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Abstract

In the context of multiple causation, I will introduce the causation function.
This function is a quadratic form computed from the correlations and serves as a
generalization of R-squared, commonly found in machine learning. In this report,
the causation function will make the link between the correlations and causal re-
lationship. By examining the causation function through an illustrative example,
we will demonstrate how strong or weak correlations between multiple causes and
a variable can imply either a highly likely or unlikely causal relationship between
the causes and the variable.
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1 Introduction

In this report, we delve into the concept of explained variance, which will play a cru-
cial role in interpreting the causation function. This function, denoted as P(X|Q), is
computed using a quadratic form computed from correlations. We will trace its origins
through a rigorous proof, revealing why this causation function serves as a generaliza-
tion of R-squared in the context of multiple causation within machine learning.

In what follows, I will prove that the causation function P(X|Q) quantifies the causal
effect of causes Q on a variable X. The causation function therefore makes the link
between the correlations and the causal relationship.

To facilitate our understanding of correlation and causation, I will present a table that
showcases the magnitude of correlations alongside their corresponding causation lev-
els.

Subsequently, we explore a scenario involving two causes acting on a variable. By
delineating the correlation pairs associated with highly likely and unlikely causation,
we shed light on the intricate relationship between these factors.

The paper concludes with numerical applications, specifically addressing a problem
where two causes influence a variable. Through these examples, we establish connec-
tions between strong and weak correlations and the likelihood of causation.



2 Conditional variance and explained variance EV for
a multivariate Gaussian

We will recall below that for a multivariate Gaussian, we can compute the conditional
variance from Shur’s complement or the squared deviations between the response X
and the Gaussian multiple linear regression of the variable X on the causes Q:
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The explained variance EV, quantifying the predictive quality of the causeses Q on the
variablle X, is defined as follows.
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3 Function of causation for the multiple causation

The causation of multiple causes Q acting on a single variable X, computed from cor-
relations, is expressed by the function of causation as follows: :

P(X|Q) = KxoKg! Kax

Where P(X|Q) is the function of causation.
0 <P(X|Q) < 1 and 4Q > 2

Ky is a correlation’s vector between the causes Q and the variable X and K. is a
correlation matrix of causes Q.

Proof:

In this proof, Kqx is a correlation vector between X and the set of causes Q. Kq
corresponds to the correlation matrix of causes Q.

In what follows, we will factorize the variance Kx: of the conditional variance Kyzjo:
Kxo = K2 — Kxa.Kgr Kxao

Kxjo = Kx: — Kxo.(diag™ (Kg2))? R} (diag™ (Kep))? Kox
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The quadratic form P(X|Q) = KxoKg} Ko x can be considered as a generalization of

R squared in machine learning. The relationship P(X|Q) = 1 - le—zf’ corresponds to
X

the explained variance which quantifies the prediction quality for a Gaussian mul-

tiple linear regression. The relationship P(X|Q) = 1 - ”\}I(X_ = :J(“"lzlz shows us that P(X|Q)
quantifies the impact of the causes Q on the variable X. If the P(X|Q) value is close to
1 then we can estimate the impact is very important and that the relationship between
Q and X is a quasi-deterministic relationship. In the case where P(X|Q) is close to 0,
we can estimate that the variable X is almost independent of the Q causes. Using the

Pythagorean Theorem:
IX - EQX)IP = |[E(XIQ) - ECOIP + [IX - E(XIQ)|P

It can be shown that P(X|Q) does indeed express a causal effect |E(X|Q) - E(X)|?
which will be normalized:
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0<P(X|Q) = Kxoky Kax = 1
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4 Correlation value range

We will explain the importance of correlations to interpret the order of magnitude in
what will follow:

’ Level of correlation \ Pmin \ Pmax ‘
Strong positive correlation 0.6 1
Moderate positive correlation 04 | 0.59

Weak positive correlation 0.2 | 0.39
Very Weak positive correlation 0 0.19

Strong negative correlation -1 -0.6
Moderate negative correlation | -0.59 | -0.4

Weak negative correlation -0.39 | -0.2
Very Weak negative correlation | -0.19 0




S Causation value range

From the function of causation P(X|Q), we will present a table containing the magni-
tudes of causation:

| Level of causation | Pin(X]Q) [ Puax(X|Q) |

Very unlikely 0 0.25

Unlikely 0.25 0.5

Likely 0.5 0.75
Very likely 0.75 1




6 Problem:Multiple causation of two causes acting on
a single variable computed from correlations

In what follows, we will consider a set of two causes Q = {w1, w; } acting on a variable
X as follows:

g

To this graph we attribute a matrix of correlations of the causes K> and a weight vector
of correlations Ky o between the causes Q and the variable X:
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Then we will present a field of correlations kX,Q = (0w x> Puwrx) for which there is a
very likely causation:

0.75 < P(X|Q) = Kx.K Kox < 1

We will also show the representation for a unlikely causation:

0.25 <P(X|Q) = Kxo.Kp .Kox < 0.5

For correlation’s field f(x,g = (Pw x> Puwrx) » We select correlation pairs to expose the
following situations:

1. A pair of strong correlations between the causes Q and the variable X that
implies a very likely causation between the causes and the variable.

2. A pair of weak correlations between the causes Q and the variable X that im-
plies a very likely causation between the causes and the variable.

3. A pair of strong correlations between the causes Q and the variable X that
implies an unlikely causation between the causes and the variable.

4. A pair of weak correlations between the causes Q and the variable X that im-
plies an unlikely causation between the causes and variable.



7 Strong correlation, weak correlation and very likely
causation between two causes and a single variable

In what follows we will consider the matrix of causes Kq2:
. 1 0.8
Koz = (0.8 1 )

From the previous matrix, we will now represent the pairs of correlations Ky.o having
a very likely causation 0.75 < P(X|Q) < 1:
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Figure 1: Pairs of correlations Ky having a very likely causation 0.75 < P(X|Q) < 1

From this graph we will select two points:Kx q = (0.76,0.86) and Ky.q = (0.21,-0.34).
We will compute the function of causation P(X|Q) for the two points:

-1
P(X|Q) = (0.76,0.86) (0?8 Oig) .(8:;2)=0.754

-1
P(X|Q):(O.21,—0.34)(0%8 Oig) .(_0(').2314):0.7609444

‘We can therefore describe two situations:

1. A pair of strong correlations between the causes and the variable that implies
a very likely causation between the causes and variable.

2. A pair of weak correlations between the causes and the variable that implies a
very likely causation between the causes and the variable.



8 Strong correlation, weak correlation and unlikely cau-
sation between two causes and a single variable

In what follows we will consider the same matrix of causes Kcy:
. 1 0.8
Koz = (0.8 1 )

From the previous matrix, we will now represent the pairs of correlations Ky.o having
a unlikely causation 0.25 < P(X|Q) < 0.5:
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Figure 2: Pairs of correlations Ky o having a unlikely causation 0.25 < P(X|Q) < 0.5

From this graph we will select two points:Ky.q = (0.70,0.61) and Kxq = (0.22,-0.2).
We will compute the function of causation P(X|Q) for the two points:

-1
P(X|Q):(o.7o,0.61)(0%8 ois) .(8:2(1)):0.4969444

-1
P(X|Q):(0.22,—0.2)(0?8 ois) .(95;):0.4411111

‘We can therefore describe two situations:

1. A pair of strong correlations between the causes and the variable that implies
an unlikely causation between the causes and variable.

2. A pair of weak correlations between the causes and the variable that implies an
unlikely causation between the causes and the variable.



9 Conclusion

In this paper, we have explored the relationship between the concepts of causation and
correlation for multiple causes acting on a variable. Using the example of two causes
acting on a variable, we have illustrated the various scenarios that may arise:

1. A pair of strong correlations between the causes Q and the variable X that
implies a very likely causation between the causes and the variable.

2. A pair of weak correlations between the causes Q and the variable X that im-
plies a very likely causation between the causes and the variable.

3. A pair of strong correlations between the causes Q and the variable X that
implies an unlikely causation between the causes and the variable.

4. A pair of weak correlations between the causes 2 and the variable X that im-
plies an unlikely causation between the causes and variable.
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