MISCELLANEOUS SUMMATION, INTEGRATION, AND TRANSFORMATION
FORMULAS

MARTIN NICHOLSON

ABsSTRACT. This is a discussion of miscellaneous summation, integration and transformation formulas
. . . . . . ) 2 . .
obtained using Fourier analysis. The topics covered are: Series of the form }_ _, c,e™"; Fusion of inte-

grals, and in particular fusion of ¢g-beta integrals related to Gauss-Fourier transform, and a related family

of eigenfunctions of the cosine Fourier transform; Summation formulas of the type > % p(n) with

Dirichlet characters; Trigonometric Fourier series expansion of hypergeometric functions of the argument
sin? z; Modifications of the inverse tangent integral and identities for corresponding infinite products.
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1. SERIES WITH GENERAL TERM c¢,e™" "

1.1. Consider the series of the form
oo
D cne™ 1)
n=1

Ramanujan has studied (1) with coefficients ¢, ([6], [38], [39])
1 n 1
n?’ e?™ —1" cosh(mn/\/a)’

and many others. A complete description of (1) is given when a is a positive integer by the following fact:
If f(x) has period 1 and its Fourier series expansion is

f(.%') _ Z Cn€27rinoc’

neL

then

Z cne””Q/a = 63;;4 za: f<£ - %)e’”ia(l/Q*T/a)Q, a €N,
nez r=1

wif/4 9 )
_ 6\/a Zlf<2)e—mr2/a’ g c N. (2)

r=

This allows one to reduce the series (1) to a finite sum when a € N and the function f(x) is known
explicitly. This fact is generally well known and the idea behind it is due to Dirichlet [3]. The case
f(z) =1 gives the value of the Gauss sum

wi/4
e —mir?/a _ 1 a
7 ;Zl e 5 € N. (3)

As another illustration, we apply it to the sequence co = 0, ¢, = 1/2n? (n # 0), in which case f(z) is
known

n? -

1 > 2
7r2<6_x+x2>:zcos(7m:p)’ 0<z< 1.

n=1
Substituting this into (2) and simplifying the result using (3) yields

min?/a 2

o) 2 a
e T i T T : -2 a

_ 0 % . 1_7) mi/4—mir /a’ ZeN.
Z n? 6 ﬁ;a< a)€ 2

n=1

This was recorded in Ramanujan’s Lost Notebook ([6], section 10.3) and first proved in [14] by different
methods, where it was also generalized to sums with ¢, = n=2™.
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1.2. Direct derivation of the fact above based on multisection (also called Simpson dissection, e.g., [3])
requires calculation of certain Gauss sums (see [14] for a similar calculation when ¢, = n=2™). However, a
method based on Poisson summation formula avoids calculation of Gauss sums. This method is sketched
below. We use Poisson summation formula in the form [3]

gx+n—-0)+g(x+n+0) Z 2minz / 727rmtdt. (4)

2
nez nez

Writing the sum as an integral we have, assuming a € N:

—mi/4 ()

€ ] —mia

T e = [ e ar (5)
nel o

1/2 . )
_ Z / f(t)e—ﬁm(t-l-n) dt
nez —1/2
a/2 » ,
_ z €—7r7,an f(t/a)e—wzt /ae—Qﬂzntdt
nGZ —a/2

)

l\)\»—a

I~ ,/n 1 (
_ = . —Tia %
a Z ! (a 2)
n=1
Here, the last equility is the application of (4) to the function

_ Jrayemite gt < a2,
9lt) = {o, It > a/2.

The case a/2 € N can be treated similarly.

1.3. The integral representation of the sum in (5) is valid for any a € R. There is the following curious
identity related to this integral representation: If the real numbers o and 8 are such that o € Z and the
functions f(x) and g(x) have period 1, then

oo s ” 00 o o) .
/ flax)g(Bx)e™™ de = e~™/ / flax)e™ dx/ g(Bx)e™ du.
—00 —oQ —0o0
This is due to the fact that if one writes
ox 537 _ a 627rion°x b 62771',85:13
g T s )
rez SEL
and calculates the resulting integral over x as

00
o . 4 99 g9 o
/ emiT +27rm’(o¢r+ﬁs)dx —e mi/A—Tiore —mif*se e 27rzaﬁ7”s’
—o0
then the term mixing the sums over r and s is
e—27r7,aﬁrs =1

when «af is an integer, so the sums over r and s decouple. A less trivial type of factorization is considered
in section 2.2, where we discuss the fusion of ¢-beta integrals.

1.4. An entry in Ramanujan’s Lost Notebook (|5], Entry 1.7.16) states that: Let a and b be any complex
numbers, and suppose that |xy| < 1. If

e n(n+1)/2
o(a,z,y)
-3
then
o
by™)(az® + by™ 1) ... (az™ + b
¢(a,x,y)¢(b,y,x):z(a$+ y")(a? + by ). (aa” + by)
n=0 (xyvxy)n
In the limit z,y — 17, this identity reduces to the identity
- 6””2 2 X 9n
Z YR Z *,(COSWn)n, v ER, (6)
n=0 ’ n=0




which can be easily verified directly using binomial theorem.
1.5. Another formula similar to (6) is
eﬂi'yn2

>
nezp + 47en

2 | |
+ 7% m |:COS (7r7n2) cosh (p {yn} — g) - %sm (7T’Yn2) sinh (p {yn} — g)} ’

+ 8psinh §

== N p
psinh §

where v € R, and {z} denotes the fractional part of the real number x. Its continuous counterpart is
2

. 2
oo iax oo ,—2ax 2
/ %dm = 77/ 627 cos az? + = sinax? | dz.
0 x4 + ]. 0 xr +4 X

These type of integrals are related to Owen’s T-function [36]

1 a efh2(1+12)/2

Closely related is also entry 7.4.24 in [1].
1.6. Ifaf=1,qg=e™, then
2

1 emirm’® an
o I
2 cosh(mfn) sinh(man)
nez nez
N Ul N U T ) sin(myn?) )
(@:9)% “= (¢*T2,¢>727;¢%) o sinh(rayn) sinh(mfn)’

Continuous analog of (7) is a relation between Mordell type integrals
2

00 : 2 00 yx
/ _ sin(yat) / e
o sinh(mz)sinh(yz) o cosh(mz)
In terms of elliptic integrals K (k) = Oﬂ/Q —4 _ BE(k) = f(;r/2 V1 —k2sin?0do, k' = V1 — k2,

V1-k2sin26’
K' = K(K), E' = E(K'), formula (7) takes the form

2

. 2
o] 2
eminmn

E:Z cosh(rKn/K')

ne

47E’+ 8i sin(myn®)
T = sn(2iyK'n, k) sinh(rKn/K') K’

Series with elliptic functions are studied in the theory of elliptic hypergeometric functions [21|. The sum

2
eminmn

o) = 7;2 cosh(ran)

with v = o was studied in [38], where it was shown that certain linear combination of f(«) and complex
conjugate of f(1/«) is a modular function of the variable i .

2

2. FOURIER-(GAUSS TRANSFORM AND FUSION OF INTEGRALS

2.1. Two integrals ([4], Entries 16.1.4-5)

2o _ 2 ab; q _ok?
/ e TR (0 g €M b /g e Qoo dw = y/meT™ (_ae%kng _be)f'éikm.q) ,og=e(8)
—00 Y ) oo
—2k 2km.
" et ima ! iy = et WA oo (g
(—ae2ike _pe—2ikz. q) - (ab; q) 4= )
—00 ’ ) oo 9 o0

involving infinite ¢g-products, were proved by Askey using g-binomial theorem [7]. Pastro gave an alterna-
tive proof [34]. Stokman fused these integrals into a single integral with 4 parameters [40]. Note that (8)
and (9) are not independent: If one of them is given, then the other follows by inverse Fourier transform.



Let us define Fourier-Gauss transform of a function f(z) by the formula

/ f(.%’) ef:p2+22'mz dr.

It is a special case of the so called Fourier-Bros-lagolnitzer transform [20]. Using the value of the gaussian
integral (24|, Entries 4.133.1-2)

o0 2 .
/ e tATtiaT gy — o fay €1 (BPa?)+2inas, (10)
—0oQ
we find that the action of Fourier-Gauss transform on the exponential function is given by
/oo ern:r €7x2+2imx dr = \/Eefmz . ek2n2+2iknx7 (11)
—0o0
o0
/ eQiknx e—ac2+2im:c dr = ﬁe—m2 . e—k2n2—2knm‘ (12)
— 0o

Now, let u, (k) be an absolutely summable sequence, (i.e., a sequence such that > . |u, (k)| < 00), and
define the functions ¢, (z, k), ¥y (z, k) related to this sequence according to

dul(z, k) Z“” —k2n2+2knx, (13)
nez
R (14)
nez

It follows from (11) and (12), that the functions (13)—(14) are related to each other by Fourier-Gauss
transform:

o
/ e—z2+2z‘mr¢>u(w, k) dx = \/776_m2¢u(ma k),
/ e—x2+2¢mxwu(l‘, k)dr = \/776_’”2%(—7”’ k).

This property of Fourier-Gauss transform was used in [8] to relate different families of orthogonal poly-
nomials to each other.

Thus, (8) and (9) give an example of pair of complementary functions (13)—(14) for a particular choice
of the sequence uy,(k):

bu(, k) = (ar/g e, by/ge™™; q)oc, (15)
(ab; q)oo

Yu(z, k) = (—ae2ikm —pe=2ikm. ) (16)

For a pair of complimentary functions containing 3 parameters, see Entry 1.7.19 in [5].

2.2.  Another property of the pair of functions (13)—(14) is given below.

Proposition 1. Let k € R. Let un(k), vn(k) be absolutely summable sequences. For x € R and uy (k)
define ¢y (x, k), Yu(z, k) by (13), (14) and similarly ¢,(x, k), (2, k) for v, (k). Then for m € R

/_ h e~ AT (0 Kby (z, 7/k) do = /T e ™ y(—m, 7 /k)bu(m, k).

Proof. We write i
bu (l’ k‘ d}v z, k‘ ZUT k2r2+2kr$zvs(kj)62iksw‘
TEL sEL
Then by (10)
/oo €—$2+2imx+2er+2il~csa:dl, _ ﬁekQ 2—(m+/~cs)2+2ikmr+2ikl;;rs'
—0o0
Thus, after integration, the mixing of the sums over r and s occurs through the factor e2ikkrs only. This
factor equals 1 when kk = 7 (more generally, when kk/7 € N), in which case the sums over r and s
decouple. The sum over r results in the factor ¢,(—m,7/k), while the sum over s results in the factor
Py (m, k). O
Coupling Proposition 1 with equations (15) and (16) one obtains that for 0 < |al, |b], ||, |d] < 1

2 (ayge M by/ge? i) (ab;q)eo(eV/@, dV@; Q) oo
e i Gl e i

(17)



where Q = ¢~27° /¥ This is Proposition 3.1 in [40].
2.3. A family of eigenfunctions of the cosine Fourier transform. Define cosine Fourier transform of the

function f(x) by the formula
2 (e}
Fo(y) = \[r /0 f () cos(zy) dx.

It follows from Proposition 1, that for a suitable set of parameters it is possible to obtain functions that
are their own Fourier transforms (eigenfuntions of the Fourier transform): If

flz) = e /2 > ur e~™” cosh (V2 rx) > " ugcos (V2 sx),
r=0 5=0

o [e.e]
g(z) = e /2 Z uy e~ ™ sinh (V2rra) Z u sin (V2 sz),
r=0 s=0

then

For example

—V 27z 2mx.
_222(ay/q eV ay/q eV T ) _on

; - , g=¢€ )
(—(167 27rzm’ _ae\/27rm; q)

flz)=e

oo
satisfies F,(x) = f(x).
2.4. According to generalized Plancherel’s theorem, it follows from Proposition 1 that

/OO 2% b (1, K)o (0, 7/ k) e (0, )by (2, 7 /) da

—00

o0
= [ e o Ryl ol /)l ) da
—0o0

Calculation of such integrals when ¢ is a function of the type (13) was discussed in [41], » = 2 case of
equation (4.1). Integrals in the right hand side of equation (4.1) in Suslov’s article are calculated using a
trick due to Bailey [9]. The result is an integral with 8 parameters expressed as a sum of two products of
two basic bilateral series 219 with bases g = e~ 2% and Q= 6_2“2/k2, respectively. In fact, the r = 2 case
of equation (4.1) is a generalization of modular transformation formula for Appell-Lerch sums [22|. This
is because Appell-Lerch sums have representation in terms of 919 [17].

A particular case of the said general 8 parameter integral is: Let k > 0, ¢ = e_2k2, Q= 6_2”2/’“2,
a=e? b=e2kb arg(ab) < . Then

/oo e—xz (qa€2km’ qbe2kx; )OO \/77_

" v — i fabig) . T (i —afa, b /i)

ir(a+B)/k—2ap—F? n n2/2 —2mian/kyn?/2
o % LZG 3 \1/8 4 1+ . n—1/2 Z 164_ 2m‘5/k8n—1/2' (18)
q (q Q) (q;q)oo neZ aq neZ €
Using properties of Appell-Lerch sums one can deduce from (18) that the integral
2k (z+ 2k(z+5).
I B,K) = q/12ele+82 [ T T
s Py e (_ \/ae2k(x+a+5),_\/(*1672]g(x+a+13);q)00 ) s
has the following non-trivial symmetries
Ie, B,k) = I(—ia,if,w/k) = I(—a, =, k).
3. SERIES WITH GENERAL TERM X’“T(n)f(om)
3.1. The formal identity
o0
(=D)"{p2n+1)+¢(-2n—-1)} =«
= — 1
> T 5(0), (19)

n=0
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was considered by Ramanujan. It was put on a rigorous ground in [11], p.95-96. One of the conditions for
the validity of formulas of this type is that ¢(z) must be an entire function with bounded growth rate, i.e.
lp(2)] < Ce™#/2 | 2| — co. Berndt proves this theorem by applying contour integration to the function

f(z)
zcos(mz/2)

One may consider

f(z)

zsin(w(z — 8)) sin(w(z + 5))’

where f(z) is an even entire function with bounded growth rate | f(z)| < Ce?**|, |2z] — oo, and by a slight
change of Berndt’s argument deduce

Z ,707(:—:‘85) = mcot(ms) f(0). (20)
nez

When ¢ is an even function, (19) becomes

If we set s = 1/4 in (20) and rearrange the terms of the series (assuming it is justified) we obtain

i(f(n+1/4) f(n+3/4)> T

dn +1 dn + 3

- 750, (22)
n=0

This is the same as (21) under the identification f(x) = ¢(4x). An interesting discussion of (19) is

contained in [23], where it is generalized to a sum over roots of Bessel functions.

3.2. According to Paley-Wiener theorem, the set of entire functions f(z) with bounded growth rate

|£(2)] < Ce?l, 2] = oo, that are square integrable on the real axes, coincides with the set of functions

B, that admit representation

—0

with ¢(t) square integrable on [—o,0]. In other words, f(z) is a function whose Fourier spectrum is
limited to the band |t| < o. Thus (20) is also valid for even band limited functions f(x) € Bo,. However,
it is instructive to give a proof of (20) for band-limited functions which is independent of the Paley-Wiener
theorem. Our starting point is the fact that the series

S(z) = Z €08 (QZﬁ—iT;—l- s)) = 7 cot(7s), z,s € (0,1), (23)
neZ

represents a piecewise continuous function (|24], entries 1.445.5-6; also, section 4.1).
Let f(z) be an even band-limited function

Fe(y) =0, |y|>2m.

Multiplying (23) by v/ 87 F.(27wz) and integrating with respect to = from 0 to 1, using

1 ]
\/g/o F.(2rz) cos 2mx(n + s)) dr = \/z/o F.(y)cos(y(n+s))dy = f(n+s),

\/877/01 Fe(2max)de = \/E/Ooo Fe(y)dy = f(0),

we recover (20). Formula (19) for band limited functions was studied in [47], equation (2.5).
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3.3. General sampling theorems twisted by Dirichlet characters were studied in [26]. Note that (22)
may be written as

where y4(n) = sin 5* is the odd Dirichlet character modulo 4. Notice that the coefficient /4 on the left
hand side is the value of the Dirichlet L-series for the character x4(n). We wish to generalize this formula
for other odd Dirichlet characters.

Let xr(n) be any k-periodic odd sequence

xk(n) = xe(n+ k), xr(k—n)=—xr(n). (24)

In particular, equations (24) are satisfied by odd Dirichlet character xx(n) modulo k. Let Lg(s, xx) be
the corresponding Dirichlet L-series

Fn/4) = Z1(0),

o0
Xk(n
nS

SXk

n=1

Now, we set s = [/k in (20), where [ is an integer such that 0 < [ < k, and then rewrite the right hand
side using partial fractions expansion of the cotangent function

o (fl(k+0/k)  f((nk+k=D/k)\ (1 1
Z( nk+1  nk+k—I >_7§<nk+l_nk+k_l>f(0).

n=0

It immediately follows from this that
Proposition 2. Let f(z) be an even band limited function f(z) € Bor. Let the sequence xr(n) be a
k-periodic odd sequence (24). Then

> X iy = 50X g, (25)
n=1

n=1

In particular, if xx(n) is an odd Dirichlet character mod k, then
> n
S an i) = Ly f0), 0<a<i (26)
n=1

As an example, consider the function

b2 + (27x)?
b2 + (2mx)?

f(;(}) _ S

It follows from Entry 3.876.1 in [24]

 gin v/b% + 22 o (bv/1T=32), 0<y<1,
/ SIn Vo7 F 27 cos(xy) dr = { 2 0 ( 4 ) 4
0o Vb4 a? 0, y>1,

that f(3%) € By, and thus f(z) € Bar. Hence, it follows from (26) that

Z kabn) sin \/b% + (an/k) _ 1 w’ 0<a<2r. (27)

2 + (an/k)? = Le(l ) b

The k =4, a = 27 case of (27) was recorded in [23] as

i (=1)" sin /02 + m2(n+1/2)2  7sinb

n:02n—|—1 \/b2+71'2(n—|—1/2)2 T2




3.4. We continue to study the sum (21). Define the sine Fourier transform Fy of the function f as

Ny

Note the Poisson summation formula for the odd Dirichlet character x4(n) = sin 5* modulo 4 [42]

vady_xamflan) = VB xa(mFy(Bn), aB = 3.
n=1 n=1

Proposition 3. If af = 3, then

i ln ﬂ\f / 1)t 7 (280)dt

n=1
Proof. Our proof follows the proof of formula (1.6) in the article [23]. We start from the Fourier series
expansion

(—1 Lt+ I = Z xa(n COS (mnt). (28)

Multiplying it with F.(2/t) and integrating we ﬁnd

5\/7/ Lt+ 2l F(28t)dt = 252 xaln \/7/ F.(2pt) cos(mnt) dt

:i <5)

as required. O
3.5. Note the Poisson summation formula for the odd Dirichlet character x3(n) = (%) modulo 3 [42]

Vad xsm)flan) =B xs(m)F(Bn),  af = %”
n=1 n=1
)

Proposition 4. Let o and B be real numbers such that aff = %“

character mod 3. Then
|27
X3(n) =0 / F.(3p8t)d
o n

1 2
e(t):{ —2, whente (n+3,n+3),nek }

, and let x3(n) denote the odd Dirichlet

where

1, otherwise
Proof. Analogous to the proof of Proposition 3, using the Fourier series

e(t) 3\[29(3

os(2mnt)

instead of (28). O
Propositions 3 and 4 can be generalized to other Dirichlet characters. However, the functions €(t) will

become more convoluted.

3.6. 'We consider several examples illustrating Propositions 3 and 4.

Example 1. The function

1
h(z) = o (75 (29)

is self-reciprocal, i.e. it satisfies H.(x) = h(x) [42]. We have ([12], chapter 14, Entry 15)

S ><47§n)h(an) +3° X‘*T(Lmh(ﬁn) -5 as=1. (30)
n=1 n=1

Combining the above facts with Proposition 3 we arrive at

DT )LtHd (o 1 |
a/o cosh(mat) t+ﬁ/ cosh (mBt) =3 af =1 (31)
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This formula is in fact a different form of the Jacobi’s imaginary transformation for the modular angle.

When o = 5 =1 we get the closed form
0o (_1\lt+3]
/ (Gl b A
o cosh(mt) 4

Ezample 2. Consider the self-reciprocal function [42]
1

1+ 2cosh (\/%:1:>

It is known that (see footnote on page 4 in [25])

h(x) =

i (-1)"lsinh ¥ qng N L (=) lsinh TE oy may
sin Z : sin = :
~ n  sinh™0 a “—~ n sinhTe b ab

Simplifying further by setting x = a/3 and y = b/3 one obtains

o o
S ) e 2 () ez = )
on 3 1—|—2cosh2§% =n 3 1+2€osh2’§% 9v/3

Hence

> X3(n)h o x3(n) . _ 27
(an) + =2 h(Bn) = ——=, aff = —.
— n nzzzl n 93 3

Thus, it follows from Proposition 4 that

= =1.
a/o 1+2 cosh 27rat 6 1+2 cosh 27r6t) 63 ap

The case @ = 8 = 1 results in the closed form

/OO (t)dt 1
o 1+42cosh(2nt) 123
Example 3. Another integral evaluation is

0o —mat) _ —mpt
/ arctan (e ) arctan (6 ) (_1>Lt+%J dit = glog £7 af = 1. (33)
; «

t

This formula is more interesting than the integrals considered in examples 1 and 2 because in each
region of continuity of the function (—1)Lt+%J, the integrand does not have a closed form anti-derivative.
Differentiation with respect to a under the integral sign reduces (33) to (31). A similar formula may be
deduced from Example 2. Note also that according to Frullani’s formula

% arctan (e~ ™) — arctan (e~ ™5

/ ( ) ( ) dt=" log é

0 t 4 [0
3.7. Though not a direct consequence of Propositions 3 and 4, the following integral evaluation is based

on the same principles
o0 (_1)lt+3] 1
[PE iy 1 -
o cosh(mt) 22

Using the formula ([24], entries 3.989.3-4)

© COS(’]TCLt) Tit? ie_ﬂ'ia2/4 + 6—71'2'/4
cosh(nt) dt = Ta )
o cosh(mt) 2 cosh 5

(34) is reduced to the symmetric case of the sum (30). To study more general integrals we will need
o . . 2
Proposition 5. The functions of the form f(z) = S(\/%) cos 5, g(x) = S(\/Q—) sin &-, where
S(-z)=S(z), S1-z)=-5(),

(i.e., S(z) is a 2-periodic function, even with respect to integer points, and odd with respect to half integer
points) are self-reciprocal under cosine Fourier transform with eigenvalues 1 and —1, respectively:

Fe(z) = f(z), Ge(z) = —g(x).



Proof. S(x) has Fourier series representation

= Z cncos (mz(2n+1)).

n=0

10

Defining h(x) = S (i)emz/ 2 assuming that termwise integration of the series is possible, and calculating

2
the integral using (10), we get

= \/zi Cn - /oo /2 cos <\/§ (2n + l)t) cos(xt)dt
n=0 0

= \/zi Cn \/?6_”2/2_”(2"“)2/4 cos <\/§(2n + 1)ac>
n=0

—mi(2n+1)?/4 _ o—mi/4

He(z)

o

To simplify the summand we note that e for integer n, and get

_ —1332/226 cos <\/§ 2n+1)x) —e_lx2/25(\/ﬂ)

from which the claim follows. )
Ezample. Taking S(z) = (-1)l*+2) in Proposition 5 gives two self—reciprocal functions

(—1 )Lw/\/ﬂﬂ/?J )Lw/\/ﬂﬂ/?J

cos Z- (-1 sin Z-

Combining these with generalized Plancherel’s formula ([42], 2.1.22)

\/&/0 f(z)g(ax)dx = \/B/o Fo(2)Ge(zf)dz, af =1,

and the self-reciprocal function (29) leads to transformation formulas

f/ cos(mz? )L+ de_\f/ cos(mz? 1)L‘”+%de, of = a2,

cosh (ax) cosh Bx

\/&/ Sm(”)( lo+3 de+f/ ST et =0, af = o
0

cosh(ax) cosh(Bz) B:p
Symmetric case of (36) is the imaginary part of (34). More generally: If F.(z) = f(z), then

/OO(—l)L”“L;J sin(ﬂx2)f(\/ﬂx) dz = 0.
0

4. TRIGONOMETRIC SERIES FOR HYPERGEOMETRIC FUNCTIONS

4.1. Consider the Fourier series expansion

inx

=S o<az<om
n-+a
€7

7.(.eiaL(Tr—x)
sin(ma)

Real and imaginary parts of (37) result in the formulas ([24], entries 1.445.5-6)

Z(sm(n a)x+51n(n+a)x> :F_M7 0<x<2m,
n—a n+a a
n=1
5 (cxlrrale sl m @) ) - D,y <o
n+a n—a @

n=1

(37)

(38)

(39)

We used (39) in Section 3, equation (23). Generalizations of (38) and (39) with higher powers of (n £ a)
in the denominator are studied in ([11], Chapter 9, Entries 1 and 2). However, an interesting question is,
what is the value of the truncated series in (37) where summation is over positive values of n only. This

question is answered by the less known formulas

i <sin(n —a)r sin(n+a):c> _F (1/2, 1/24+a,1/2—a .

n—a n+a

n=1

SH12E 4asin£
3/2,3/2 ’ 2 2’

(40)
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o0
Z cos(n + a)z +cos(n—a):lc ) 1,1,1+a,1—a;singf 9a2sin? £
nta n—a 2,2,3/2 2 2

— 2 (251n2> +20(1) — (1 —a) — (1 +a), (41)

where 1 denotes the digamma function. These formulas can be derived from Newton’s formulas:

1/2 1/2 —
(P et o
1/24a,1/2—a . . sin(2ax
2Fy <ai/_2assin2 = cos(2az), (44)

([19], Entries 2.8(11), 2.8(12)). When a — 0, formula (40) reduces to

2n\ sin x 1 sin(2nx)
E > oo |2si ,E T
n0<n)22n(2n+1)2 vlog |2sinz] + 24 n2

given as Entry 16 of Chapter 9 in [11].
4.2. The formula

4l=a=b /r T (2a)T'(2b) )2F1< 2a, 2b 5 >

T(1-a—bT(a+b+1/2 atbt1/27¢ 7

(a+n/2)I'(b+n/2)
ZFl—a—l—n/Q (1_b+n/2)COS(2naj), reR (45)

was derived in [16] as a Fourier series expansion of Gegenbauer functions (formula (1.2)). The formulas

(1 - a)T(1 - b) 1S (@l
o0 —a—0) 21 <1/2 cos2x> —§—|—n:1 0D, cos(2nz), x€R (46)

I'2—a)'(2-0)
2I'(2 —a —b)

oy < b ; cos? 1:> cosT = i (@)n()n cos(2n + 1)z, zeR (47)
3/2’ = (2= a)n(2—b)n
follow from (45) and the quadratic transformation formulas 2.11(7) and 2.11(9) in [19]. A more direct
method is to use the general approach of 28] (see also [10]).
Another trigonometric expansion formula is found in [19] (formula 3.5(2)), which we write here as

VTT(1/2 4+ a) a,l—a . , o \2c—2
F; ; 2 ¢
T +a— C)F(C)Q 1 L (2sinz)

sin[22k+14a-ca], O0<z<g  (48)

A +a—i3/2—ch
_z::o EN(1/2 + a)y

The hypergeometric function appearing on the left hand side of (48) is the so called Ferrers function
up to an elementary function prefactor. More recently, (48) was considered in [45]. Note that the
types of hypergeometric functions on the left hand sides of (45) and (48) are related by the quadratic
transformation formula ([19], Entry 2.11(2))

2a,2b a—b+1/2, b—a+1/2 T
F 2z ) =oF 2 —.
2 1( Fb1/20Sn x) 2 1( atb+1/2 sin :”> <7
Particular case of (48), namely a =1/2, ¢ =1,
1/2,1/2 2 (1/2)2
K(sinx):g-g.ﬂ( / ’1/ ;sin2x> :an_o ((7{')) sin(4n + 1)z, O<x<g, (49)

was derived by Tricomi [43], [44] (also reproduced in [19], Entry 13.8(8)), using a connection between
Legendre expansions, Abel transform and triginometric Fourier series. More recently, the same connection
appeared in the paper [29] in the context of numerical algorithms, and was extended to Gegenbauer
polynomials in [30]. (49) was used recently in [48] to calculate certain integrals of elliptic integrals.
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4.3. The following formula which gives a Fourier series expansion of a generalized hypergeometric func-
tion 3F5 of the argument sin® z is motivated by the formulas above:

F: U w2 _ ) .
’ 2<(a+b)/2,(1—|—a—|—b)/2’81n $>COSQ’J b—l nZZO(Q_b)nCOS(n—{— )CL‘
Fla+0)I'(1-b) . . T
I'(a)(2sinz)etb—1 sin (3 (a + ) + 2(b - a)), 0<z< 5 (50)
Proof. Starting from (42) written in the form
5 (/2 +kf)f(;/2 —s)i aw, _ cos(sa)
k=0 ( / )k’ cosx
we multiply it by
[(1/2—5)(1/2+ s)(c — s)T'(d + 5) (51)

to obtain

00 C AT(e— s . sin?*z  al(c— s)I'(d+ s) cos(2sz)
kzzor(m TR LA/24 k= s)l(e = s)0(d + ) 7m0 = cos  cos(3) :

and then integrate over s along the contour C' parallel to the imaginary axes that separates the increasing
set of poles of (51) from the decreasing set of poles. The integral on the left hand side can be calculated
using Barnes’ first lemma [3|. The integral on the right hand side is convergent because of the condition
0 <z < 7/2. It can be calculated by closing the contour C' on the left half plane, picking up residues at
—1/2 —n and —n — d with n > 0, as described in [3]. The sum over residues at —1/2 — n results in the
first term on the right hand side of (50). It turns out, that the sum over the residues —n — d is summable
by the binomial theorem, and it results in the second term on the right hand side of (50). O
(50) is essentially a three-term quadratic transformation formula for 3F, when arguments of the two of
the functions 3F; lie on the unit circle. Formulas (46), (47), (50) are generalizations of (42), (43), (44) in
the following sense. Setting b = 1 — a and changing a to 1/2 — a in (50) immediately yields (42). After
setting b = —a in (46), one may notice that the series on right hand side is Fourier series expansion of
2512?7“1) cos(m — 2z)a (section 4.1). Similarly, (43) follows from (47) when b = 1 — a and redefinition of
parameters.
The series on the right hand side of (50) is a truncation of the bilateral series
Z (@ cos(2n + 1)x. (52)
neZ (2 N b)n
Due to Riemann’s form of the binomial theorem (when the argument lies on the unit circle), the series
(52) has a closed form in terms of trigonometric functions (e.g., [35], and references therein). While the
truncated series does not have a simple closed form, (50) shows that it is related to a hypergeometric
series with argument sin? x, similar to the sitution encountered in subsection 4.1.

5. INVERSE TANGENT INTEGRAL AND ASSOCIATED INFINITE PRODUCTS

5.1. Consider the problem submitted by Ramanujan to the Journal of the Indian Mathematical Society
and solved by him in the article [37] (also [15], page 31; [13], chapter 37, entry 30): Let o > 0 and
0< B <1, with

1 1
ST = log tan {47r(1 + ﬁ)} ,

3 5
124+ a?\ (32— p? 52 4 a? B2 (53)
2-32)\32+a2 _pg2) ¢ :
Here, the condition on « and S can be cast in the symmetrical form

tanh (%) = tan (%),

cosh (%) cos (%) =1,

then

or equivalently
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and the product can be written more succinctly as
ﬁ <n2 + a2>”X4(n)
2 _ 32 :
n=1 n 6
The logarithm of the infinite product in (53) can be expressed through the inverse tangent integral
“tan~l¢
Tiy(z) = / o,
0 t

as was shown in [37]. There is a trigonometric series expansion for the inverse tangent integral ([37]; [11],
chapter 9, Entry 17; also mentioned in [27], section 2.4.2):

oo o .
) (=) tan?"+ 1 sin(4n + 2)x T
Tiy(tana) = Y = zlog|tana| + 5 S o T IE <
ig(tan z) 2 (o 72 xlog | tan | 22 " (2n E |z| 1

Thus, the logarithm of the infinite product in (53) can be expressed in terms of dilogarithm function.
More generally, the infinite product

o0 32 nxk(n) o m(z + §)
H(l_nQ = exp EEZ: / xcotde , (54)

n=1

where xx(n) is an odd Dirichlet character modulo & (or any k-periodic odd sequence (24)), can be expressed
in terms of exponential of a linear combination of dilogarithms (after integration by parts, the integrals in
(54) are expressed in terms of Clausen function, which in turn can be expressed in terms of dilogarithms).
Closely related to (54) is the integral representation for the logarithm of the ratio of Barnes G-functions

G(1+2) ’
m = zlog(27m) — /0 mwx cot(mx) dx

([46], chapter 12, example 49; also, equation (33) in [2]; or the recent historical account [32]).
5.2. The considerations below were motivated by a search for a finite version of (53).
Lemma 6. Let m be a non-negative integer, o >0, 0 < B < w/2. Then

Y
/ sinh g7y dr /B S ot dy
o coshz o  Cosy

log

- . 2k+1 :
o Coshoo L 9k 4 1) sin’ 7r((2 +1)) +sinh? 5o
=(-1)"h——+ Z(_l) s 2(2m + 1) -1 2 w(2k+1) 2 8 (55)
COSom+i k=0 SIN” 9m1) — S0 g
Proof. 1t is quite straightforward to verify the partial fractions expanswn
2m+1 . cos 2 1 cosh x
cosh ((2m + 1)z) Z ( k (56)

sinh? z + cos?

[k|<m 2m—+1

By multiplying this formula by sinh 2 and integrating with respect to z from 0 to «/(2m + 1) one obtains
evaluation of the first integral in (55), that is (55) with 8 = 0. Similarly, considering the companion
partial fraction expansion

mk

2m+1 _ Z (1) i COS g g COSY
k )
cos ((2m + 1)y) Pl cos? 51ty — cos?y
one evaluates the second integral in (55) (the condition 8 < 7/2 ensures that cos? 21;;{11 —cos?y > 0 for
all |k| <'m). Then, their sum is the quantity on the right hand side of (55). O

One can deduce (53) from the Lemma 6 as follows. Assume that o and 8 in Lemma 6 are related by
cosh(a) cos() = 1. We multiply (55) by (2m + 1) and then take the limit m — oco. It may be easily
verified that when a and /8 are subject to the constraint cosh(a) cos(f) = 1, then

do dg

= dg, = da.

cos 3

> yd B yd
/ ydy +/ LA—
o coshy 0 COsy

cosh
As a result
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when cosh(a) cos(5) = 1. Hence, the left hand side of (55) multiplied by (2m + 1) tends to af in the
limit m — oo. The right hand side multiplied by (2m + 1) tends to a logarithm of a certain infinite
product, which after rescaling a and 8 by a factor of 7/2 coincides with the infinite product in (53).
Exponentiation of both sides then completes the proof of (53). Thus, we were able to give an elementary
proof of (53).

5.3. Is it possible that an identity of the similar type as (53) exists for Dirichlet characters other than
x4? Consider the elementary integral

/a sinh(x) tanh o
——— dx = arctan .
o sinh(3z) V3
It follows from this that when % < 8 < Z and tanh(a) tan(8) = v/3
/0‘ x sinh(x) a4 /“/2 ysin(y) dy = _aB
0 B

sinh(3z) sin(3y) V3

Alternatively, one can check this by differentiation. Moreover

oy {8 (),

where (g) is Legendre symbol mod 3. Thus, one arrives at the following result:
Proposition 7. If1 < § < 3/2 and tanh (%) tan (%) = /3, then

ax <(n2 + a2)(n2 _ 62))71(?) - 6—271'06,3/3
n?(n? —9/4) B '

n=1

5.4. Similarly, when 0 < 8 < % and tanh(a) = /3 tan(3

)
@ g sinh(z) B ysin(y) 1 28 ysin(y) _aB
Asmm@m+ésm@ﬁwd4 sn(3y) YT

This results in two formulas that are dual to each other:
Proposition 8. If0 < 8 < 1/2 and tanh (%) = V3 tan (?) then

+ T
H(( ng = 4ﬁ2) =,

n=1

Proposition 9. If 0 < 5 < 1 and tan (%) = /3 tanh (%), then

00 n2(n2 — 22 n(%)
11 <(n2 T c(uZ)Q(nfl 4a2)> =T

n=1

Due to the formula (54), Propositions 7-9 can also be proved directly using functional equations for the
dilogarithm function, though calculations in this case are more cumbersome.

5.5. Let sin, x and cos, x denote the generalized trigonometric functions defined as the solution to the
differential equation [49]

. _ . p P . B
siny, T = cosp , siny, x + cos, x = 1, sin, 0 = 0,

_21 dt
e o (1—tp)l/p

The generalized hyperbolic functions are defined by as a solution to the differential equation [49]

d
when z € [0;7,/2], where

g — P ginhP ¢ — : -
In sinh, x = cosh,, z, coshy  —sinhp x =1, sinh, 0 = 0.

There is a certain duality between the generalized trigonometric and hyperbolic functions. Such a duality
has been explicitly stated in [31]. On the other hand, the generalized Gudermannian function was defined

by Neuman [33] as
v dt
a(z)= | —%
& p( ) /0 coshg_lt
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where he has shown that the inverse function of the generalized Gudermannian function is

roodt
1 o
P (=) /0 cosh 1t

If B = gd,(a) (or equivalently a = gd;l(ﬁ)) it follows from gd () - [gd;l(ﬂ)]/ = 1 and Neuman’s
result, that o and 3 are subject to the condition cosh, a - cos, 8 = 1, and vice versa. This implies: If
0 < < mp/2 and coshy, « - cos, B =1, then

/O‘ ydy +/5 vy _ s (57)
0 Coshg_ly 0 cosg_ly

In general, there are no simple partial fractions expansion formulas for generalized trigonometric func-
tions. For example, it has been shown in [18]| that for certain set of parameters generalized trigonometric
functions are expressed in terms of Jacobi elliptic functions, and thus they are doubly periodic. This
means their partial fractions expansion is a double series, similar to Weierstrass elliptic functions. This
probably means that there are no formulas similar to (53) resulting from (57) unless p = 2.
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