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ABSTRACT

The vertex cover problem is a famous combinatorial problem, and its complexity has been heavily
studied over the years. While a 2-approximation for it can be trivially obtained, researchers have
not been able to approximate it better than 2-o(1). In this paper, by a combination of a new
semidefinite programming formulation along with satisfying new proposed properties, we introduce
an approximation algorithm for the vertex cover problem with a performance ratio of 1.999999 on
arbitrary graphs, en route to answering an open question about the correctness/incorrectness of the
unique games conjecture.
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1 Introduction

In complexity theory, the abbreviation NP refers to "nondeterministic polynomial", where a problem is in NP if we
can quickly (in polynomial time) test whether a solution is correct. P and NP-complete problems are subsets of NP
Problems. We can solve P problems in polynomial time while determining whether or not it is possible to solve
NP-complete problems quickly (called the P vs NP problem) is one of the principal unsolved problems in Mathematics
and Computer science.

Here, we consider the vertex cover problem (VCP) which is a famous NP-complete problem. It cannot be approximated
within a factor of 1.36 [1], unless P=NP, while a 2-approximation factor for it can be trivially obtained by taking all the
vertices of a maximal matching in the graph. However, improving this simple 2-approximation algorithm was a hard
task [2, 3].

In this paper, we show that there is a (2-ε)-approximation ratio for the vertex cover problem, where the value of ε is not
constant. Then, we fix the ε value equal to ε=0.000001 and we show that on arbitrary graphs, a 1.999999-approximation
ratio can be obtained by solving a new semidefinite programming (SDP) formulation.

The rest of the paper is structured as follows. Section 2 is about the vertex cover problem and introduces new properties
about it. In section 3, by using the satisfying properties, we propose a solution algorithm for VCP with a performance
ratio of 1.999999 on arbitrary graphs. Finally, Section 4 concludes the paper.

2 Performance ratio based on a VCP feasible solution

In the mathematical discipline of graph theory, a vertex cover of a graph is a set of vertices such that each edge of the
graph is incident to at least one vertex of the set. The problem of finding a minimum vertex cover is a typical example
of an NP-complete optimization problem. In this section, we calculate the performance ratios of VCP feasible solutions
which lead to an approximation ratio of 2-ε, where the value of ε is not constant and depends on the produced feasible
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solution. Then, in the next section, we will fix the value of ε equal to ε=0.000001 to produce a 1.999999-approximation
ratio for the vertex cover problem.

Let G = (V,E) be an undirected graph on vertex set V and edge set E, where |V|= n. Throughout this paper, z∗V CP is
the optimal value for the vertex cover problem and we have produced a feasible solution for the problem with vertex
partitioning V = V1 ∪ V0 and objective value | V1 |. The integer linear programming (ILP) model for VCP is as
follows; i.e. z1∗ = z∗V CP .

(1) mins.t.z1 =
∑
i∈V

xi

xi + xj ≥ 1 ij ∈ E

xi ∈ {0,+1} i ∈ V

Lemma 1. [4] Let x∗ be an extreme optimal solution to the linear programming (LP) relaxation of the model
(1). Then x∗

j ∈ {0, 0.5, 1} j ∈ V and if we define V 0 = {j ∈ V | x∗
j = 0}, V 0.5 = {j ∈ V | x∗

j = 0.5} and
V 1 = {j ∈ V | x∗

j = 1}, then, there exist a VCP optimal solution which includes all of the vertices V 1 and it is a
subset of V 0.5 ∪ V 1.

Theorem 1. Let x∗ be an extreme optimal solution to the LP relaxation of the model (1) and V 0 = {j ∈ V | x∗
j = 0},

V 0.5 = {j ∈ V | x∗
j = 0.5}, V 1 = {j ∈ V | x∗

j = 1} and G0.5 be the induced graph on the vertices V 0.5. If we can
introduce a vertex cover feasible partitioning V 0.5 = V 0.5

1 ∪ V 0.5
0 with an approximation ratio of 1 ≤ ρ < 2, for

the VCP on G0.5 , then, the vertex cover feasible partitioning V = (V1 ∪ V0) = (V 0.5
1 ∪ V 1) ∪ (V 0.5

0 ∪ V 0), has an
approximation ratio of 1 ≤ ρ < 2, for the VCP on G.
Proof. We have |V 0.5

1 |
z∗
V CP (G0.5)

≤ ρ. Therefore,

| V 0.5
1 | +(1− ρ) | V 1 |≤ ρz∗V CP (G0.5) and we have |V 0.5

1 |+|V 1|
z∗
V CP (G0.5)+|V 1| =

|V1|
z∗
V CP (G) ≤ ρ ⋄

We know that we can efficiently solve the following SDP formulation as a relaxation of the VCP model (1).

(2) mins.t.z2 =
∑
i∈V

Xoi

Xoi +Xoj ≥ 1 ij ∈ E

0 ≤ Xoi ≤ +1 i ∈ V

X ⪰ 0

This model can be written as follows:

(3) mins.t.z3 =
∑
i∈V

Xoi

Xoi +Xoj −Xij = 1 ij ∈ E

Xii = 1, 0 ≤ Xij ≤ +1 i, j ∈ V ∪ {o}
X ⪰ 0

Moreover, by introducing the vector set vo, v1, ..., vn for which V1 = {i ∈ V | vi = vo} is a feasible vertex cover, and
Vo = V−V1 is the set of the perpendicular vectors to vo and vi.vj = Xij , see Figure 1, SDP (3) can be written as follows:

(4) mins.t.z4 =
∑
i∈V

vo.vi

vo.vi + vo.vj − vi.vj = 1 ij ∈ E

vi.vi = 1, 0 ≤ vi.vj ≤ +1 i, j ∈ V ∪ {o}

Theorem 2. Although it is hard to produce the exact VCP optimal value, let’s assume that we have a lower bound
on the VCP optimal value and we know z∗V CP ≥ n

2 + n
k = (k+2)n

2k . Then, for all vertex cover feasible partitioning
V = V1 ∪ V0, we have the approximation ratio |V1|

z∗
V CP

≤ 2k
k+2 < 2.
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vo ∪ V1

|
|
|
|
|
|
| V0

Figure 1. A VCP feasible solution

Proof. If z∗V CP ≥ (k+2)n
2k then n

z∗
V CP

≤ 2k
k+2 . Hence, |V1|

z∗
V CP

≤ n
z∗
V CP

≤ 2k
k+2 < 2 ⋄

Theorem 3. If z∗V CP ≥ n
2 and we have produced a VCP feasible partitioning V = V1 ∪ V0, where | V1 |≤ kn

k+1 and

| V0 |≥ n
k+1 (or | V1 |≤ k | V0 |), then, based on such a solution we have an approximation ratio |V1|

z∗
V CP

≤ 2k
k+1 < 2.

Proof. If | V1 |≤ kn
k+1 then n ≥ k+1

k | V1 |. Hence, z∗V CP ≥ n
2 ≥ k+1

2k | V1 | which concludes that |V1|
z∗
V CP

≤ 2k
k+1 < 2 ⋄

3 A (1.999999)-approximation algorithm on arbitrary graphs

In section 2, based on a feasible solution for the vertex cover problem, we introduced a (2-ε)-approximation ratio
where ε value was not a constant value. In this section, we fix the value of ε equal to ε=0.000001 to produce a
1.999999-approximation ratio on arbitrary graphs. To do this, we introduce the following property on a solution value
of the SDP (4) formulation.

Property 1. For some vertex cover problems, after solving the SDP (4), both of the following conditions
occur:

a) For less than 0.000001n of vertices j ∈ V and corresponding vectors we have v∗ov
∗
j < 0.5.

b) For less than 0.01n of vertices j ∈ V and corresponding vectors we have v∗ov
∗
j > 0.5004 .

Theorem 4. If z∗V CP ≥ n
2 and the solution of the SDP (4) does not meet the Property (1) then we can pro-

duce a VCP solution with a performance ratio of 1.999999.
Proof. If the solution of the SDP (4) does not meet the Property (1.a), then we can introduce
V0 = {j ∈ V | v∗ov

∗
j < 0.5} and V1 = V − V0, to have a VCP feasible solution with | V0 |≥ 0.000001n

and | V1 |≤ 0.999999n ≤ 999999 | V0 |. Then, for such a solution and based on Theorem (3), we have an
approximation ratio |V1|

z∗
V CP

< 2(999999)
999999+1 = 1.999998 < 1.999999.

Otherwise, if the solution of the SDP (4) meets the Property (1.a) but it does not meet the Property (1.b) then we have

z∗V CP ≥ z∗SDP (4) ≥ (0)(0.000001n){s.t. v∗
ov

∗
j<0.5}

+(0.5)(0.989999n){s.t. 0.5≤v∗
ov

∗
j }

+(0.5004)(0.01n){s.t. v∗
ov

∗
j>0.5004} =

n
2 + 0.0000035n.

Note that, due to the correctness of Property (1.a) we have less than 0.000001n of vertices j ∈ V with v∗ov
∗
j < 0.5 and

due to the incorrectness of Property (1.b) we have more than 0.01n of vertices j ∈ V with v∗ov
∗
j > 0.5004. Therefore,

in the above inequality, the first summation is the lower bound on the vertices j ∈ V with v∗ov
∗
j < 0.5, and the third

summation is the lower bound on only 0.01n of the vertices j ∈ V with v∗ov
∗
j > 0.5004 (only 0.01n of the vertices

with v∗ov
∗
j > 0.5004 are considered in third summation and beyond the 0.01n of such vertices are considered in second

summation). Moreover, the second summation is the lower bound on the other vertices; i.e. the vertices j ∈ V with
0.5 ≤ v∗ov

∗
j ≤ 0.5004 or the vertices j ∈ V with v∗ov

∗
j > 0.5004 and beyond the 0.01n of such vertices which have

been considered in third summation.

Therefore, based on the above lower bound on z∗V CP value and based on Theorem (2), for all VCP feasible solutions

V = V1 ∪ V0, we have the approximation ratio |V1|
z∗
V CP

≤ 2( 1
0.0000035 )

1
0.0000035+2

< 1.999999 ⋄
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vo ∪ V ′
1 ∪ V ”1
|
|
|
|
|
|

V ′
0 | V ”0

Figure 2. Each solution on G2 corresponds to a VCP feasible solution.

Definition 1. Let ε=0.0004 and Vε = {j ∈ V | 0.5 ≤ v∗ov
∗
j ≤ 0.5 + ε}.

Based on Theorem (4), after solving the SDP (4) on problems with z∗V CP ≥ n
2 , i) If the solution of the SDP (4) does not

meet the Property (1) then we have a performance ratio of 1.999999, ii) Otherwise (if the solution of the SDP (4) meets
the Property (1)), for more than 0.989999n of vertices j ∈ V , we have 0.5 ≤ v∗ov

∗
j ≤ 0.5 + ε; i.e. | Vε |≥ 0.989999n.

Moreover, for each edge ij in Eε = {ij ∈ E | i, j ∈ Vε}, we have v∗i v
∗
j ≃ 0; i.e. the corresponding vectors of each

edge in Eε are almost perpendicular to each other.

Therefore, to produce a VCP performance ratio of 1.999999 for problems with z∗V CP ≥ n
2 , we need a solution for

the SDP (4) that does not meet the Property (1). To do this, we introduce a new SDP model based on the SDP (4)
formulation.

Let G2 = (Vnew, Enew) be a new graph based on the connection of two copies of graph G (G′ = G” = G), where
each vertex in G′ (one copy of G) is connected to all vertices of G” (the other copy of G). Then, based on the SDP
model (3), we introduce a new SDP model as follows:

(5) mins.t.z5 =
∑

i∈Vnew

Xoi

SDP (3) constraints on G′ and G”

Xoi +Xoj −Xij = 1 i ∈ V ′, j ∈ V ”

−1 ≤ Xij ≤ +1 i ∈ V ′, j ∈ V ”

X ⪰ 0

Moreover, by introducing the vector set vo, v1, ..., v2n for which V1new = V ′
1 ∪ V ”1 = {i ∈ Vnew | vi = vo}

corresponds to a feasible vertex cover on graph G, and V ′
0 = V ′ − V ′

1 and V ”0 = V ” − V ”1 correspond to
perpendicular vectors to vo where V ′

0 = −V ”0, see Figure 2, SDP (5) can be written as follows:

(6)mins.t.z6 =
∑

i∈Vnew

vovi

SDP (4) constraints on G′ and G” and a common vector v0

vovi + vovj − vivj = 1 i ∈ V ′ , j ∈ V ”

−1 ≤ vivj ≤ +1 i ∈ V ′ , j ∈ V ”

Lemma 2. Due to additional constraints, we have z6∗ ≥ 2(z4∗). Moreover, for each VCP feasible partitioning
V = V1 ∪ V0 on G, we can introduce V ′

1 = V ”1 = V1 and −V ′
0 = V ”0 = V0 as a feasible solution for SDP (6) on G2

where V1new = V ′
1 ∪ V ”1 and V0new = V ′

0 ∪ V ”0. Therefore, z6∗ ≤ 2(z1∗) = 2(z∗V CP ).

Now, we are going to prove that by solving SDP (6) on problems with z∗V CP ≥ n
2 , it is not possible to produce a

solution which meets the Property (1) on both graphs G′ and G” unless the induced graph on V ′
ε is bipartite and the

induced graph on V ”ε is bipartite.

Theorem 5. For 4 normalized vectors v1, v2, v3, v4 which are perpendicular to each other, there exists exactly one
normalized vector v where v.vi = 0.5 i = 1, 2, 3, 4. Such a vector v satisfies the equation v = 0.5(v1 + v2 + v3 + v4).
Proof.

4



A (1.999999)-approximation ratio for vertex cover problem M. ZOHREHBANDIAN

v1.v2 = 0 and then we have | v1 + v2 |=
√
| v1 |2 + | v2 |2 =

√
2.

v3.v4 = 0 and then we have | v3 + v4 |=
√
| v3 |2 + | v4 |2 =

√
2.

(v1 + v2).(v3 + v4) = 0 and then we have

| v1 + v2 + v3 + v4 |=
√
| v1 + v2 |2 + | v3 + v4 |2 = 2.

Finally, we have (v1 + v2 + v3 + v4).v = 2. Hence, | v1 + v2 + v3 + v4 | . | v | .cos(θ) = 2 and this concludes that
θ = 0 and v = 0.5(v1 + v2 + v3 + v4) ⋄

Corollary 1. For 4 normalized vectors v1, v2, v3, v4 which are almost perpendicular to each other, a normal-
ized vector v where v.vi ≃ 0.5 i = 1, 2, 3, 4, satisfies the equation v ≃ 0.5(v1 + v2 + v3 + v4).

Theorem 6. By solving SDP (6) on G2, it is not possible to have an optimal solution that meets the Prop-
erty (1) on both graphs G′ and G” unless the induced graph on V ′

ε is bipartite and the induced graph on V ”ε is bipartite.
Proof. Suppose that we have an optimal solution that meets the Property (1) on both graphs G′ and G”. Therefore, for
an edge ab in E′

ε and an edge cd in E”ε (a complete subgraph of G2 on four vertices a, b, c, d) we have 4 normalized
vectors va, vb, vc, vd which are almost perpendicular to each other.

Moreover, we have a normalized vector vo for which vovh ≃ 0.5 h = a, b, c, d. Hence, based on Corollary (1) we have
vo ≃ 0.5(va + vb + vc + vd). This means that for each edge ij in E′

ε we have vo ≃ 0.5(vi + vj + vc + vd), and for
each edge ij in E”ε we have vo ≃ 0.5(va + vb + vi + vj).

Therefore, for each edge ij in E′
ε we have vi + vj ≃ 2vo − vc − vd = U , and for each edge ij in E”ε we have

vi + vj ≃ 2vo − va − vb = W , where, due to almost perpendicular property of the vectors vi and vj , we have
| U |≃| W |≃

√
| vi |2 + | vj |2 =

√
2.

Now, suppose that we have an odd cycle on t vertices 1, 2, ..., t, in G′
ε = (V ′

ε , E
′
ε), where t = 2k + 1 is an odd number.

Then, by addition of the vectors in this cycle, we have S = (v1 + v2) + (v2 + v3) + ...+ (vt + v1) ≃ tU .

But, the above summation can do as S = 2(v1 + v2 + v3 + ...+ vt−2 + vt−1 + vt) to produce the following results,
which all of them must be ≃ tU .

S = 2((v1 + v2) + (v3 + v4) + ...+ (vt−2 + vt−1) + vt) ≃ 2(kU + vt) = (t− 1)U + 2vt

S = 2((v2 + v3) + (v4 + v5) + ...+ (vt−1 + vt) + v1) ≃ (t− 1)U + 2v1

S = 2((v3 + v4) + (v5 + v6) + ...+ (vt + v1) + v2) ≃ (t− 1)U + 2v2

...

S = 2((vt + v1) + (v2 + v3) + ...+ (vt−3 + vt−2) + vt−1) ≃ (t− 1)U + 2vt−1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
v1 ≃ v2 ≃ ... ≃ vt−1 ≃ vt ≃ 0.5U

Hence | U |≃ 2 | v1 |≃ 2 ̸=
√
2 and this is a contradiction; e.g. v1v2 ≃ (0.5U).(0.5U) ̸= 0. Therefore, there is not

any odd cycle in G′
ε, and similarly, there is not any odd cycle in G”ε. Therefore, if the optimal solution of SDP (6) on

G2 meets the Property (1) on both graphs G′ and G”, then both of the subgraphs G′
ε and G”ε are bipartite ⋄

Corollary 2. To produce a performance ratio of 1.999999 for problems with z∗V CP ≥ n
2 , we should solve SDP (6)

on G2. Then, if the solution of SDP (6) does not meet the Property (1), we have a performance ratio of 1.999999.
Otherwise, the VCP problem on the bipartite graph G′

ε is simple, and because | Vε |≥ 0.989999n, solving such a
simple problem produces a performance ratio of 1.999999.

Moreover, based on Theorem (1) and Corollary (2), to produce a performance ratio of 1.999999 for problems with
z∗V CP < n

2 , it is sufficient to produce an extreme optimal solution for the LP relaxation of the model (1).

Theorem 7. The following LP model has a unique optimal solution that corresponds to an extreme optimal
solution for the LP relaxation of the model (1).

(7) mins.t.z7 =

n∑
i=1

(0.1)ixi
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xi + xj ≥ 1 ij ∈ E∑
i∈V

xi = z∗

0 ≤ xi ≤ +1 i ∈ V

Proof. The feasible region of the model (7) is an optimal face of the feasible region of the LP relaxation of the model
(1). Therefore, its extreme optimal points correspond to the extreme optimal points of the LP relaxation of the model
(1). Due to the properties of these extreme points, introduced in Lemma (1), and the objective coefficients of model
(7), it is not possible to have more than one optimal extreme point. In other words, based on the priority weights on
the decision variables of the model (7), its optimal solution corresponds to the unique extreme point solution of the
following algorithm.
Step 0. Let k=1 and z∗ be the optimal value of the LP relaxation of the model (1).
Step k. Solve the following LP model.

(8) mins.t.z(k) = xk

xi + xj ≥ 1 ij ∈ E∑
i∈V

xi = z∗

xi = x∗
i = z(k)∗ i = 1, · · · , k − 1

0 ≤ xi ≤ +1 i ∈ V

Let k=k+1. If k < n repeat this step, otherwise, the solution x∗ is an extreme optimal solution of the LP relaxation of
the model (1) ⋄

Therefore, our algorithm to produce an approximation ratio 1.999999 for arbitrary vertex cover problems is as follows:

Mahdis Algorithm (To produce a vertex cover solution on graph G with a ratio factor ρ = 1.999999)
Step 1. Let V 1 = V 0 = {} and solve the LP relaxation of the model (1) on G.
Step 2. If z1∗(LP relaxation) < n

2 then solve the model (7) to produce an extreme optimal solution of the LP
relaxation of the model (1). Based on such a solution (x∗

j ∈ {0, 0.5, 1} j ∈ V ), introduce V 0 = {j ∈ V | x∗
j = 0},

V 0.5 = {j ∈ V | x∗
j = 0.5}, V 1 = {j ∈ V | x∗

j = 1}, and let G = G0.5 as the induced graph on the vertex set V 0.5.
Step 3. Produce G2 based on G and solve the SDP (6) model.
Step 4. If for more than 0.000001n of vertices j ∈ V ′ and corresponding vectors we have v∗ov

∗
j < 0.5, then produce a

suitable solution V1 ∪ V0, correspondingly, where V0 = {j ∈ V ′ | v∗ov∗j < 0.5} and V1 = V ′ − V0 and go to Step 9.

Hence, the solution does not meet the Property (1.a) and we have |V1|
z∗
V CP

≤ 1.999999. Otherwise, go to Step 5.
Step 5. If for more than 0.000001n of vertices j ∈ V ” and corresponding vectors we have v∗ov

∗
j < 0.5, then produce a

suitable solution V1 ∪ V0, correspondingly, where V0 = {j ∈ V ” | v∗ov∗j < 0.5} and V1 = V ”− V0 and go to Step 9.

Hence, the solution does not meet the Property (1.a) and we have |V1|
z∗
V CP

≤ 1.999999. Otherwise, go to Step 6.
Step 6. If for more than 0.01n of vertices j ∈ V ′ and corresponding vectors, we have v∗ov

∗
j > 0.5004, then it is

sufficient to produce an arbitrary VCP feasible solution V = V1 ∪ V0 to have |V1|
z∗
V CP

≤ 1.999999 and go to Step 9.
Otherwise, go to Step 7.
Step 7. If for more than 0.01n of vertices j ∈ V ” and corresponding vectors, we have v∗ov

∗
j > 0.5004, then it is

sufficient to produce an arbitrary VCP feasible solution V = V1 ∪ V0 to have |V1|
z∗
V CP

≤ 1.999999 and go to Step 9.
Otherwise, go to Step 8.
Step 8. The solution meets the Property (1) and based on Theorem (6), the VCP problem on G′

ε is simple and
| V ′

ε |≥ 0.989999n. Therefore, solve the VCP problem on bipartite subgraph G′
ε to produce a feasible solution V1 ∪ V0

for which we have |V1|
z∗
V CP

≤ 1.999999. Then, go to Step 9.
Step 9. The partitioning (V1 ∪ V 1) ∪ (V0 ∪ V 0) produces a VCP feasible solution on the original graph G with an
approximation ratio factor ρ = 1.999999.

Corollary 3. Based on the proposed 1.999999-approximation algorithm for the vertex cover problem, the
unique games conjecture is not true.
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4 Conclusions

One of the open problems about the vertex cover problem is the possibility of introducing an approximation algorithm
within any constant factor better than 2. Here, we proposed a new algorithm to introduce a 1.999999-approximation
ratio for the vertex cover problem on arbitrary graphs, and this lead to the conclusion that the unique games conjecture
is not true.
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