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Abstract

As shown in the famous Dyson’s paper ”Missed Opportuni-
ties”, even from purely mathematical considerations (without
any physics) it follows that Poincare quantum symmetry is a
special degenerate case of de Sitter quantum symmetries. Then
the question arises why in particle physics Poincare symmetry
works with a very high accuracy. The usual answer to this
question is that a theory in de Sitter space becomes a the-
ory in Minkowski space in the formal limit when the radius
of de Sitter space tends to infinity. However, de Sitter and
Minkowski spaces are purely classical concepts, and in quan-
tum theory the answer to this question must be given only in
terms of quantum concepts. At the quantum level, Poincare
symmetry is a good approximate symmetry if the eigenvalues
of the representation operators M4µ of the anti-de Sitter al-
gebra are much greater than the eigenvalues of the operators
Mµν (µ, ν = 0, 1, 2, 3). We show that explicit solutions with
such properties exist within the framework of the approach
proposed by Flato and Fronsdal where elementary particles in
the standard theory are bound states of two Dirac singletons.

Keywords: irreducible representations; de Sitter supersymmetry;
Dirac supersingletons; accuracy of Poincare symmetry

1 Problem statement

In the literature, relativistic (Poincare) symmetry in quantum field
theory (QFT) is usually explained as follows. Since Poincare group is
the group of motions of Minkowski space, the system under consid-
eration should be described by unitary representations of this group.
This implies that the representation generators commute according to
the commutation relations of the Poincare group Lie algebra:

[P µ, P ν ] = 0, [P µ,Mνρ] = −i(ηµρP ν − ηµνP ρ),

[Mµν ,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (1)
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where µ, ν = 0, 1, 2, 3, ηµν = 0 if µ 6= ν, η00 = −η11 = −η22 = −η33 =
1, P µ are the four-momentum operators and Mµν are the Lorentz
angular momentum operators. This approach is in the spirit of the
Erlangen Program proposed by Felix Klein in 1872 when quantum
theory did not yet exist. However, although the Poincare group is
the group of motions of Minkowski space, the description (1) does not
involve this group and this space.

As noted in [1, 2], in quantum theory, background space is only
a mathematical concept because here each physical quantity should
be described by an operator but there are no operators for the co-
ordinates of background space. There is no law that every physical
theory must involve a background space. For example, it is not used in
nonrelativistic quantum mechanics and in relativistic quantum theory
for describing irreducible representations (IRs) for elementary parti-
cles. In particle theory, transformations from the Poincare group are
not used because, according to the Heisenberg S-matrix program, it
is possible to describe only transitions of states from the infinite past
when t → −∞ to the distant future when t → +∞. In this theory,
systems are described by observable physical quantities — momenta
and angular momenta. So, symmetry at the quantum level is defined
not by a background space and its group of motions but by commu-
tation relations of the symmetry algebra (see [1, 2] for more details).
In particular, Eqs. (1) can be treated as the definition of Poincare
invariance at the quantum level.

In his famous paper ”Missed Opportunities” [3] Dyson notes that:

• a) Relativistic quantum theories are more general than nonrela-
tivistic quantum theories even from purely mathematical consid-
erations because Poincare group is more symmetric than Galilei
one: the latter can be obtained from the former by contraction
c→∞.

• b) de Sitter (dS) and anti-de Sitter (AdS) quantum theories are
more general than relativistic quantum theories even from purely
mathematical considerations because dS and AdS groups are
more symmetric than Poincare one: the latter can be obtained
from the former by contraction R→∞ where R is a parameter
with the dimension length, and the meaning of this parameter
will be explained below.
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• c) At the same time, since dS and AdS groups are semisim-
ple, they have a maximum possible symmetry and cannot be
obtained from more symmetric groups by contraction.

As noted above, symmetry at the quantum level should be de-
fined in terms of Lie algebras, and in [2], the statements a)-c) have
been reformulated in such terms. It has also been shown that the fact
that quantum theory is more general than classical theory follows even
from purely mathematical considerations because formally the classi-
cal symmetry algebra can be obtained from the symmetry algebra in
quantum theory by contraction h̄ → 0. For these reasons, the most
general description in terms of ten-dimensional Lie algebras should be
carried out in terms of quantum dS or AdS symmetry.

The definition of those symmetries is as follows. If Mab (a, b =
0, 1, 2, 3, 4, Mab = −M ba) are the angular momentum operators for
the system under consideration, they should satisfy the commutation
relations:

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (2)

Here the tensor ηab is such that ηab = ηab, η
ab = 0 if a 6= b, η00 =

−η11 = −η22 = −η33 = 1, η44 = ∓1 for the dS and AdS symmetries,
respectively, and this tensor is used to raise and lower the indices of
operators Mab.

Although the dS and AdS groups are the groups of motions of dS
and AdS spaces, respectively, the description in terms of (2) does not
involve those groups and spaces, and it is a definition of dS and AdS
symmetries at the quantum level (see the discussion in [1, 2]).

The procedure of contraction from dS or AdS symmetry to Poincare
one is defined as follows. If we define the momentum operators P µ as
P µ = M4µ/R (µ = 0, 1, 2, 3) then in the formal limit when R → ∞,
M4µ → ∞ but the quantities P µ are finite, Eqs. (2) become Eqs.
(1). Here R is a parameter which has nothing to do with the dS and
AdS spaces. As seen from Eqs. (2), quantum dS and AdS theories
do not involve the dimensional parameters (c, h̄, R) because (kg,m, s)
are meaningful only at the macroscopic level.

At the classical (non-quantum) level, the transition from dS or AdS
symmetry to Poincare one is explained as follows. When the radius R
of dS or AdS space becomes infinitely large, the angular momentum
M of a particle moving in this space also becomes infinitely large.
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In the formal limit R → ∞ when dS or AdS space transforms into
flat Minkowski space, the motion of a particle in such space must be
described by momentum p = M/R which is finite in this limit.

One can raise the question why Poincare symmetry works with high
accuracy in particle physics. At the classical level, the explanation of
this fact is that we live in dS or AdS space whose radius R is very
large. However, as noted above, the concept of background space is
purely classical. Therefore, the question arises whether the answer
to the above question can be given within the framework of purely
quantum theory, without involving classical concepts. As follows from
the above definition of contraction from dS or AdS algebra to Poincare
one, Poincare invariance works with a high accuracy, provided that in
nature such states play the major role in which the eigenvalues of the
operators M4µ are much greater than the eigenvalues of the operators
Mµν (µ, ν=0,1,2,3). In this paper, we propose a scenario that describes
such a situation.

The paper is organized as follows. In Sec. 2 we explain why
supersymmetric AdS symmetry is more general (fundamental) than
standard AdS symmetry. In Sec. 3 we describe how the CPT trans-
formation works at the quantum level. In Sec. 4 we explicitly describe
the construction of the IR for Dirac supersingletons and explicit rela-
tions between representation operators in this IR and representation
operators of the AdS algebra. Then in Sec. 5 it is explicitly shown
that there exist scenarios when Poincare symmetry works with a high
accuracy.

2 Supersymmetry

A problem discussed in a wide literature is that supersymmetric gen-
eralization exists in the AdS case but does not exist in the dS one. As
shown in [4], in standard quantum theory (over the field of complex
numbers), dS symmetry is more general than AdS one, and it may be
a reason why supersymmetry has not been discovered yet. However,
as shown in [2], standard quantum theory is a special degenerate case
of a quantum theory over a finite ring of field (FQT) of characteristic
p in a formal limit p→∞, and in FQT, dS and AdS symmetries are
equivalent.

From the formal point of view, representations of the AdS so(2,3)
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superalgebra osp(1,4) are similar to representations of the Poincare
superalgebra because they are also described by 14 operators — ten
representation operators of the so(2,3) algebra and four fermionic op-
erators. There are three types of relations: the operators of the so(2,3)
algebra commute with each other as usual (see Eqs. (2)), anticommu-
tators of the fermionic operators are linear combinations of the so(2,3)
operators and commutators of the latter with the fermionic operators
are their linear combinations. However, in fact, representations of
the osp(1,4) superalgebra can be described exclusively in terms of the
fermionic operators. The matter is as that in the general case, the
anticommutators of four operators form ten independent linear com-
binations. Therefore, ten bosonic operators can be expressed in terms
of fermionic ones. This is not the case for the Poincare superalgebra
since the Poincare algebra operators are obtained from the so(2,3) ones
by contraction. One can say that the representations of the osp(1,4)
superalgebra is an implementation of the idea that supersymmetry is
the extraction of the square root from the usual symmetry (by analogy
with the treatment of the Dirac equation as a square root from the
Klein-Gordon equation).

We use (d′1, d
′
2, d
′′
1, d
′′
2) to denote the fermionic operators of the

osp(1,4) superalgebra. They should satisfy the following relations.
If (A,B,C) are any fermionic operators, [...,...] is used to denote a
commutator and {..., ...} to denote an anticommutator then

[A, {B,C}] = F (A,B)C + F (A,C)B (3)

where the form F (A,B) is skew symmetric, F (d′j, dj”) = 1 (j = 1, 2)
and the other independent values of F (A,B) are equal to zero.

As shown by various authors (see e.g., [2, 5]), the operators Mab

in Eqs. (2) can be expressed through bilinear combinations of the
fermionic operators as follows:

h1 = {d′1, d′′1}, h2 = {d′2, d′′2}, M04 = h1 + h2, M12 = Lz = h1 − h2
L+ = {d′2, d′′1}, L− = {d′1, d′′2}, M23 = Lx = L+ + L−

M31 = Ly = −i(L+ − L−), M14 = (d′′2)2 + (d′2)
2 − (d′′1)2 − (d′1)

2

M24 = i[(d′′1)2 + (d′′2)2 − (d′1)
2 − (d′2)

2]

M34 = {d′1, d′2}+ {d′′1, d′′2}, M30 = −i[{d′′1, d′′2} − {d′1, d′2}]
M10 = i[(d′′1)2 − (d′1)

2 − (d′′2)2 + (d′2)
2]

M20 = (d′′1)2 + (d′′2)2 + (d′1)
2 + (d′2)

2 (4)

5



where L = (Lx, Ly, Lz) is the standard operator of three-dimensional
rotations.

The fact that the representation of the osp(1,4) superalgebra is
fully defined by Eqs. (3,4) and the properties of the form F (., .),
shows that osp(1,4) is a special case of the superalgebra.

We require the existence of the generating vector e0 satisfying the
conditions :

d′je0 = d′2d
′′
1e0 = 0, d′jd

′′
j e0 = qje0 (j = 1, 2) (5)

These conditions are written exclusively in terms of the d operators.
The full representation space can be obtained by successively acting
by the fermionic operators on e0 and taking all possible linear combi-
nations of such vectors. The theory of self-adjoint IRs of the osp(1,4)
algebra has been developed by several authors (see e.g., [5]), and in
[2] this theory has been generalized to the case of FQT.

3 CPT transformation in osp(1,4) invari-

ant theory

In Poincare invariant particle theory, the CPT transformation is con-
sidered the most general discrete spacetime transformation. Based on
what was said in Sec. 1, at the quantum level, this transformation
should be considered not from the point of view of Minkowski space,
but at the operator level. We use θ to denote the operator correspond-
ing to the classical CPT transformation. As Wigner noted [6], since
the sign of the energy must remain positive under the θ transforma-
tion, the operator θ must be not unitary, but antiunitary, that is, it
can be represented as θ = βK where β is a unitary operator, and
K is the complex conjugation operator. As shown by Schwinger [7],
the problem of the sign of energy can also be solved if instead of the
antiunitary transformation the transpose operation is used. In this
work we use Wigner’s approach.

As shown by Wigner [6] (see also [8]), transformation θ transforms
the representation operators of the Poincare algebra in Eq. (1) as

θPµθ
−1 = Pµ, θMµνθ

−1 = −Mµν (6)

The question arises of how to generalize these relationships to the case
of dS and AdS theories and, as noted in Sec. 1, this generalization
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should not involve dS and AdS spaces. The issue of CPT transforma-
tion in such theories has been considered by many authors. However,
to the best of our knowledge, these authors considered the CPT trans-
formation only from the point of view of transformations of fields on
the dS and AdS spaces and did not consider a direct generalization of
Eq. (6). Moreover, as noted in Sec. 2, the superalgebra osp(1,4) is
a generalization of the algebra so(2,3) to the case of supersymmetry,
and, to the best of our knowledge, Eqs. (6) have not been generalized
to representations of this superalgebra.

For this purpose, it is necessary to define how the operator θ trans-
forms the operators (d′1, d

′
2, d
′′
1, d
′′
2). We define such a transformation

as follows:

θd′1θ
−1 = −id′2, θd′2θ−1 = id′2, θd

′′
1θ
−1 = id′′2, θd

′′
2θ
−1 = −id′′1 (7)

It is easy to see that the second of these relations follows from the
first, and the fourth follows from the third, taking into account the
fact that the operator θ is antiunitary.

Now, based on Eqs. (4) and (7) we conclude that

θM4µθ
−1 = M4µ, θMµνθ

−1 = −Mµν , µ, ν = 0, 1, 2, 3 (8)

and this is a generalization of Eq. (6) to the case of representations
of the algebra so(2,3) because, as noted in Sec. 1, when contracting
representations of the algebra AdS into representations of the Poincare
algebra, the operators Mµν are not affected, and the operators M4µ go
into Pµ. This result is also natural from the observation that, as it is
easy to see, Eqs. (2) are invariant under substitutions

M4µ →M4µ, Mµν → −Mµν , i→ −i

That these substitutions involve i→ −i follows from the fact that the
operator θ is antiunitary.

4 Dirac supersingleton

When describing elementary particles within the framework of AdS
symmetry, the following problems arise.

If m is the mass of a particle in Poincare invariant theory then
its mass µ in AdS theory is dimensionless and the relation between
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µ and m is µ = mR where R is the contraction parameter for the
transition from AdS to Poincare symmetry. As explained in [4], R has
nothing to do with the radius of classical AdS space, R is fundamental
to the same extent as c and h̄, and the problem why the value of R
is as is does not arise. The data on cosmological acceleration show
that, at the present stage of the universe, R is of the order of 1026m
[4]. Therefore, even for elementary particles, the AdS masses are very
large. For example, the AdS masses of the electron, the Earth and the
Sun are of the order of 1039, 1093 and 1099, respectively. The fact that
even the AdS mass of the electron is so large might be an indication
that the electron is not a true elementary particle. In addition, the
present upper level for the photon mass is 10−17ev or less. This value
seems to be an extremely tiny quantity. However, the corresponding
AdS mass is of the order of 1016 and so, even the mass which is treated
as extremely small in Poincare invariant theory might be very large in
AdS invariant theory.

As shown in [4], in standard quantum theory, dS symmetry is
more general than AdS one but in the framework of dS symmetry it
is not possible to describe neutral elementary particles, i.e., particles
which are equivalent to the their antiparticles. In FQT, dS and AdS
symmetries are equivalent and, as shown in [2], in this theory also there
are no neutral elementary particles. In particular, even the photon is
not elementary.

This problem has been discussed by several authors. In Stan-
dard Model (based on Poincare invariance) only massless particles
are treated as elementary. However, as shown in the seminal paper by
Flato and Fronsdal [9] (see also [10]), in standard AdS theory, each
massless IR can be constructed from the tensor product of two sin-
gleton IRs discovered by Dirac in his paper [11] titled ”A Remarkable
Representation of the 3 + 2 de Sitter group”, and the authors of [9]
believe that this is indeed a truly remarkable property.

The IR describing the supersingleton is constructed as follows. In
Eq. (5), we choose q1 and q2 the same and equal q0 where q0 = 1/2
in standard theory over complex numbers and q0 = (p+ 1)/2 in FQT,
where p is the characteristic of the field or ring and, in the latter case,
p is odd.

The authors of [9] and other publications treat singletons as true
elementary particles because their weight diagrams has only a single
trajectory (that’s why the corresponding IRs are called singletons).

8



However, one should answer the following questions:

• a) Why singletons have not been observed yet.

• b) Why such massless particles as photons and others are stable
and their decays into singletons have not been observed.

There exists a wide literature (see e.g., [12, 13] and references therein)
where this problem is investigated from the point of view of stan-
dard AdS QFT. For example, in AdS QFT, singleton fields live on
the boundary at infinity of the AdS bulk (boundary which has one
dimension less than the bulk). However, as noted in Sec. 1, the expla-
nation in the framework of quantum theory should not involve classical
spaces.

In standard theory, an IR characterized by (q1, q2) can be con-

structed from tensor products of two IRs characterized by (q
(1)
1 , q

(1)
2 )

and (q
(2)
1 , q

(2)
2 ) only if q1 ≥ (q

(1)
1 + q

(2)
1 ) and q2 ≥ (q

(1)
2 + q

(2)
2 ). Since no

interaction is assumed, a problem arises whether a particle constructed
from a tensor product of other two particles will be stable. In standard
theory, a particle with the mass m can be a stable composite state of
two particles with the masses m1 and m2 only if m < (m1 + m2)
and the quantity (m1 + m2 −m)c2 is called the binding energy. The
greater the binding energy is the more stable is the composite state
with respect to external interactions.

As argued in [2], in FQT, the properties of Dirac singletons are
even more remarkable than in standard theory. Here the eigenvalues
of the operators h1 and h2 for singletons in FQT are (p + 1)/2, (p +
3)/2, (p+ 5)/2..., i.e., huge numbers if p is huge. Hence Poincare limit
for Dirac singletons in FQT has no physical meaning and they cannot
be observable.

For answering question b) we note the following. In standard the-
ory, the binding energy is a measure of stability: the greater the bind-
ing energy is, the greater is the probability that the bound state will
not decay into its components under the influence of external forces.

If a massless particle is a composite state of two Dirac singletons,
and the eigenvalues of the operators h1 and h2 for the Dirac single-
tons in FQT are (p + 1)/2, (p + 3)/2, (p + 5)/2... then, since in FQT
the eigenvalues of these operators should be taken modulo p, the cor-
responding eigenvalues for the massless particle are 1, 2, 3.... Hence
an analog of the binding energy for the operators h1 and h2 is p,
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i.e., a huge number. This phenomenon can take place only in FQT:
although, from the formal point of view, the Dirac singletons com-
prising the massless state do not interact with each other, the analog
of the binding energy for the operators h1 and h2 is huge. In other
words, the fact that all the quantities in FQT are taken modulo p
implies a very strong effective interactions between the singletons. It
explains why the massless state does not decay into Dirac singletons
and why free Dirac singletons effectively interact pairwise for creating
their bound state.

As noted in the literature on singletons (see e.g., the review [12]
and references therein), the possibility that only singletons are true
elementary particles but they are not observable has some analogy
with quarks. However, the analogy is not full. According to Quantum
Chromodynamics, forces between quarks at large distances prevent
quarks from being observable in free states. In FQT, Dirac singletons
cannot be in free states even if there is no interaction between them;
the effective interaction between Dirac singletons arises as a conse-
quence of the fact that FQT is based on arithmetic modulo p. In
addition, quarks and gluons are used for describing only strongly in-
teracting particles while in standard AdS theory and in FQT, quarks,
gluons, leptons, photons, W and Z bosons can be constructed from
Dirac singletons.

In standard AdS theory, there exist four Dirac singletons which
in the literature are called Di singleton, Rac singleton and their an-
tiparticles. In the case of supersymmetry, Di and Rac singletons are
combined into one superparticle - the Dirac supersingleton, so that
there are two supersingletons - the Dirac supersingleton and its an-
tiparticle. However, in FQT those supersingletons are combined into
one object and so there is only one supersingleton. Here, one of the
remarkable properties of supersingletons is the following. The phys-
ical meaning of division comes from classical physics, which assumes
that every object can be divided into any arbitrarily large number
of arbitrarily small parts. However, standard division loses its stan-
dard physical meaning when we reach the level of elementary particles
since, for example, the electron cannot be divided into two, three, and
so on parts. As shown in [2], in FQT, the theory of singletons can
be built over a ring in which there is no division, but only addition,
subtraction and multiplication.

As shown in [2], the operators d′′1 and d′′2 commute in the space
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of the supersingleton IR. The basis of this IR can be chosen as [2]
e(j, k) = (d′′1)j(d′′2)ke0 where j, k = 0, 1, ...∞ in standard theory and
j, k = 0, 1, ...p− 1 in FQT. Then it can be shown [2] that

d′1e(j, k) =
1

2
je(j − 1, k), d′2e(j, k) =

1

2
ke(j, k − 1) (9)

in standard theory, and 1
2

should be replaced by (p+ 1)/2 in FQT.
The important property of supersingletons is that the above re-

sults can be immediately generalized to the case of higher dimensions.
Consider a superalgebra defined by the set of operators (d′j, d

′′
j ) where

j = 1, 2, ...J and formally any triplet of the operators (A,B,C) sat-
isfies the commutation-anticommutation relation Eq. (3) where the
form F (A,B) is skew symmetric, F (d′j, d

′′
j ) = 1 (j = 1, 2, ...J) and the

other independent values of F (A,B) are equal to zero. The higher-
dimensional analog of the supersingleton IR can now be defined such
that the representation space contains a vector e0 satisfying the con-
ditions

d′je0 = 0, d′jd
′′
j e0 =

1

2
e0 (j = 1, 2, ...J)

in standard theory and 1
2

should be replaced by (p+1)/2 in FQT. The
basis of the representation space can be chosen in the form

e(n1, n2, ...nJ) = (d′′1)n1(d′′2)n2 · · · (d′′J)nJe0

where the operators (d′′1, ...d
′′
J) mutually commute on the representa-

tion space. The fact that singleton physics can be directly generalized
to the case of higher dimensions has been indicated by several authors
(see e.g., [12] and references therein). It is interesting to explore the
possibility that spatial and internal quantum numbers are combined
within the framework of the theory of supersingletons in which J > 2.

5 Why Poincare symmetry in particle the-

ory works with high accuracy

Now we can consider the problem posed in Sec. 1: why in particle
theory, the eigenvalues of the operators M4µ are much greater than
the eigenvalues of the operators Mµν (µ, ν=0,1,2,3). As noted in Sec.
1, this problem must be solved exclusively within the framework of
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quantum theory, without involving such classical concepts as dS or
AdS space.

Let us first consider the case of neutral particles, which are con-
sidered elementary in the standard theory. As noted in Sec. 4, the
standard theory has problems describing such particles, and in FQT
neutral particles cannot be elementary. Therefore, based on the com-
ments in Sec. 4, it is natural to consider the case when such particles
are bound states of two sigletons. In this case, it is natural to treat
the sigletons in the bound state are antiparticles for each other.

Therefore, if the first singleton is considered a particle for which
representations of the AdS algebra are described by the operators
(2), then the second singleton is naturally considered an antiparticle
for which representations of the AdS algebra are described by the
operators (2) transformed using the operator θ, i.e., by the operators
(8).

The osp(1,4) superalgebra representation for a system of two su-
persingletons is the tensor product of the representations for supers-
ingletons 1 and 2, and the representation operators are the sums of
the corresponding operators: Mab = M

(1)
ab + M

(2)
ab . This means that if

Ψ1 is the state of the first supersingleton, and Ψ2 is the state of the
second supersingleton, which is the antiparticle for the first, then the
operator Mab acts on the tensor product of these supersingletons as

Mab(Ψ1 ×Ψ2) = (M
(1)
ab Ψ1 ×Ψ2) + (Ψ1 ×M (2)

ab Ψ2) (10)

The question arises under what conditions a system consisting of
such supersingletons can be described in the framework of Poincare
symmetry with a high accuracy. As noted above, a necessary condi-
tion for this is that for the system as a whole, the eigenvalues of the
operators M4µ must be much greater than the eigenvalues of the op-

erators Mµν . Since the operators M
(1)
ab and M

(2)
ab are selfadjoined, all

their eigenvalues are real. As follows from Eq. (8), if M
(2)
ab = θM

(1)
ab θ

−1

then the operators M
(1)
4µ and M

(2)
4µ have the same set of eigenvalues and

the sets of eigenvalues for the operators M (1)
µν and M (2)

µν differ by sign.
Also, the question arises what the states of two supersingletons

must be to combine them into one particle, which is considered ele-
mentary in the standard theory. Since a system of two supersingletons
is described by the tensor product of single supersingleton representa-
tions, then, from the point of view of standard theory, supersingletons
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do not interact with each other, but, as noted in Sec. 4, in FQT they
actually interact. Nevertheless, it is natural to think that supersigle-
tons in a bound state have close four momenta and are close to each
other, that is, they have approximately the same coordinates.

As noted in Sec. 1, if dS or AdS symmetry works with good
accuracy, then the operators Pµ are obtained from M4µ by contrac-
tion. Therefore, it is natural to expect that for supersingletons in the
bound state, the operators M4µ have close eigenvalues. In particular,

if Ψ2 = θΨ1 and for some value of µ, M
(1)
4µ Ψ1 = λ1Ψ1 then, as follows

from Eqs. (8), M
(2)
4µ Ψ2 = λ1Ψ2 and therefore, as follows from Eq. (10)

M4µ(Ψ1 ×Ψ2) = 2λ1(Ψ1 ×Ψ2) (11)

Also, Ψ1 and Ψ2 = θΨ1 can be treated as the states having the
same coordinates. As discussed e.g., in [14], the position operators
can be constructed from the operators Mµν . Therefore if for some
values of µ and ν, M (1)

µν Ψ1 = λ2Ψ1 then, as follows from Eqs. (8),

M (2)
µν Ψ2 = −λ2Ψ2 and therefore, as follows from Eq. (10)

Mµν(Ψ1 ×Ψ2) = 0 (12)

Now we have a natural explanation of the fact that, for a sys-
tem consisting from supersingleton and antisupersingleton in a bound
state, the eigenvalues of the operators M4µ are much greater than
the eigenvalues of the operators Mµν : as follows from Eqs. (8,11,12),
the eigenvalues of operators M4µ for individual supersingletons are in-
cluded in the two-particle operators M4µ with the same signs, while
the eigenvalues of the operators Mµν - with different ones. Therefore,
we have a natural explanation of the fact that for a particle consisting
from supersingleton and antisupersingleton, Poincare symmetry works
with high accuracy.

Let us now consider the case when supersingletons entering a bound
state are not antiparticles for each other. Then the IR of the AdS alge-
bra for each supersingleton in a bound state is described by operators
satisfying the relations (2) and there is no need to use the operator
θ. Even when we work in FQT and consider states of supersingletons
in which the quantum numbers j, k are much less than p, then, with
high accuracy, we can apply standard mathematics. We assume that,
although the numbers j, k can be very large, they are still much less
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than p. Therefore, in what follows we consider Dirac supersingletons
only within the framework of standard mathematics.

We now treat (d′1, d
′
2, d
′′
1, d
′′
2) as the operators in the Hilbert space

related by Hermitian conjugation as (d′1)
∗ = d′′1 and (d′2)

∗ = d′′2. Then,
as follows from Eq. (9), the norm squared of e(j, k) equals

||e(j, k)||2 =
j!k!

2j+k
(13)

and the normalized basis vectors can be defined asn

ẽ(j, k) = (
2j+k

j!k!
)1/2e(j, k) (14)

In particle scattering experiments, the four-momenta and coor-
dinates of initial and final particles are known with great accuracy.
Therefore, these particles are described with good accuracy in the
semiclassical approximation. In this case, the supersingleton wave
functions

∑
jk c(j, k)ẽ(j, k) are such that the coefficients c(j, k) are

not equal to zero only at j ∈ (j1, j2), k ∈ (k1, k2) where j2 − j1 �
j1, k2 − k1 � k1 and the values of |c(j, k)| at such j, k are approxi-
mately the same. We define the angular dependence of the coefficients
as c(j, k) = |c(j, k)|exp[i(j + k)χ + i(j − k)ϕ]. Then taking into ac-
count Eqs. (4,9,14) and the definition of the basis elements and the
coefficients c(j, k), direct calculation shows that, in semiclassical ap-
proximation, the operators Mab can be replaced by their numerical
values:

Lx = 2(jk)1/2cos(2ϕ), Ly = −2(jk)1/2sin(2ϕ), Lz = j − k
M10 = jsin(2ϕ+ 2χ) + ksin(2ϕ− 2χ), M04 = j + k + 1

M20 = jcos(2ϕ+ 2χ) + kcos(2ϕ− 2χ)

M30 = 2(jk)1/2sin(2χ), M34 = 2(jk)1/2cos(2χ)

M14 = kcos(2ϕ− 2χ)− jcos(2ϕ+ 2χ)

M24 = jsin(2ϕ+ 2χ)− ksin(2ϕ− 2χ) (15)

As can be seen from these expressions, for a single supersingleton there
is no scenario when the eigenvalues of the operators M4µ are much
greater than the eigenvalues of the operators Mµν (µ, ν=0,1,2,3). This
is an additional argument why singletons cannot exist in free states.

The eigenvalues of the operators in Eq. (15) satisfy the property
that when one applies the transformations

j ↔ k, χ→ −χ, ϕ→ ϕ+ π/2 (16)
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then all the eigenvalues of the operators M4µ do not change while all
the eigenvalues of the operators Mµν change their sign.

As noted above, for a system of two free supersingletons 1 and 2,
the AdS superalgebra representation for such a system is the tensor
product of the representations for supersingletons 1 and 2, and the
representation operators are the sums of the corresponding operators:
Mab = M

(1)
ab +M

(2)
ab .

If the eigenvalues of M
(1)
ab are described by Eqs. (15) with the pa-

rameters (j, k, χ, ϕ) = (j1, k1, χ1, ϕ1) and the eigenvalues of the opera-

tors M
(2)
ab are described by Eqs. (15) with the parameters (j, k, χ, ϕ) =

(j2, k2, χ2, ϕ2) then, as follows from the remarks after Eq. (16), if

j2 ≈ k1, k2 ≈ j1, χ2 ≈ −χ1, ϕ2 ≈ ϕ1 + π/2 (17)

then the eigenvalues of the operators M
(1)
4µ and M

(2)
4µ will be approx-

imately equal for each µ while for each µ, ν the eigenvalues of the
operators M (1)

µν and M (2)
µν will approximately differ by sign. Therefore,

for the operators describing the tensor product, the eigenvalues of the
operators M4µ will be much greater than the eigenvalues of the opera-
tors Mµν , and this guarantees that Poincare symmetry will be a good
approximate symmetry.

6 Conclusion

As shown in the famous Dyson’s paper [3], even from purely mathe-
matical considerations (without any physics) it follows that Poincare
quantum symmetry is a special degenerate case of de Sitter quantum
symmetries. As shown in [2, 4], in standard quantum theory (over the
field of complex numbers), dS symmetry is more general than AdS
one but in the framework of dS symmetry it is not possible to de-
scribe neutral elementary particles, i.e., particles which are equivalent
to the their antiparticles. In particular, even the photon cannot be
a neutral elementary particle. This problem has been discussed by
several authors.

In Standard Model (based on Poincare invariance) only massless
particles are treated as elementary. However, as shown by Flato and
Fronsdal [9] (see also [10]), in standard AdS theory, each massless
IR can be constructed from the tensor product of two singleton IRs
discovered by Dirac in his seminal paper [11]. As explained in Sec. 2,
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AdS theory based on supersymmetry is more general (fundamental)
than standard AdS theory.

Therefore, the question arises why in particle physics, Poincare
symmetry works with a very high accuracy. The usual answer to
this question is that a theory in de Sitter space becomes a theory in
Minkowski space in the formal limit when the radius of de Sitter space
tends to infinity. However, de Sitter and Minkowski spaces are purely
classical concepts, and in quantum theory the answer to this question
must be given only in terms of quantum concepts.

As noted in Sec. 1, at the quantum level, Poincare symmetry is a
good approximate symmetry if the eigenvalues of the operators M4µ

are much greater than the eigenvalues of the operators Mµν (µ, ν =
0, 1, 2, 3). As shown in Sec. 5, for a single supersingleton there is
no scenario when these conditions are met but explicit solutions with
such properties exist when:

• a particle which in the standard theory is considered a neutral
elementary particle consists of a supersingleton and its antipar-
ticle, and the result follows from Eqs. (8,11,12).

• a particle which in the standard theory is considered elemen-
tary, consists of two supersingletons satisfying the semiclassical
approximation, and their states satisfy the conditions (17).
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