+2\nu+1)} = 3u_{(n_0+2\nu)} + 1 = 3(9+20k_\nu) + 1 = 28+60k_\nu = 3+5(5+12k_\nu)$$

wich is not of the form $1 + 5Q_p$

So
$$q_n \neq 4k_n + 1$$

3) if
$$q_n = 4k_n + 2$$
 , $k_n \in \mathbb{Z}$

$$u_{(n_0+2p)} = 4 + 5q_p = 4 + 5(4k_p + 2) = 14 + 20k_p$$

So
$$u_{(n_0+2p+1)} = \frac{u_{(n_0+2p)}}{2} = 7 + 10k_p = 2 + 5(1+2k_p)$$
 wich is not of the form $1+5Q_p$

So
$$q_p \neq 4k_p + 2$$

4) if
$$q_n = 4k_n + 3$$
 , $k_n \in \mathbb{Z}$

$$u_{(n_0+2n)} = 4 + 5q_n = 4 + 5(4k_n + 3) = 19 + 20k_n$$

So
$$u_{(n_0+2p+1)} = 3u_{(n_0+2p)} + 1 = 3(19+20k_p) + 1 = 58+60k_p = 3+5(11+12k_p)$$

wich is not of the form $1 + 5Q_p$

So
$$q_p \neq 4k_p + 3$$

we deduce that $\forall p \in \mathbb{N} \ q_p = 4k_p \ k_p \in \mathbb{Z}$

So

$$\forall \mathbf{p} \in \mathbb{N} \ \begin{cases} u_{(n_0+2p)} = 4 + 20k_p \\ u_{(n_0+2p+1)} = 1 + 5k_p \end{cases} \ \text{where} \ k_p \in \mathbb{Z}$$

the sequence $(u_n)_{n\geq n_0}$ is in the form :

$$4 + 20k_0$$
, $1 + 5k_0$, $4 + 20k_1$, $1 + 5k_1$, $4 + 20k_2$, $1 + 5k_2$,

By the same way

1) if
$$k_p = 4k'_p$$
 , $k'_p \in \mathbb{Z}$

$$u_{(n_0+2p+1)} = 1 + 5k_p = 1 + 20k'_p$$

So
$$u_{(n_0+2p+2)} = 3u_{(n_0+2p+1)} + 1 = 3(1+20k'_p) + 1 = 4+60k'_p$$
 wich is of the form $4+20k_{(p+1)}$

2) if
$$k_p = 4k'_p + 1$$
 , $k'_p \in \mathbb{Z}$

$$u_{(n_0+2p+1)} = 1 + 5k_p = 1 + 5(4k'_p + 1) = 6 + 20k'_p$$

So
$$u_{(n_0+2p+2)} = \frac{u_{(n_0+2p+1)}}{2} = 3 + 10k'_p$$
 wich is not of the form $4 + 20k_{(p+1)}$ (because it is odd)

So
$$k_p \neq 4k'_p + 1$$

3) if
$$k_p = 4k'_p + 2$$
 , $k'_p \in \mathbb{Z}$

$$u_{(n_0+2p+1)} = 1 + 5k_p = 1 + 5(4k'_p + 2) = 11 + 20k'_p$$

So
$$u_{(n_0+2p+2)} = 3u_{(n_0+2p+1)} + 1 = 3(11+20k'_p) + 1 = 34+60k'_p = 14+20(1+3k'_p)$$

wich is not of the form $4 + 20k_{(p+1)}$

So
$$k_p \neq 4k'_p + 2$$

4) if
$$k_p = 4k'_p + 3$$
 , $k'_p \in \mathbb{Z}$

$$u_{(n_0+2p+1)} = 1 + 5k_p = 1 + 5(4k'_p + 3) = 16 + 20k'_p$$

So
$$u_{(n_0+2p+2)} = \frac{u_{(n_0+2p+1)}}{4} = 4 + 5k'_p$$

Since $u_{(n_0+2p+2)}$ is in the form $4+20k_{(p+1)}$ we have $k'_p=4k''_p$, $k''_p\in\mathbb{Z}$ (where $k''_p=k_{(p+1)}$)

So
$$k_p = 16k''_p + 3$$

Since
$$\forall \mathbf{p} \in \mathbb{N}$$
 $\begin{cases} u_{(n_0+2p)} = 4 + 20k_p \\ u_{(n_0+2p+1)} = 1 + 5k_p \end{cases}$ where $k_p \in \mathbb{Z}$

We deduce that for each $p \in \mathbb{N}$ we have the following two cases :

1) if $k_p = 4k'_p$ we have:

$$\begin{cases} u_{(n_0+2p)} = 4 + 80 {k'}_p \\ u_{(n_0+2p+1)} = 1 + 20 {k'}_p \end{cases} \text{ where } {k'}_p \in \mathbb{Z}$$

2) if $k_p = 16k''_p + 3$ we have :

$$\begin{cases} u_{(n_0+2p)} = 64 + 320k''_p \\ u_{(n_0+2p+1)} = 16 + 80k''_p \end{cases} \text{ where } k''_p \in \mathbb{Z}$$

So $\forall p \in \mathbb{N}$ we have :

$$\begin{cases} u_{(n_0+2p)} = 4 + 80k'_p \\ u_{(n_0+2p+1)} = 1 + 20k'_p \end{cases} \text{ where } k'_p \in \mathbb{Z} \qquad \text{or} \quad \begin{cases} u_{(n_0+2p)} = 64 + 320k''_p \\ u_{(n_0+2p+1)} = 16 + 80k''_p \end{cases} \text{ where } k''_p \in \mathbb{Z}$$

Since $(u_n)_{n\geq 0}$ is a sequence of strictly positive integers we have :

$$\forall \mathbf{p} \in \mathbb{N} \quad \begin{cases} u_{(n_0+2p)} = 4 + 80k'_p \\ u_{(n_0+2p+1)} = 1 + 20k'_p \end{cases} \quad \text{where } k'_p \in \mathbb{N} \qquad \text{or} \quad \begin{cases} u_{(n_0+2p)} = 64 + 320k''_p \\ u_{(n_0+2p+1)} = 16 + 80k''_p \end{cases} \quad \text{where } k''_p \in \mathbb{N}$$

So $\forall n \in \mathbb{N} \ n \geq n_0 \ u_n \ is \ multiple \ of \ 4 \ or \ odd \ of \ the \ form \ 1 + 20k'_n$

So
$$\forall n \in \mathbb{N} \ n \geq n_0 \ u_{(n+1)} = \frac{u_n}{4} \ or \ u_{(n+1)} = 3u_n + 1 \ \text{where} \ (3u_n + 1) \ \text{is multiple of} \ 4$$

Let $(x_n)_{n\geq n_0}$ the subsequence of the sequence $(u_n)_{n\geq n_0}$ where we keep all terms of $(u_n)_{n\geq n_0}$ except the terms following the odd terms of $(u_n)_{n\geq n_0}$ (the terms $(3u_n+1)$ where u_n in the form $1+20k'_p$)

We skip the term $(3u_n+1)$ and we keep the next term $\frac{3u_n+1}{4}$

 $\forall n \in \mathbb{N} \ n \geq n_0 \ x_n$ is multiple of 4 or odd of the the form $(1+20k'_p) \ k'_p \in \mathbb{N}$

$$\text{the sequence } (x_n)_{n \geq n_0} \text{ satisfies } x_{n_0} = u_{n_0} \text{ and } \forall n \in \mathbb{N} \ \ n \geq n_0 \quad x_{(n+1)} = \begin{cases} \frac{x_n}{4} & \text{if } x_n \text{ is multiple } 0f \ 4\\ \frac{(3x_n+1)}{4} & \text{if } x_n \text{ is odd} \end{cases}$$

 $(x_n)_{n\geq n_0}$ is a sequence of strictly positive integers

We have
$$\forall n \in \mathbb{N} \ n \ge n_0 \ x_{(n+1)} = \frac{x_n}{4} \ or \ x_{(n+1)} = \frac{(3x_n+1)}{4}$$

So
$$\forall n \in \mathbb{N} \ n \ge n_0 \quad x_{(n+1)} \le \frac{(3x_n+1)}{4}$$

So
$$\forall n \in \mathbb{N} \ n \ge n_0 \ 4 x_{(n+1)} \le 3x_n + 1$$

So
$$\forall n \in \mathbb{N} \ n \ge n_0 \ 4(x_{(n+1)} - 1) \le 3(x_n - 1)$$

So
$$\forall n \in \mathbb{N} \ n \ge n_0 \ \left(x_{(n+1)} - 1 \right) \le \frac{3}{4} (x_n - 1)$$

So
$$\forall n \in \mathbb{N} \ n \ge n_0 \ (x_n - 1) \le \left(\frac{3}{4}\right)^{(n - n_0)} (x_{n_0} - 1)$$

So
$$\forall n \in \mathbb{N} \ n \ge n_0 \ 0 \le (x_n - 1) \le \left(\frac{3}{4}\right)^{(n - n_0)} (x_{n_0} - 1)$$

So
$$\lim_{n\to+\infty} x_n = 1$$

Since $(x_n)_{n\geq n_0}$ is a sequence of strictly positive integers we deduce that :

There exist $n'_0 \in \mathbb{N}$ $n'_0 \ge n_0$ such that $\forall n \in \mathbb{N}$ $n \ge n'_0$ $x_n = 1$

Since $(x_n)_{n\geq n_0}$ is a subsequence of the sequence $(u_n)_{n\geq n_0}$

So also $(x_n)_{n\geq n_0}$ is a subsequence of the sequence $(a_n)_{n\geq 0}$

we deduce that there exist $N_0 \in \mathbb{N}$ such that $a_{N_0} = 1$

So The sequence $(a_n)_{n\geq N_0}$ is the cycle (1,4,2).