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For Roger Penrose the “negative frequencies” in Quantum Mechanics are “bad
news”

Marcello Colozzo

Abstract

In relativistic quantum mechanics, free particle states with negative energy (negative fre-
quency of the wave function) are not easy to interpret.

Figure 1: Nobel Prize winner Sir Roger Penrose.

1 Classical mechanics (non-relativistic and relativistic)

In the motion of a particle not subjected to external force fields (free particle), the appearance
of negative energy states is a consequence of the theory of special relativity formulated by Albert
Einstein at the beginning of the last century. On the other hand, in the non-relativistic limit (low
speeds compared to the speed ¢ of light in vacuum) there are no states of negative energy. In fact,
in this case the total mechanical energy (i.e. kinetict+potential) is reduced to just the kinetic term
(1/2) mv? which is never negative. In the case of relativistic motion, however, the energy of a free
particle of mass m is such that [1]

E? = m?ct 4+ &2 |p)° (1)

where p is the impulse (i.e. momentum). From (1)

E = 4+y/m2ct + ¢ |p|? (2)

hence the ambiguity of the sign and therefore the appearance of states with negative energy. Figure
2 illustrates the two cases (non-relativistic and relativistic).

In the first case only states are possible £ > 0, so F = 0 is the minimum possible value (state
of rest in the corresponding inertial reference system). In the second case both the states £ > mc?
and the states F < —mc? are possible. We then see that for £ > 0, the value +mc? defines the
state of rest (rest energy). However, states with £ < 0 are not observable. In fact, given the
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Figure 2: The first graph refers to the non-relativistic motion of a free particle. The second graph
refers to the corresponding relativistic motion.

initial mechanical state defined by a value |pg| of the impulse module to which the initial energy
corresponds:

Ey = +\/m204 + ¢ |po|’ > me?, (3)

it turns out that this value is conserved during the motion since we are considering a free parti-
cle which is a particular case of a conservative system. Put another way, states with £ < 0 are
automatically excluded from the appropriate initial conditions.

2 The quantum particle with zero spin

The quantum case is very different. More specifically, in the non-relativistic regime the dynamic evo-
lution of the quantum state of a system consisting of a single particle is controlled by the Schrodinger
equation if the spin is zero, otherwise by the Pauli equation [2]. In relativistic motion, in the case
s = 0 (s is the spin quantum number), Klein, Gordon and Fok (and perhaps Schrédinger himself
before writing his famous equation) in 1926 derived a quantum-relativistic equation:
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known as the Klein-Gordon equation. Here A\. > 0 is a characteristic length known as the Compton
wavelength of the particle:

Ae = s (5)

Note that in the case of photons is A. = 400 since m = 0, and the (4) reduces to the D’Alembert
equation. This result is not surprising because the equation describes the propagation of an electro-
magnetic wave. To solve the (4) the standard procedure in quantum mechanics is applied, i.e. the
search for solutions of the monochromatic plane wave type which, as is well known, describe states
in which the observables impulse and energy have values uniquely determined. Once the calculations
have been performed, negative energy states appear which, unlike the non-quantum case, cannot be
ignored, because they make up the eigenvalue spectrum of a Hermitian operator. More specifically,
an eigenvalue E' < 0 corresponds to the energy eigenfunction:
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Remembering the relationships between energy and frequency w, and between impulse and wave
vector k
¥ (x,t) = Aexpli(k-x+ |w]|t)] (7)

so the frequency appears with the “wrong sign”, i.e. w < 0 instead of w > 0. In [3], the Nobel Prize
winner Sir Roger Penrose, jokingly referring to this circumstance by classifying it as “bad news”,
proposes an ingenious argument based on the extension of the Fourier series to the complex field and
in particular , to the theory of holomorphic functions.

Mathematically, the appearance of negative energy states is a consequence of the order of the
differential equation (4). In fact, this equation is of the second order with respect to the time
derivative. On the other hand, the Schrodinger equation being of the first order with respect to
the time derivative, does not give rise to states with negative energy. Furthermore, increasing the
order changes the corresponding Cauchy problem regarding the initial conditions. This destroys the
possibility of interpreting |¢|2 as the probability density of finding the particle in a given point for
a given instant (Born statistical interpretation), since particular initial conditions return [¢|* < 0
which is an evident nonsense (a probability cannot be negative!). In this framework, the only
possible interpretation is the following: W\QZ electric charge density. Therefore the Klein-Gordon
(K-G) equation should describe spin-zero but electrically charged particles. But this interpretation
also appears cumbersome: through a sophisticated mathematical device [4], is discovered that a given
solution of the K-G uniquely corresponds to a second solution which describes the motion of a new
particle having the same mass as the assigned particle, but opposite electric charge. It is the so-called
antiparticle. In the cited article, the quantum-relativistic motion of the 7= meson is studied which,
as is well known, has s = 0 and electric charge ¢ = —e, where e is the absolute value of the charge
of the electron. It follows that its antiparticle is the 7 meson.

3 Solutions of the D’Alembert Equation

The D’Alembert equation also has similar problems. In 1940 the Italian mathematician Luigi Fan-
tappie elaborated [0] a suggestive interpretation of the waves with negative frequency (as well as for
the D’Alembert equation also for the K-G and for the Dirac equation (spin particles 1/2)), asserting
that these are waves coming from the “future” and propagating towards the “past”. In a quan-
tum context this has shocking implications since the antiparticle would appear as the same particle
moving backwards in time.

4 Conclusions

This brief review of the interpretative problems of relativistic quantum mechanics seems foreign to
semiconductor physics. However, the attentive reader has certainly noticed from Figure 2 that in
the relativistic case, the 2mc? energy interval appears as a gap or rather, as a potential barrier.
Incidentally, in 1937 Oscar Klein demonstrated that under appropriate conditions, an electron can
penetrate this barrier via a tunneling process, passing from an F > 0 state to an F < 0 state. This
process (known as Klein’s paradox) has recently been observed in graphene.
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