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Abstract

In the context of multiple causation, I will introduce the causation function.
This function is a quadratic form computed from the correlations and serves as a
generalization of R-squared, commonly found in machine learning. In this report,
the causation function will make the link between the correlations and causal re-
lationship. By examining the causation function through an illustrative example,
we will demonstrate how strong or weak correlations between multiple causes and
a variable can imply either a highly likely or unlikely causal relationship between
the causes and the variable.
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1 Introduction

In this report, we delve into the concept of explained variance, which will play a cru-
cial role in interpreting the causation function. This function, denoted as P(X∣Ω), is
computed using a quadratic form computed from correlations. We will trace its origins
through a rigorous proof, revealing why this causation function serves as a generaliza-
tion of R-squared in the context of multiple causation within machine learning.

In what follows, I will prove that the causation function P(X∣Ω) quantifies the causal
effect of causes Ω on a variable X. The causation function therefore makes the link
between the correlations and the causal relationship.

To facilitate our understanding of correlation and causation, I will present a table that
showcases the magnitude of correlations alongside their corresponding causation lev-
els.

Subsequently, we explore a scenario involving two causes acting on a variable. By
delineating the correlation pairs associated with highly likely and unlikely causation,
we shed light on the intricate relationship between these factors.

The paper concludes with numerical applications, specifically addressing a problem
where two causes influence a variable. Through these examples, we establish connec-
tions between strong and weak correlations and the likelihood of causation.
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2 Conditional variance and explained variance EV for
a multivariate Gaussian

We will recall below that for a multivariate Gaussian, we can compute the conditional
variance from Shur’s complement or the squared deviations between the response X
and the Gaussian multiple linear regression of the variable X on the causes Ω:
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Ω2 .KΩ,X =

∣∣X − µ⃗X∣Ω∣∣2

N
=
∣∣X −

#Ω

∑
j=1
βω jXω⃗ j − βX ∣∣2

N

Where we have:

βΩ,X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

βω1,X

βω2,X

.

.

.
βω#Ω,X

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= K−1
Ω2 .KΩ,X = K−1

Ω2 .

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

Kω1,X

Kω2,X

.

.

.
Kω#Ω,X

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

βX = µX − KX,Ω.K−1
Ω2 .µΩ = µX − .KX,Ω.K−1

Ω2 .

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

µω1

µω1

.

.

.
µω#Ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

The explained variance EV, quantifying the predictive quality of the causeses Ω on the
variablle X, is defined as follows.

EV = 1−
KX2∣Ω

KX2
= 1−

KX2 − KX,Ω.K−1
Ω2 .KΩ,X
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3 Function of causation for the multiple causation

The causation of multiple causes Ω acting on a single variable X, computed from cor-
relations, is expressed by the function of causation as follows: :

P(X∣Ω) = K̃X,ΩK̃−1
Ω2 K̃Ω,X

Where P(X∣Ω) is the function of causation.

0 ≤ P(X∣Ω) ≤ 1 and #Ω ≥ 2

K̃X,Ω is a correlation’s vector between the causes Ω and the variable X and K̃Ω2 is a
correlation matrix of causes Ω.

Proof:

In this proof, K̃Ω,X is a correlation vector between X and the set of causes Ω. K̃Ω2

corresponds to the correlation matrix of causes Ω.

In what follows, we will factorize the variance KX2 of the conditional variance KX2∣Ω:

KX2∣Ω = KX2 − KX,Ω.K−1
Ω2 .KX,Ω

KX2∣Ω = KX2 − KX,Ω.(diag−1(KΩ2)) 1
2 .K̃−1
Ω2 .(diag−1(KΩ2)) 1

2 .KΩ,X

KX2∣Ω = KX2 − K
1
2
X2 .K̃X,Ω.K̃−1

Ω2 .K
1
2
X2 .K̃Ω,X

KX2∣Ω = KX2 .(1 − K̃X,Ω.K̃−1
Ω2 .K̃Ω,X)

We obtain:

P(X∣Ω) = K̃X,ΩK̃−1
Ω2 K̃Ω,X = 1 −

KX2∣Ω

KX2
= 1 −

∣∣X − µ⃗X∣Ω∣∣2

∣∣X − µX ∣∣2
= 1 −

∣∣X −
#Ω

∑
j=1
βω jXω⃗ j − βX ∣∣2

∣∣X − µX ∣∣2

The quadratic form P(X∣Ω) = K̃X,ΩK̃−1
Ω2 K̃Ω,X can be considered as a generalization of

R squared in machine learning. The relationship P(X∣Ω) = 1 − KX2 ∣Ω
KX2

corresponds to
the explained variance which quantifies the prediction quality for a Gaussian mul-

tiple linear regression. The relationship P(X∣Ω) = 1 − ∣∣X−µ⃗X∣Ω∣∣
2

∣∣X−µX ∣∣
2 shows us that P(X∣Ω)

quantifies the impact of the causes Ω on the variable X. If the P(X∣Ω) value is close to
1 then we can estimate the impact is very important and that the relationship between
Ω and X is a quasi-deterministic relationship. In the case where P(X∣Ω) is close to 0,
we can estimate that the variable X is almost independent of the Ω causes. Using the
Pythagorean Theorem:

∣∣X − E(X)∣∣2 = ∣∣E(X∣Ω) − E(X)∣∣2 + ∣∣X − E(X∣Ω)∣∣2

It can be shown that P(X∣Ω) does indeed express a causal effect ∣∣E(X∣Ω) − E(X)∣∣2
which will be normalized:

0 ≤ P(X∣Ω) = K̃X,ΩK̃−1
Ω2 K̃Ω,X = 1 − ∣∣X − E(X∣Ω)∣∣2

∣∣X − E(X)∣∣2 = ∣∣E(X∣Ω) − E(X)∣∣2
∣∣X − E(X)∣∣2 ≤ 1
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4 Correlation value range

We will explain the importance of correlations to interpret the order of magnitude in
what will follow:

Level of correlation ρmin ρmax

Strong positive correlation 0.6 1
Moderate positive correlation 0.4 0.59

Weak positive correlation 0.2 0.39
Very Weak positive correlation 0 0.19

Strong negative correlation -1 -0.6
Moderate negative correlation -0.59 -0.4

Weak negative correlation -0.39 -0.2
Very Weak negative correlation -0.19 0
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5 Causation value range

From the function of causation P(X∣Ω), we will present a table containing the magni-
tudes of causation:

Level of causation Pmin(X∣Ω) Pmax(X∣Ω)
Very unlikely 0 0.25

Unlikely 0.25 0.5
Likely 0.5 0.75

Very likely 0.75 1
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6 Problem:Multiple causation of two causes acting on
a single variable computed from correlations

In what follows, we will consider a set of two causes Ω = {ω1, ω2} acting on a variable
X as follows:

ω1 ω2

X

To this graph we attribute a matrix of correlations of the causes K̃Ω2 and a weight vector
of correlations K̃X,Ω between the causes Ω and the variable X:

K̃Ω2 = ( 1 ρω1ω2

ρω1ω2 1 ) and K̃X,Ω = (ρω1X , ρω2X)

Then we will present a field of correlations K̃X,Ω = (ρω1X , ρω2X) for which there is a
very likely causation:

0.75 ≤ P(X∣Ω) = K̃X,Ω.K̃−1
Ω2 .K̃Ω,X < 1

We will also show the representation for a unlikely causation:

0.25 ≤ P(X∣Ω) = K̃X,Ω.K̃−1
Ω2 .K̃Ω,X < 0.5

For correlation’s field K̃X,Ω = (ρω1X , ρω2X) , we select correlation pairs to expose the
following situations:

1. A pair of strong correlations between the causes Ω and the variable X that
implies a very likely causation between the causes and the variable.

2. A pair of weak correlations between the causes Ω and the variable X that im-
plies a very likely causation between the causes and the variable.

3. A pair of strong correlations between the causes Ω and the variable X that
implies an unlikely causation between the causes and the variable.

4. A pair of weak correlations between the causes Ω and the variable X that im-
plies an unlikely causation between the causes and variable.
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7 Strong correlation, weak correlation and very likely
causation between two causes and a single variable

In what follows we will consider the matrix of causes K̃Ω2 :

K̃Ω2 = ( 1 0.8
0.8 1 )

From the previous matrix, we will now represent the pairs of correlations K̃X,Ω having
a very likely causation 0.75 ≤ P(X∣Ω) < 1:
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Figure 1: Pairs of correlations K̃X,Ω having a very likely causation 0.75 ≤ P(X∣Ω) < 1

From this graph we will select two points:K̃X,Ω = (0.76,0.86) and K̃X,Ω = (0.21,−0.34).
We will compute the function of causation P(X∣Ω) for the two points:

P(X∣Ω) = (0.76,0.86)( 1 0.8
0.8 1 )

−1

.(0.76
0.86) = 0.754

P(X∣Ω) = (0.21,−0.34)( 1 0.8
0.8 1 )

−1

.( 0.21
−0.34) = 0.7609444

We can therefore describe two situations:

1. A pair of strong correlations between the causes and the variable that implies
a very likely causation between the causes and variable.

2. A pair of weak correlations between the causes and the variable that implies a
very likely causation between the causes and the variable.
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8 Strong correlation, weak correlation and unlikely cau-
sation between two causes and a single variable

In what follows we will consider the same matrix of causes K̃Ω2 :

K̃Ω2 = ( 1 0.8
0.8 1 )

From the previous matrix, we will now represent the pairs of correlations K̃X,Ω having
a unlikely causation 0.25 ≤ P(X∣Ω) < 0.5:
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Figure 2: Pairs of correlations K̃X,Ω having a unlikely causation 0.25 ≤ P(X∣Ω) < 0.5

From this graph we will select two points:K̃X,Ω = (0.70,0.61) and K̃X,Ω = (0.22,−0.2).
We will compute the function of causation P(X∣Ω) for the two points:

P(X∣Ω) = (0.70,0.61)( 1 0.8
0.8 1 )

−1

.(0.70
0.61) = 0.4969444

P(X∣Ω) = (0.22,−0.2)( 1 0.8
0.8 1 )

−1

.(0.22
−0.2) = 0.4411111

We can therefore describe two situations:

1. A pair of strong correlations between the causes and the variable that implies
an unlikely causation between the causes and variable.

2. A pair of weak correlations between the causes and the variable that implies an
unlikely causation between the causes and the variable.
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9 Conclusion

In this paper, we have explored the relationship between the concepts of causation and
correlation for multiple causes acting on a variable. Using the example of two causes
acting on a variable, we have illustrated the various scenarios that may arise:

1. A pair of strong correlations between the causes Ω and the variable X that
implies a very likely causation between the causes and the variable.

2. A pair of weak correlations between the causes Ω and the variable X that im-
plies a very likely causation between the causes and the variable.

3. A pair of strong correlations between the causes Ω and the variable X that
implies an unlikely causation between the causes and the variable.

4. A pair of weak correlations between the causes Ω and the variable X that im-
plies an unlikely causation between the causes and variable.
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