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ABSTRACT

In this paper, we provide a main method for construction of continued fraction based on a
given power series using Euler connection. Then we establish very innovative results in
continued fraction approximation for the Gamma function as applications of our method. Also
new continued fraction bounds for the Gamma function are obtained. Finally new continued
fraction approximations and bounds for Wallis ratio are established.
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1. Introduction

The classical Euler Gamma function  defined by

o0

C(x)=[e"e"dr, x>0 (1.1)

0

was first introduced by the Swiss mathematician Leonhard Euler (1707-1783) in his goal to
generalize the factorial to non-integer values.

Today the Stirling’s formula

nl~ 27 n(ﬁj (1.2)

e

is one of the most well-known formulas for approximation of the factorial function by being

widely applied in number theory, combinatorics, statistical physics, probability theory and
other branches of science.

Up to now, many researchers made great efforts in the area of establishing more accurate
approximations for the factorial function and more precise inequalities, and had lots of
inspiring results.
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The Stirling’s series for the Gamma function is presented (see [1]) by

F(x+1)z\/ x(iJ ex 22n2n . anJ, X —>® (1.3)

€ n=l1
where B, (n 0 {0}) denotes the Bernoulli numbers defined by the generating
formula
z =an z , z|<27r,
e—1 = " n!
then the first few terms of B, are as follows:
bt =0,m21,
1 1 1 1 1 5 :
B,=1,B=-——,B,=—,B,=—,B,=—,B,=——,B,=—,
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It was proved in [2] by Alzer (see also [18]) that for given , the function
. B

2i

1 1
F = lnl“(x+l)—(x+5j lnx+x—§ln(2ﬂ)—;W

is strictly completely monotonic on (0, ) of n iseven,andsois —F, if n isodd.

n

It thus follows that double inequality

exp@ 2i(2i]jzli)xzi_1] ; (23 <ex ZZI ] (1.4)

holds for all x> 0.
The Burnside’s formula [4]

1
nt—

n
nl~\2r

(1.5)

is more precise than (1.2).

An asymptotic expansion of which for the Gamma function



F(x+%j =~ \/ﬂ(ﬁ)x exp(—iw] (1.6)
e

= 2i(2i —1)x*
as x —> oo was given in [25]. In [39], Yang showed that the function

I(x+1/2) e (=278,

n : ifn>1,
G =1 27m(xle) I 2i(2i —1)x*! (1.7)
n [(x+1/2) Fn0

V27 (x/e)

is completely monotonic on (0, ) of n isodd,andsois —G

n

if n is even. These yield

that for n , the double inequality
I x+ !
2n-1 (1—21—21')32, 5 2n (1_21—21')32.
CXp — | < <exp — Y ——— = 1.8
p( ; 21(21 - 1))(,'21_] * P ; 21(21 _ 1)x21—1 ( )

holds for all x> 0.

More asymptotic expansion developed by some closed approximation formulas for the
Gamma function can be found in [3], [6], [7], [8], [9], [10], [11], [12], [15], [16], [21], [22],
[24], [29], [30], [32], [33], [36], [41],[42] and the references cited therein.

Then two approximation formulas for the Gamma function in terms of hyperbolic functions
have attracted the attention of scholars, the first one of which, Windschitl’s approximation
formula [47], is given by

[(x+1)=~ 27zx(£] ()csinhlj2 as x — oo, (1.9)
e x

and the second one is the Smith’s approximation formula for the Gamma function

F(x+%jz«/27r (fj (2xtanhij2 as x — oo, (1.10)

e 2x

which was introduced in [35] by Smith. These two formulas are based on the Stirling’s
formula and the Burnside’s formula respectively.

In recent papers [43] and [44], Yang and Tian developed the Windschitl’s approximation
formula (1.9) to an asymptotic expansion as



x X © . . 2i-1
F(x+1)z 2 x(ﬁj (xsinhl)2 exp(z 21(21_.2),!_2 Zifilja (1.11)
e X X

= 2i(2i)

as x — oo, and the Smith’s approximation formula (1.10) to an asymptotic expansion as

F(x+%jz\/g(xjx(2xtanhbj exp[ i )' 21—1)22’ (1_21_21*)%]’ (1.12)

e = 2i(2i —1)2i)

as X — .
Especially the Wallis ratio defined by

_@n-D! T(n+1/2)
" @m)!! T(n+1)r(1/2)

for n (see [17]) also has attracted the attention of many researchers(see [13, 19, 20, 26]
and references therein).

Some properties involving the generalized Wallis ratio I'(x+1/2)/T(x+1) for x>-1/2,
as a ratio of two Gamma functions, can be found in [5], [31], [37], [38], [40], [45], [46].

In particular, by (1.3) and (1.6), we immediately get that

Ix+1 Z(1-27)B,,
(x—_i_l)z\/;exp(ZW] as X — o, (1.13)
F[)C'sz =l

and for n , the double inequality

xexp 2n (1 2 -2 )le < F(X+1) < Jx exp f(l—z’zi)BZi (114)
(20 —1)x*" F(x 1 j = i(2i 1)
2
holds for all x > O(see [14], [34], [39]).
In [14] Chen and Paris showed that
F(x+l) z\/;(coshzij as x — oo, (1.15)
X

@

and in a recent paper [44], Yang and Tian developed this formula to an asymptotic expansion
as



T(x+1) \/;(Cosh 1 j"exp[ =, (20)—(2i — 122! (1_221-)%J (1.16)
X

F(x +;j ) 2x < ii—1)2i)

In our study, we focus the continued fraction approximations.

as X — 0,

Recently, some authors have focused on continued fractions in order to obtain new
asymptotic formulas.

For example, on the one hand, Mortici [27] found Stieltjes’ continued fraction

F(x+1)z Zﬂx(ij exp S E— , (1.17)
e a,
X+
X+ az’
X+ -
where

a —L a —L a —i e
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Also Mortici [28] provided a new continued fraction approximation starting from the Nemes’

formula (1.7) as follows:

F(x+1)z\/27zx Tlx+ ! , (1.18)
12x —

10x +
X+
X+
X+

x+ -

where



2369 b= 2117009 o 3930321915 11 J= 3326589616 4277124002 451
2527 1193976 ° 1324011300 744’ 1427802410 4089641878 840

On the other hand, Lu [23] provided a new continued fraction approximation based on the
Burnside’s formula (1.5) as follows;

| k
1 n+5
n+-— p
naN2z| —2 | |1+ 1 , (1.19)
e 2 azn
n*+
an
n+—>
n+ -
where
k k23 14
1=——’ a2=——_’ a3= , Y
24 48 120 S5k —46
Also Lu [48] found two asymptotic formulas
, 53
X +m
xY) 1
Cx+1)=y27 x| = || 1+ . (1.20)
e ; 24 1 1 a
2y’ +—x——+—5—
7 g @
a;
X+——2
X+
where
2117 _ 188098 _ 1681526854 38 _ 1513751180 9264254261 577

a, = ,a, = ,ay = ,a, = ,oee
35280 116435 1993008347 33 4973625898 1948852651 52 ,

and
, 53
x+m
* 1 1 b
F(x—i—l)z Zﬁx(zj 1+ A 7 1+—6—1b, (1.21)
¢ 12x° + —x—— Yoxr——2
7 2 b,
X+ -
x4+ -

where



2117 b 1892069 5 4064269668 5 5 _ 8499178650 3793092231
779288453088 27 Y 1599494758 6610983120

' 5080320 7% 978054

Until now many continued fraction approximations for the Gamma function were given, but
it’s very uncomfortable to determine the parameters of the continued fractions because of the
limitation of method.

So we establish an effective method to construct continued fraction.

In this paper, using Euler connection, we provide a main method for construction of
continued fraction based on a given power series and determine all parameters of the
continued fractions simply. Then we establish several continued fraction approximations for
the Gamma function as applications of our method. Also new continued fraction bounds for
the Gamma function are obtained. Finally new continued fraction approximations and bounds
for Wallis ratio are established.

2. A main method to construct continued fractions

In this section, we present a main method to construct continued fraction based on a given
power series using Euler connection.

The Euler connection states the connection between series and continued fractions as follows;

Lemma 2.1. (The Euler connection [14]) Let {c,} be a sequence in \ {0} and

fi=2c, N o (2.1)
k=0
Since f, #o, f,#f ,,N , there exists a continued fraction b, +K(a, /b,) with n

approximant f, for all n. This continued fraction is given by

¢, —c /¢ -c,/c,
Cot— —— —_— . (2.2)
l +1+c¢c, /¢, +-+14¢, /c, , +--
The following theorem states our main method.
Theorem 2.1. For every x #0,
3 C2[ _ ; a[ _ al
Z 2i-1 _K b n a ’ n > (2.3)
i=1 X i=1 Yi i
X+ x+ K
X i=2 al

where ¢, #0, i=12,---,n and



a, = i ,b=—a, i=2,3,---,n
Cy(i-1)
Proof. Assume that
n C..
£ (x) # oo, fn(x):zxzil, n , x#0, (2.4)
i=1

where ¢, #0, i=1,2,---,n. Since

o) #oo, f,(x)# fu(x), n

the left-side of (2.3) isequal to f,(x) (N ). Using Lemma 2.1,

c ¢4 Cs Cy; Cy,
2 - 2 - 2 T 2 T2
f(x)= Z Cu _ x __ CX C4X Cai-nX Ca(n-1)
n 2i-1
X I + c, + Co +-+ Cy et c
=1 I+ 1+ I+ I+
C, X C,X cz(i_l)x cz(n_l)x
C4 c6 _ CZ[ _ CZn
- 2 2 2
_S CyX CaX o) C2(n-1)¥
X + C4 + c6 + i + c21 + + Czn
l+—— 1+— 1+ > I+ >
sz C4X C2(i—l)x cZ(n—l)x
C4 C6 _ c2i _ C2n
- 2 2
_5 Gy CyX Co(i-yX Ca(n-1)¥
X + ¢, + Cs +-o+ Cyi At c
LT I+—2— T4 —2
C, X X Co(i)X Co(n-1)X
% _C _ _ S
_& €2 Cs €a(i-1) Cafn1)
x + cy + Co +--+ Cypi Aot c
x+— 6 P — x+—2
CrX CyX Co(im1)X Co(n-1)¥
c c
2 2
_ _ . (2.5)
n C n C
2(i-1 2(i-1
X+ ) x+—+ K (1)
i= X+ CZz X i=2 X+ CZz



The right-side of (2.3) is equal to

K LA - , x=0. (2.6)
n
A A a,
Tx+ Lt ox+ T+ K
X X i=2 i
X+
x
Thus,
a, =c,, b=0,
C,. C,. .
a,= b, X ——q, i=23,n
Cy(i-1) Ca(in1)

The proof of Theorem 2.1 is complete.

Remark 2.1. As you can see, Theorem 2.1 is simply proved by Euler connection. This
theorem is very useful for construction of continued fraction approximations and comfortable
to determine the parameters of the continued fractions.

3. Continued fraction approximations and bounds for the Gamma function

In this section, we establish continued fraction approximations and continued fraction bounds
for the Gamma function as applications of our method.

Theorem 3.1. Asx — oo, we have the continued fraction approximation of I'(x+1),

x) <. q,
F(x+1)~ 2ﬂx(;] exp K—b

X+
x
(3.1)
X ! a
=27 x| = | exp ! ,
e b] a,
x+—1+
X a
x+-—2=+ 3
X b, .
X+-2+"
X

where



a=—=,b =0,
2

al.=—(l__l')(21_3)32i>bi=_ai’ i=2,3,"‘-

l(2l - 1)B2(1‘71)

Proof. Assume that
B, )
=2 =123, 3.2
“ o) G-2)

From (3.2) and Theorem 2.1, asx — o,

SRR B, 4 . B, _ —
2 2”_221'(21'—1))52”_1{ b, exl’[;ﬁ]‘e"p K—5 | G

i1 X i=1 =l i P 21(21 l)x - il 4 O
X X
where
a, =c, —%, b, =0,
a, = - Co;i :_(l"—l‘)(2i—3)32i b, = Coi ——a, i=23,
Co(i-1) i(2i —1)B,,., Co(i-1)

According to the Stirling’s series,

o0

F(x+1)z\/27rx E] exp(iziB—”))CHj= 2ﬂx(§j4 exp K% . (34

o 2i(2i -1 A b
X

Thus, our new continued fraction approximation can be obtained.

Remark 3.1. As you can see, our new continued fraction approximation for the Gamma
function is equal to the Stirling’s series.
From Theorem 2.1, we have another expression of (3.4) as follows;

X X
x a x a
C(x+1)~ 2ﬂx[—j expl ——— |= 27[){—) exp ! )
e R e a,

X+E X+ p

i=2 i 2 3
x——- x——2+

X X as .
x——4"r,

X
(3.5)

Theorem 3.2. For every x > 0, we have continued fraction bounds for the Gamma function:



< <eXp K aib 5 n 4 (36)
P +71 E i=1 +7’
X X «/2706(6) . X
where
B
a, :_23 bl = 0’
2
_ (i—l)(zi—?’)Bz; b =—a. i=23---2n..
l i2i-1)Byy

2n

B, o,
z. 2i(2i —1)x¥ K

Proof. Using (1.4) and the same method from (3.2) to (3.3), forx >0,

- A
x4+

X

2n B2i B 2n a; F(x + 1)
exp(izl 2i(2i _ 1)x2i—| J =exp K - -

-, (3.7)
gt m(XJ
X e

and
2n—1 Bz,‘ _2n—1 ai
;21'(21'—1))8"'1 _K] ;

x+—+

X
o Zzl B,. . QKI a_ | (x+1) (3.8)
&2 )" T BT o '

+2 @(XJ
X e
where

(i-1)2i-3)B,, ;

bo=—a, i=2,3,-2n
i(2i=1)By.)

Thus, our new continued fraction bounds for the Gamma function are obtained.

Theorem 3.3. As x — oo, we have the continued fraction approximation of I'(x +5) ,



¢ il i
X
=27 (fj exp| — L ,
€ x+ Iy P
X oy P
Xoos b
X
where
B
P :Tza q, =0,
i —1)2i =3)4' —2)B,.
pi:_(l. )(l [)( ) Zlaqi:_pia i:2,3,"'
i(2i —1)4" - 8)By.
Proof. Assume that
1-2i
czl:w i=1,2,3,---.

2i(2i-1) ’

From (3.10) and Theorem 2.1, asx — o0,

x Cz; Z(l 2" 21)32 :10% )4
P 2i 21 il 4;
x+2
X
1-2i 0
21 2l i=1 x+&
X
where
B
pl=02=72’ ¢, =0,
: i —1)2i —3)4' - 2)B,, A '
b= [ :_(l 1)(21 3)( )2,’%: Cy; =—p, i=2,3,-

Cy(i-1) i(Zi - 1)(41 - 8)32(1-71) Cy(in)

b

(3.9)

(3.10)

(3.11)



According to (1.6),

1 x X 0 (1_21—21')8 A (ij - p
[ x+— =27 = | exp| — Y ——2 |=+/27 — . (3.12
( 2) (ej p( ggzﬂzi—lpWI e é§ q; G.12)
X+
X
Thus, our new continued fraction approximation can be obtained.
Remark 3.2. As you can see, our new continued fraction approximation for the Gamma
function is also equal to (1.6).
From Theorem 2.1, we have another expression of (3.12) as follows;

F(x+%jz\/27r (ij exp S N N T (ij exp| — Py 3.
; e

€ x+ K P X+ P
i _ P v P2y P
X Xy P
X
13)
Theorem 3.4. For every x > 0, we have continued fraction bounds for the Gamma function
- r )c+l
n— D, 2 2n D,
exp — K ’q < —<exp —K—’q , N , (3.14)
S R LA Y Ly =ox 42
X 2ﬁ[ej X
where
B
P 0=l
—1)2i -3)(4' —2)B,, '
» :_(z )2i )( )B,, (g, =—p,, i=2,3,2n.

i i(2i —1)4' - 8)B,_
Proof. Using (1.8) and the same method from (3.10) to (3.11), forx >0,

2n-1 1-2i 2n-1
(1 2 )B, P,
2o Ky

=ox 4+
X

1

21 (1-22)B w1 p l"(x + 2}
exp| — > ——— 2 |=exp| - L |< , 3.15
{ ;%@pnﬂ4] oKy : 1)




and
i(l 2" 2’)82, " p

=K
oy di
X
1
2n (1_21—2i)B 2n p r(x+2j
expl - Y —————|=exp| - K —— |> , (3.16)
= 2i(2i —1)x*" pl —(x\"
X e
where
B
p1:TZ> q,=0,
—1)02i-3)4' - 2)B,, '
N i) ) )

: i(2i - 1)4' - 8)By._

Thus, our new continued fraction bounds for the Gamma function are obtained.

Theorem 3.5. Asx — oo, we have the continued fraction approximation of I'(x+1),

X

F(x+1)z 27 x(ij (xsinhlj2 L“K
e X

X =l 71

X+
X
(3.17)
) 1
= 272')6(—) [xsmh j exp| — ™ ,
m
o Yox+l4 2
m
A 3
X Ny
+2
X
where
m1=—7 B, n =0,
270

. . . i+l B )
- G+  [(+2)2 +2)!—4 e T
20+2)°Q2i+3) [(+DQ2i)-4'T By

Proof. In (1.11), it’s easy to see that



& 20(2i - 2)-22" Bz (2i +4)(2i +2)-2%" By,
)= . 3.18
exp(; 2i(2i) Z Qi+4)(2i+4) ¥ (3.18)

Assume that
Qi+ 42+ 2)!—22”3

C,. = B, i=1273--. 3.19
& (i +4)(2i+4) (3.19)
From (3.19) and Theorem 2.1, asx — «©,
2o, 1 & ey (2i +4)(2i +2)1-27" By _ 1 7
= = — , (3.20
pur SRS e JR ,le (2i +4)(2z +4). X! ng+ (3-20)
X
from (3.18),
=, 2i(2i - 2)-2*" B, 1
ex = — 3.21
p(; 2i 21 X2 ] x* {:{ sl (3.2)
X
where
7
m, =c, =%Bé, n, =0,
, / 4 2)2i 1] By, |
m = Co _ . (z-;-l). [(l+?)(2l +.2)!—f1 1 Daina) n, = Cy; =—m,, i=2,3,-
Gy 2i+27@Qi+3)  [G+DQRI4T By o
According to (1.11),
X x b 0 2l ) 2211 B
Ix+1)~~+27 x| = | | xsinh— 2
( ) (ej ( ] (,Z; 2i 21 x* 1]
. (3.22)

* 2 1 = ,
=27 x(ﬁj [xsinhlj exp —4[(L !
e X X =l n;
X+
x

Thus, our new continued fraction approximation can be obtained.

Remark 3.3. As you can see, our new continued fraction approximation for the Gamma
function is equal to (1.11).
From Theorem 2.1, we have another expression of (3.22) as follows;

X

F(x+1)z 2r x(gj (xsinh%}2 exp L4+




X

=27 x(ij (xsinhlj2 exp L4 ml . (3.23)

e X X m
X+ 2
m
x——2+ :
X m3
X——+
X

1
Theorem 3.6. As x — oo, we have the continued fraction approximation of F(x+5) ,

X

F(x+%j ~A27 (ij [2xtanhzij2 exp _LA;K &

e X x" o

Vi
x4+
X

(3.24)

X

=+2r (EJ (2x tanh L)z exp —L“ ad ,

e 2x X v u
x+-L+ 2
X v u
X4+ 3
X 3 .
x+-—24"
X

where

217
u=——=B_,v
'ge40 !
(+1)  [(+2)2i+2)—4""714"7 =2 By

u =— V. =—U

20+2)°(2i+3)  [(+DQ2i-4"] 47 -8 By,

=0,

=23,

Proof. In (1.12), it’s easy to see that

z (2 )—(2i —1)2* . . o ; _(D; 2i+3 B
exp[_z(Zz)! Qi=1p*" | i) Ba }:exp£_z(2z+4)! Qi3 P

= 2i(2i —1)2i) x 2! (21 +3)(2i +4)(2i +4) x 23
.(3.25)
Assume that
. — . 2i+3 )
_ (2i+4)-(2i+3)2 A=27)Bys  i=1,2,3,. (3.26)

C,. =
M (2i+3)(2i +4)(2i + 4)

From (3.26) and Theorem 2.1, asx — oo,

|



e & o (2i +4)1—(2i +3)2*"

. By 1 2 u
- - - 1 _ 2—3—21 2(z'+2) - i 327
pr SRS e e z Y (2i +3)(2i + 4)(21 + 4) ( ) X ¥t K v, (3:27)

from (3.25),

= (2i)—(2i 127! i B, L =
-2 S| =ep| - K —— | 3.28
R e e e R e

+ -
X
where
217
u =c, :86—4036, v :0,
LG (D) [(i+2)2i +2)—4""14" -2 B, 0s2)
Yooy 20+2°Q2i+3)  [(+D(2i)4T] 477 -8 By,
v =y =23,

According to (1.12),

1 x)" 12 2 21)' i—1)2%" Loy By,
r —|=~27 | —| | 2xtanh — -2 ~
(x+ 2) g ej ( i 2xj exp Z 2i 21—1 (21) S )sz

i=3

(3.29)

=27 Ej (2xtanhLJ2 exp —%K

2x

=

i=1

x4t
X

Thus, our new continued fraction approximation can be obtained.

Remark 3.4. As you can see, our new continued fraction approximation for the Gamma
function is also equal to (1.12).
From Theorem 2.1, we have another expression of (3.29) as follows;

X

r x+l ~A27 X thanhL 2exp —%#
2 e 2x -




X

— 27 (fj (2xtanh—l—jzexp LS “ (3.30)
e U,

2x X
X+
u u
x— 2+ 3
X U, .
U
X

4. Continued fraction approximations and bounds for the generalized
Wallis ratio

In this section, we present continued fraction approximations and continued fraction bounds
for the Wallis ratio as applications of our method.

Theorem 4.1. As x — oo, we have the continued fraction approximation for the generalized

Wallis ratio:

F(X—Jri)z\/;exp K Sit =\/_xexp ; all , 4.1)
F(XJFJ x4+t x+-L+ %
2 * * o by %
X t3
+ -+
X
where
3B
s, =—=, =0,
4
. . i B..
Si:_(l 1)(2i 3)4‘ 1 B, gt o=—s, =23,
i(2i-1) 4 -4 B,
Proof. Assume that
—2i
cmw, i=1,2,3,--. 4.2)
i(2i 1)
From (4.2) and Theorem 2.1, asx — o,
2 c 12”3 © _p w
Z 21 Z( ) 21 :K i eXp[Z (1 2 )le _eX K ’ (43)
i=1 i=l x_,_if i=1 (21 1) i=l x+l
X

X



where

s, =c¢, :%, t, =0,
S[:_ CZ[ :_(1_1)(21_3)4;_1 BZ[ ’ti: CZ[ :_Si’ i:273"”
Cai1) i2i-1) 4 -4B,,, Cafi-1)

According to (1.13),

o0

(x - 1) x/_exp(z a-27 )le j = \/;exp K—Sit ) 4.4)

Fx+ =l gy T
2

1
X
Thus, our new continued fraction approximation can be obtained.

Remark 4.1. As you can see, our new continued fraction approximation for the Gamma
function is equal to (1.13).
From Theorem 2.1, we have another expression of (4.4) as follows;

Ix+1 s s
Mz«/xexp ———— | =+ xexp ! . 4.5)
1 S; S,
INx+— x+ K X+
2 i22 o _Si w52 S3
X X A .
X——+"
X

Theorem 4.2. For every x >0, we have continued fraction bounds for the Wallis ratio:

2n ol
o 2 | M e e
=l ey 0 F(X—FJ oy L
x 2 *
where
3B
Sl = - 5 tl =O’
4
. . i B..
P (l 1)(2l 3)4 1 2i t. =—5., i=2,3a""2n'
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Proof. Using (1.14) and the same method from (4.2) to (4.3), forx >0,
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Thus, our new continued fraction bounds are obtained.

Theorem 4.3. As x — o, we have the continued fraction approximation of the Wallis ratio:
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2 X
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=\/;(cosh—) exp| — lid . (4.9)
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Proof. In (1.16), it’s easy to see that
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From (4.11) and Theorem 2.1,as x — o0,
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Thus, our new continued fraction approximation can be obtained.

Remark 4.2. As you can see, our new continued fraction approximation for the Gamma
function is also equal to (1.16).
From Theorem 2.1, we have another expression of (4.14) as follows:
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5. Concluding Remarks
In Remark 3.1 and Remark 3.2, we can see that
gai, i=1,
: a,, 1=2,3,-,
4' -8
and in Remark 3.3 and Remark 3.4,
4i+2 _2
—m,, i=1,
41+2 1
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———m;, =23
47 -8
Also in Remark 3.1 and Remark 4.1, we can see that
LG D
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ai’ i=2,3’...’
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and in Remark 3.3 and Remark 4.2,

i+2
Mm =1,
W=y (5.4)
———m,, =23
442 _ 4
From Theorem 3.1, Theorem 3.5 and the relations of (5.1), (5.2), (5.3) and (5.4), we get
1 1 2 3 140 2073 2310
4y =74 = a3 =54, =70 d5 = e = a7 =—~7 > "
12 30 7 4 99 910 691
o1 7 31 381 17885 4243431 9460605
P P00 T o8 P T 4067 P T 125737 P6 T 1860040 7 T 2828954
1 1 3 85 217 6219 60071
S =Sy = Sy = Sy E s Ss = .86 = S s T
8 24 10 112 153 272877 17966
and
1 33 13 2260261
s Ty, =— my=—my=————,
1620 35 9 990990
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L 31 _ 4191 6643 4626754267
'TS18407 2 T 434070 T 457274 T 2025583560
L, - 402311736165 ~_ 74191587986327  _ 8695070727976390595
ST 1202956109420 T 16092469446600 7 1430265433200411906
1 _ 187 4433 2260261
YT 57607 T 1960 T 30607 T 990264
., _ 1788161308 1 5819036870 17 9685440152 92897
s =

> We = > w, = s
5347777526 ¢ 1262231511607 7 1593191042 03286

As mentioned above, in our investigation, we provide a generally applicable and very useful
method to construct continued fraction and have successfully found its applications.
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