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ABSTRACT

In this paper, we provide a new continued fraction approximation for the psi function. Then
we establish continued fraction bounds for the psi function.
Keywords: Euler connection, Continued fraction, Psi function

1. Introduction

Special functions and mathematical constants play an important role in several areas of
mathematics and other branches of science such as number theory, analysis, probability theory,
statistical physics and so on.

Especially, the classical Euler gamma function � defined by
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is one of the most important special functions and has a lot of applications in diverse areas.
The logarithmic derivative )( x of the gamma function )( x given by
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is well-known as the psi(or digamma) function.
The successive derivatives of the psi function )( x
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n
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are called the polygamma functions. The following recurrence formula is well known for the

psi function (see [1, p. 258]):

x
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The psi function is connected to the Euler-Mascheroni constant and harmonic numbers
through the well-known relation (see [1, p. 258, Eq. (6.3.2)]):
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is the nth harmonic number and  is the Euler-Mascheroni constant defined by
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The constant  , now universally known as gamma, is generally accepted to be the most

significant of the ’constant’ and as such is the important special constant of mathematics, after
π and e. It is deeply related to the gamma function )( x thanks to the Weierstrass formula:
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As you can see, the gamma function, psi function and Euler-Mascheroni constant are related

to each other.

In this field, the most important problem is to find more accurate approximation and bounds

for them, so during the past several decades, many mathematicians and scientists have worked

on this subject.

Up to now, many researchers made great efforts in this area of establishing more accurate

approximations and inequalities for the gamma function, psi function and Euler-Mascheroni

constant and had lots of inspiring results.

Recently, authors have focused on continued fractions in order to obtain new approximation

and bounds.

For example, Lu([5]) provided faster sequence convergent to  as follows.
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Moreover, he used continued fraction approximation to consider new classes of sequences for

the Euler–Mascheroni constant as follows. ([6])
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In [7], he introduced new classes of sequences.







































n
nan

nan

nan

a
k

nHL nkn

4

3

2

1
, 1ln1ln , (1.8)

where

,
)43)(23(20

96104603015,
)23(12

43,
12

32,
2 2

234

4

2

321 










kk

kkkka
k

kakaka

In this paper, based on continued fractions, we provide a new continued fraction

approximation for the psi function and continued fraction bounds for the psi function and

polygamma function.

The rest of this paper is arranged as follows.

In Sect. 2, preliminaries are given. In Sect. 3, we provide a main method to construct

continued fraction based on a given power series. In Sect. 4, a new continued fraction

approximation for the psi function are provided. In the last section, the conclusions are given.

2. Preliminaries

The basic approximation is given by the well-known asymptotic expansion of the psi

function (see e.g. [1])
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where nB (n ∈ ℕ0 ≔ ℕ ∪ {0}) denotes the Bernoulli numbers defined by the generating

formula









 0 !1 n

n

nz n
zB

e
z

, 2z ,

then the first few terms of nB are as follows.

 ,
66
5 ,

30
1 ,

42
1 ,

30
1 ,

6
1 ,

2
1 ,1

,1 ,0

10864210

12





BBBBBBB

nB n

.

The following two lemmas shows the double inequalities for the psi function and polygamma

function.

Lemma 2.1(see [2]). For 0x ,
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Lemma 2.2([3, Theorem 9]). Let 1k and 0n be integers. Then for all real num
bers :0x
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3. A main method

In this section, we present a main method to construct continued fraction based on a given

power series using Euler connection.

The Euler connection states the connection between series and continued fractions as follows.
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The following theorem states our main method.

Theorem 3.1. For every 0x ,
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Since
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the left-side of (3.3) is equal to )(xfn (n ∈ ℕ).

Using Lemma 3.1,
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The right-side of (3.3) is equal to
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The proof of Theorem 3.1 is complete.



4. A new continued fraction approximation for the psi function

In this section, we present a new continued fraction approximation for the psi function

using our main method and one remark.

Theorem 4.1. We have a new continued fraction approximation for the psi function:
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According to (2.1) and (4.3),
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Thus, our new continued fraction approximation can be obtained.
Remark 4.1. As you can see, our new continued fraction approximation for the psi function is
equal to (2.1) but the expression is totally different.
From (3.7), we have another expression of (4.4) as follows:
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For the convenience of readers, we rewrite.
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5. Conclusion

As mentioned above, in our investigation, we have provided a generally applicable and useful
method to construct continued fraction and have successfully found its applications.
Two approximations for the gamma function are simply represented by continued fractions
and then all parameters of continued fractions are clearly determined by Bernoulli numbers.
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