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Abstract

In this paper we present a new identity to associate the conserva-
tion laws of stress-energy tensor with the field equations in Yang-Mills
theory. The Lorentz force is included with a consistent formulation as
in Maxwell theory.
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1 Introduction

The conservation laws for stress-energy tensor are important in physics and
have been researched in many theories such as in differential geometry by
using the well known Bianchi identities [1] [2]. In this paper we discuss a
new identity to show bilinear relations by using the Hodge star operator,
then apply the identity to study the conservation laws in Yang-Mills theory
in association with the conservation laws in Maxwell theory.

The stress-energy tensor T µν will be discussed to satisfy an identity
∂νT

µν+gµνfν = Zµ for a tensor Zµ, where gµν is the inverse of the Minkowski
metric and fν is the Lorentz force term. We show in this paper that the equa-
tion

D(D*F ) = 0, (1.1)

implies Zµ = 0, where F = DA = dA − A ∧A is the Yang-Mills field,
A = Aν dx

ν is the connection, D is the covariant derivative, and ∗ is the
Hodge star. The conservation laws ∂νT

µν+gµνfν = 0 are then implied if (1.1)

∗Email:chiebingwang@yahoo.com

1



is true. The equation (1.1) is satisfied for the self-dual case *F = F because
DF = 0. In the self-dual case, the Lorentz force term also vanishes. It is then
interesting to find non self-dual solution for (1.1) so that the conservation
laws have non-zero Lorentz force term. The twistor space theory [3] works
to find solutions for the self-dual Yang-Mills equation. And the integrable
systems so reduced can be further developed to find non self-dual solution.
We will discuss this separately based on the results in [4] [5].

The condition Zµ = 0 also includes other cases. This condition extends
the role of the density conservation law. It will be discussed that Zµ = 0 is
a bilinear equation in terms of density components jν and connection com-
ponents Aν . The density conservation law is traditionally a linear equation
for jν . Here jν ’s are multiplied by the Aν ’s. Equation (1.1) is a typical case
for Zµ = 0 and it is linear in jν .

This paper is organized as follows. We focus on the derivative formulas
for the physical equations in this short report, and the physical parameters
or constants are not included here. In next section we discuss the identity in
differential form in Yang-Mills theory for the conservation laws in accordance
with the identity in Maxwell theory. In section 3, we convert the differential
form to vector form to compare with the equations in Maxwell theory.

2 Identity for stress-energy tensor

Let us first talk about an identity for the conservation laws in Maxwell the-
ory. It is well known in Maxwell theory [6] that for the field F = dA =
1
2
Fµν dx

µ ∧dxν we can easily get the following identity

d (Fν ∧ *F ) − 1

2
∂ν(F ∧ *F ) + Fν ∧d*F = Aν d

2
*F, (2.1)

where A = Aµ dx
µ is U(1) connection, ∗ is the Hodge star and Fν = ∂νA −

dAν = Fνα dx
α. The right hand side Aν d

2
*F in (2.1) vanishes because d2 = 0.

By multiplying gµν on both sides of the equation above and using contraction,
we get the conservation laws for the stress-energy tensor T µν in Maxwell
theory,

∂νT
µν + gµν fν = 0, (2.2)

for µ = 0, 1, 2, 3, where gµν is g−1, the inverse of the Minkowski metric g
which is (−,+,+,+). The stress-energy tensor T µν in Yang-Mills theory
discussed next is similar to the above after properly changing d to D.
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Consider the Yang-Mills field F = dA − A ∧A where A = Aµ dx
µ is the

connection. Here we use F = dA − A ∧A instead of F = dA + A ∧A for
convenience in further discussions for solution and gauge invariance by using
Lax pair [4] [5]. The new identity we introduce in this paper is the following,

tr ( d (Fν ∧ *F ) − 1

2
∂ν(F ∧ *F ) + Fν ∧D*F ) = tr (Aν D(D*F ) ), (2.3)

where Fν = ∂νA − dAν − [Aν , A] = Fνα dx
α. The proof is straightforward

by using Dω1 = dω1 − A ∧ω1, Dω2 = dω2 − A ∧ω2 + ω2 ∧A, and Dω3 =
dω3 − A ∧ω3 − ω3 ∧A for k-form ωk.

It is known in Yang-Mills theory [1] [2] that ∗F = 1
4
εµναβF

µνdxα ∧dxβ

where Fαβ = gαµ Fµν g
νβ. Also there is F ν

α = gνβFβα = F νγgγα where the
left (first) index α is row index and right (second) index ν is column index
for F ν

α . We have

gµν tr

(
d (Fν ∧ *F ) − 1

2
∂ν(F ∧ *F ) + Fν ∧D*F

)
= ∂ν

(
F µα F ν

α − 1

4
gµνFαβF

αβ

)
dvol + gµν fν dvol

= (∂νT
µν + gµν fν) dvol.

By multiplying gµν on both sides of (2.3), the equation (2.3) then becomes

∂νT
µν + gµν fν = Zµ, (2.4)

where Zµ dvol = gµν tr (Aν D(D*F )).
Therefore if the equations

tr (Aν D(D*F )) = 0, (2.5)

for ν = 0, 1, 2, 3 are satisfied, then the conservation laws ∂νT
µν + gµν fν = 0

for µ = 0, 1, 2, 3 hold. Specially when D(D*F ) = 0, these equations are
satisfied. In self-dual case *F = F , there is D(D*F ) = 0 by using the first
Bianchi identity DF = 0. In (2.3) it is required that the Minkowski metric
is invariant. The twistor space theory discussed in [3] can be applied to find
self-dual solution expressed by Painlevé functions and keeps metric invariant
using confluent Killing vectors. The theories can be extended to find non
self-dual solutions to be discussed separately based on the results in [4] [5].
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3 Conservation laws in vector form

Now let us change the conservation laws discussed in last section in differen-
tial form into vector form in order to connect the tensor notation with the
vector formulas. We have

F = DA = dA− A ∧A =
1

2
Fµνdx

µ ∧dxν (3.1)

where
Fµν = ∂µAν − ∂νAµ − [Aµ, Aν ]. (3.2)

Let us write F in matrix form as always in physics [1] [2] [6],

(Fµν) =


0 E1 E2 E3

−E1 0 −B3 B2

−E2 B3 0 −B1

−E3 −B2 B1 0

 , (3.3)

where Ej and Bj are matrices, mathematically similar to the electric and
magnetic fields in Maxwell theory. The density 1-form j = ρ dx0 − J1 dx

1 −
J2 dx

2 − J3 dx
3 satisfies [1] [2]

∗j = −ρ dx1 ∧dx2 ∧dx3+J1 dx0 ∧dx2 ∧dx3+J2 dx0 ∧dx3 ∧dx1+J3 dx0 ∧dx1 ∧dx2

as defined in the Yang-Mills equation D*F = *j. We can get the expression
for the Lorentz force terms

tr (F0 ∧D ∗ F ) = − tr (J · E) dvol, (3.4)

tr ( (F1, F2, F3)
T ∧D ∗ F ) = tr (ρE + J×B) dvol, (3.5)

where J = (J1, J2, J3)
T , E = (E1, E2, E3)

T , B = (B1, B2, B3)
T , and ρE =

(ρE1, ρE2, ρE3)
T . Notice that Fν = Fνα dx

α is corresponding to ν-th row in
(3.3).

Denote E2 = tr (E · E) and B2 = tr (B · B). By using the Minkowski
metric (gµν) = (−,+,+,+), we have

T 00 = trF 0αF 0
α −1

4
g00 trFαβ F

αβ = E2+
1

2
(−E2+B2) =

1

2
(E2+B2). (3.6)

The stress-energy tensor can be expressed as the following matrix,

(T µν) =


1
2
(E2 +B2) p1 p2 p3

p1 −σ11 −σ12 −σ13
p2 −σ21 −σ22 −σ23
p3 −σ31 −σ32 −σ33

 , (3.7)
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where (p1, p2, p3)
T = tr (E×B) and

σij = tr (EiEj +BiBj) −
1

2
(E2 +B2)δij. (3.8)

Denote u = 1
2
(E2 + B2) and t = x0. The identity (2.3) or (2.4) is then

changed into vector form,

∂u

∂t
+ O · p + tr (J · E) = Z0, (3.9)

∂p

∂t
− O · σ + tr (ρE + J×B) = Z, (3.10)

where O = (∂1, ∂2, ∂3), p = (p1, p2, p3)
T = tr (E×B), O · σ = O · (σ1, σ2, σ3),

σi = (σ1i, σ2i, σ3i)
T and f = tr (ρE + J × B) is the Lorentz force for the

Yang-Mills field analogous to the Maxwell field case [6]. Also,

Z0 = − tr ( (D0ρ+ D · J)A0 ) (3.11)

Z = tr ( (D0ρ+ D · J)A ), (3.12)

where A = (A1, A2, A3)
T , D = (D1, D2, D3)

T , and DνM = ∂νM − AνM +
MAν for M = ρ or M = Jν . When Z0 and Z = (Z1, Z2, Z3)T vanish, equa-
tions (3.9) and (3.10) become the conservation laws in vector form according
to Maxwell theory.

The energy u = E2 + B2 is related to the Hamiltonian function of the
Painlevé equation if we use twistor space. By scaling the variables, the
Hamiltonian function becomes the X variable discussed in [5]. The different
domains of the X variable is discussed in [5] in association with the phase
transition problems in physics.

We see that the D2 term discussed above is good to simplify the prob-
lems. As a discussion, in gravitational field theory there is also D2 term,
that is in the second Bianchi identity R ∧β = D(Dβ) for Ricci tensor R
in differental form and coordinate frame β, for example see [2]. There is
also identity different from Bianchi identities and Jacobi identity by using
Riemann geometry to associate the conservation laws with some conditions.
The identities so discussed can help to research the relations between the
conservation laws as well as the connections to the field equations.
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