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Abstract

The Riemann Zeta function is very famous because hidden within it lies the much-desired prime counting

function. In this paper, we will unlock the door using the Euler-Maclaurin formula and present the proof of

the Riemann Hypothesis.
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1 Introduction.

1.1 Definition of the Riemann Zeta Function.

The Riemann Zeta function is defined as follows: C → C

ζ(s) :=
∞
∑

m=1

1

ms
(1)

where: s ∈ C

This series converges when Re[s] > 1

Riemann succeeded in giving it analytic continuation, obtaining the following functional equation [3]:

ζ(s) = 2sπs−1 sin
(sπ

2

)

Γ(1− s)ζ(1− s) (2)

This function has a unique pole, which occurs at ζ(1).

1.2 Formulas for specific cases of the Riemann Zeta Function.

Formulas for specific cases of the Riemann Zeta Function are also known. For instance, there’s a formula to
calculate the zeta function when ’s’ is a positive even number, deduced by Euler. Additionally, there’s another
formula to calculate the zeta function when ’s’ is a negative integer, obtained by combining the functional
equation with Euler’s deduced formula:

Let: s = 2k, k ∈ N

ζ(2k) =
(−1)k−1(2π)2kB2k

2(2k)!
(3)

Let s = −k, k ∈ N

ζ(−k) = −Bk+1

k + 1
(4)

Where: B2k and B−k are Bernoulli numbers.

2 Sum of powers and Bernoulli numbers.

The Bernoulli numbers Bj are a sequence of successive rational numbers of significant importance in number
theory. They arise in combinatorics, in the expansion of the tangent function and hyperbolic tangent function
via Taylor series, and in the Euler-Maclaurin equation

One way to derive these numbers is through recursive addition:

Bj = − 1

1 + j

j−1
∑

m=0

(

1 + j

m

)

Bm (5)

Bernoulli numbers arise when seeking a function to compute the sum of powers. Originally derived by Jakob
Bernoulli, the formula for these numbers is outlined below, albeit refined and presented with modern nomen-
clature [2]:

n
∑

m=1

mk = Sk(n) =

1+k
∑

p=1

Apn
p (6)

Where: k ∈ N ∪ {0}, and Sk is a function of n.

Ap is obtained by:

Ap =
(−1)1+k−p

1 + k

(

1 + k

p

)

B1+k−p (7)
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3 Deduction of a formula to compute the sum of power
∑

m
k ex-

pressed as a sum of higher-order derivatives of the function m
k.

In this section, we will rearrange equation (6) and compare it to a sum involving higher-order derivatives of the
function mk.

Factoring 1
1+k

and expanding the summation in equation (6), we can determine Sk(n) as follows:

Sk(n) =
1

1 + k

[

(−1)k(k + 1)!

1!k!
Bkn+

(−1)k−1(k + 1)!

2!(k − 1)!
Bk−1n

2 +
(−1)k−2(k + 1)!

3!(k − 2)!
Bk−2n

3+

(−1)k−3(k + 1)!

4!(k − 3)!
Bk−3n

4 + · · ·+ (−1)1(k + 1)!

k!1!
B1n

k +
(−1)0(k + 1)!

(k + 1)!(0)!
B0n

k+1

]

We will now reverse the order of the terms in the sum and simplify by reducing the factorials in each term.

Sk(n) =
1

1 + k

[

(−1)0(k + 1)!

(k + 1)!0!
B0n

k+1 +
(−1)1(k + 1)!

k!1!
B1n

k +
(−1)2(k + 1)!

(k − 1)!2!
B2n

k−1 + · · ·

· · ·+ (−1)k(k + 1)!

1!k!
Bkn

]

Sk(n) =
1

1 + k

[

(−1)0(k + 1)!

(k + 1)!0!
B0n

k+1 +
(−1)1k!(k + 1)

k!1!
B1n

k +
(−1)2(k − 1)!k(k + 1)

(k − 1)!2!
B2n

k−1 + · · ·

· · ·+ (−1)k(k + 1)!

1!k!
Bkn

]

Sk(n) =
1

1 + k

[

(−1)0

0!
B0n

k+1 +
(−1)1(k + 1)

1!
B1n

k +
(−1)2k(k + 1)

2!
B2n

k−1 + · · ·

· · ·+ (−1)k(k + 1)!

1!k!
Bkn

]

The formula can be rewritten as a summation involving a product:

n
∑

m=1

mk = Sk(n) =
1

1 + k
nk+1 +

1+k
∑

p=2

(−1)p−1Bp−1

(1 + k)(p− 1)!

p−1
∏

m=1

(2 + k −m)n2+k−p (8)

With careful observation, we can derive an equivalent formula featuring a summation that incorporates
higher-order derivatives of the function nk, as shown below:

n
∑

m=1

mk = Sk(n) =

∫

nkdn+

k
∑

p=1

(−1)pBp

(p)!
∗ dp−1

dnp−1

(

nk
)

(9)

Also:
n
∑

m=1

1

m−k
= S−k(n) =

∫

1

n−k
dn+

k
∑

p=1

(−1)pBp

(p)!
∗ dp−1

dnp−1

(

1

n−k

)

(10)

Hence, we can conclude that equations (8), (9), and (10) are equivalent.

4 Deduction of a new equation to compute the Zeta Function from

the Euler-Maclaurin formula.

Considering the renowned Euler-Maclaurin Formula [1], which approximates the sum of a function f(m),R → R,
assuming it is differentiable q times:

b
∑

m=a+1

f(m) =

∫ b

a

f(x)dx+

q
∑

p=1

(−1)pBp

p!

[

f (p−1)(b)− f (p−1)(a)
]

+ rq (11)
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Where:

rq = (−1)q
∫ n

0

Bq+1(m− ⌊m⌋)
(q + 1)!

f (q+1)(m)dm (12)

f (p−1)(b) and f (p−1)(a) represent the (p−1)-th derivative of the function f(m) evaluated at b and a, respectively,
while rq denotes the residual error of the q-th derivative approximation and Bj(x) is a Bernoulli polynomial
calculated using the following formula:

Bj(x) =

j
∑

m=0

(−1)m
(

j

m

)

Bmxj−m (13)

Setting the limits of the summation in equation (11) to a = 0 and b = n, and defining the function f(m) as
ms, where f(m) is differentiable q times, we obtain:

n
∑

m=1

ms =

∫ n

0

msdm+

q
∑

p=1

(−1)pBp

p!
∗ dp−1

dmp−1
(ms)

∣

∣

∣

∣

n

0

+rq (14)

Incorporating the initial limits of the integral and the derivatives, and adding them to the residual error, we
can write the following:

n
∑

m=1

ms =

∫

nsdn+

q
∑

p=1

(−1)pBp

p!
∗ dp−1

dnp−1
(ns) +Rq (15)

Here, Rq represents the cumulative total residual error.

We can similarly derive an expression for the sum of the function f(m) = 1
ms .

n
∑

m=1

1

ms
=

∫

1

ns
dn+

q
∑

p=1

(−1)pBp

p!
∗ dp−1

dnp−1

(

1

ns

)

+Rq (16)

If n → ∞, and we regard Rq as a function of s, then Rq(s) can be expressed by solving equation (16):

Rq(s) = lim
n→∞

[

n
∑

m=1

1

ms
−
∫

1

ns
dn−

q=∞
∑

p=1

(−1)pBp

p!
∗ dp−1

dnp−1

(

1

ns

)

]

(17)

Expanding Equation (17), we get:

Rq(s) = lim
n→∞

[

n
∑

m=1

1

ms
−
(

1

1− s
n1−s +

(−1)1B1

1!
n−s +

(−1)2B2

2!
(−s)n−1−s +

(−1)3B3

3!
(−s)(−1− s)n−2−s + · · ·

)

]

(18)
We will now examine three cases for equation (18), but before that, let’s consider that the

variable s ∈ C:

Case I. For Re[s] > 1.
Applying the limit yields:

Rq(s) =

[

∞
∑

m=1

1

ms
−

(

1

1− s
0 +

(−1)1B1

1!
0 +

(−1)2B2

2!
(−s)0 +

(−1)3B3

3!
(−s)(−1− s)0 + · · ·

)

]

Rq(s) =

∞
∑

m=1

1

ms
⇐⇒ Re[s] > 1 (19)

Hence, we can conclude that when Re[s] > 1, the value of Rq(s) equals ζ(s):

If Re[s] > 1 ⇒ Rq(s) = ζ(s) (20)

5



Case II. When s = 1.
Applying the limit yields:

Rq(1) =

[

∞
∑

m=1

1

m1
−

(

1

0
+

(−1)1B1

1!
0 +

(−1)2B2

2!
(−1)0 +

(−1)3B3

3!
(−1)(−1− 1)0 + · · ·

)

]

Rq(1) = ∞− (∞+ 0 + 0 + 0 + · · · )
Rq(1) = indeterminate

Hence, it can be concluded that when s = 1, the value of Rq(1) is indeterminate, and it equals ζ(1):

If s = 1 ⇒ Rq(s) = ζ(s) (21)

Case III. Let’s consider s = −k, where k ∈ N.
Equation (17) can be rewritten by splitting the summation into two parts: the first part with limits from p = 1
to p = k, and the second summation from p = k + 1 to p = q, resulting in the expression as follows:

Rq(−k) = lim
n→∞





n
∑

m=1

mk −
∫

nkdn−
q=k
∑

p=1

(−1)pBp

p!
∗ dp−1

dnp−1

(

nk
)

−
q

∑

p=k+1

(−1)pBp

p!
∗ dp−1

dnp−1

(

nk
)



 (22)

It is evident that the integral with the first summation is equivalent to equation (9), but with a negative sign.
Hence, it can be expressed as follows:

Rq(−k) = lim
n→∞





n
∑

m=1

mk −
n
∑

m=1

mk −
q=∞
∑

p=k+1

(−1)pBp

p!
∗ dp−1

dnp−1

(

nk
)





The first two summations cancel each other out, resulting in the following expression:

Rq(−k) = lim
n→∞



−
q=∞
∑

p=k+1

(−1)pBp

p!
∗ dp−1

dnp−1

(

nk
)



 (23)

Next, extending the series:

Rq(−k) = lim
n→∞

[

−
(

(−1)k+1Bk+1

(k + 1)!
(k!)n0 +

(−1)k+2Bk+2

(k + 2)!
(k)(k − 1) · · ·n−1 +

(−1)k+3Bk+3

(k + 3)!
(k)(k − 1) · · ·n−2 + · · ·

)]

Applying the limit, then simplifying the factorials, we get:

Rq(−k) = − (−1)k+1Bk+1

(k + 1)!
(k!)

Rq(−k) =
(−1)kBk+1

k + 1

As B2j+1 = 0 for j ∈ N, we can express:

Rq(−k) = −Bk+1

k + 1
⇐⇒ k ∈ N (24)

Upon comparing equation (24) with equation (4), we find that they are equivalent. Hence:

If k ∈ N ⇒ Rq(−k) = ζ(−k) (25)
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We are prepared to present the following theorem:

Theorem 1 Using equations (20), (21), and (25), according to the principle of analytic continuation, we can
express:

ζ(s) = lim
n→∞

[

n
∑

m=1

1

ms
−
∫

1

ns
dn−

q
∑

p=1

(−1)pBp

p!
∗ dp−1

dnp−1

(

1

ns

)

]

(26)

Where s ∈ C, and q represents the number of times the function 1
ns can be differentiated.

5 Graphical interpretation of the Riemann Zeta function.

Let’s define the function S∗

−s(n) as follows:

S∗

−s(n) :=

∫

1

ns
dn+

q
∑

p=1

(−1)pBp

p!
∗ dp−1

dnp−1

(

1

ns

)

(27)

When we vary n while computing the series
∑n

m=1
1
ms and plot it on the complex plane, it forms a sequence of

points arranged in the shape of a logarithmic spiral, with its center being ζ(s) (see Figure 1).

-0.4-0.4 -0.2-0.2 0.20.2 0.40.4 0.60.6 0.80.8 11 1.21.2 1.41.4 1.61.6 1.81.8 22 2.22.2 2.42.4 2.62.6 2.82.8 33 3.23.2 3.43.4 3.63.6 3.83.8 44 4.24.2 4.44.4 4.64.6

-1.2-1.2

-1-1

-0.8-0.8

-0.6-0.6

-0.4-0.4

-0.2-0.2

0.20.2

0.40.4

0.60.6

0.80.8

11

1.21.2

1.41.4

1.61.6

1.81.8

22

2.22.2

2.42.4

2.62.6

2.82.8

00 1.41.4

cc

Imaginaria

real

Figure 1: Example of logarithmic spiral of the series
∑n

m=1
1
ms for s = 2 + 27i where ζ(s) is the center of the

spiral.
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When Re[s] > 1, the points of the spiral converge towards its center, but if Re[s] ≤ 1, the series of points
diverges from its center. The function S∗

−s(n) forms a spiral with the center at the origin of the complex plane,
but by adding ζ(s), the spiral approaches the series of points, and both spirals converge as n → ∞ (see Figure
2).
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Figure 2: Complex plane plot showing the spirals represented by the function S∗

−s(n) (in blue), the series
∑n

m=1
1
ms (in green), and the point ζ(s) (in red).

When separately plotting the real and imaginary parts of the series of points and the function S
−s(n), we

observe periodic functions with variable amplitude and period. The amplitude increases when Re[s] < 1 and
decreases when Re[s] > 1, while the frequency depends on the term Im[s] ln(n). The axis or mean value of the
periodic functions will be:

yRe = Re[ζ(s)]

yIm = Im[ζ(s)]
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Figure 3: Graphical representation of the functions Re
[

S
(
−sn)

]

and the series
∑n

m=1
1

mRe[s] cos(Im[s] lnm),

oscillating around its mean value Re [ζ(s)].

By addingRe[ζ(s)] to the functionRe[S
(
−sn)], we alignRe[S

(
−sn)] with the series

∑n

m=1
1

mRe[s] cos(Im[s] ∗ lnm)
as s → ∞ (see Figure 3).

Similarly, by adding Im[ζ(s)] to the function Im[S
(
−sn)], we align Im[S

(
−sn)] with the series

−∑n

m=1
1

mRe[s] sin(Im[s] ∗ lnm) as s → ∞ (see Figure 4).
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Figure 4: Graphical depiction of the functions Im
[

S
(
−sn)

]

and the series
∑n

m=1
1

ma sin(−Im[s] lnn), oscillat-

ing around its mean value Im [ζ(s)].

6 The Riemann Hypothesis.

6.1 The critical strip of the Zeta Function.

Utilizing the Riemann functional equation (2), it becomes feasible to derive ζ(s) for values of Re[s] < 0, as it
relies on ζ(1 − s), which converges. Nonetheless, obtaining ζ(s) becomes infeasible when 0 ≤ Re[s] ≤ 1, as it
would necessitate knowledge of ζ(1− s), which also fails to converge (refer to Figure 5).

ζ(s) = 2sπs−1 sin
(sπ

2

)

Γ(1− s)ζ(1− s)

10



-3.5-3.5 -3-3 -2.5-2.5 -2-2 -1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5 33 3.53.5

-80-80

-60-60

-40-40

-20-20

2020

4040

6060

8080

100100

120120

140140

160160

180180

00 0.50.5

Fraja critica

Figure 5: Critical region in the complex plane, where for the variable s ∈ C, it becomes impossible to ascertain
ζ(s) using the Riemann Functional Equation.

6.1.1 Trivial zeros of the Zeta function.

By examining the Riemann functional equation, it becomes evident that for negative even values of s, ζ(s) = 0.
This occurs because the term sin( sπ2 ) equals zero. These points where the function equals zero are referred to
as trivial zeros.

ζ(−2k) = 2−2kπ−2k−1 sin

(−2kπ

2

)

Γ(1 + 2k)ζ(1 + 2k) = 0

Where k ∈ N

When s is a positive even number, the function ζ(s) is nonzero, since the term sin( sπ2 ) cancels with the poles
of the gamma function Γ(1− s).

6.1.2 Nontrivial zeros of the Zeta function.

There exist additional zeros of ζ(s); nevertheless, it has been demonstrated that these zeros reside within the
critical strip. Referred to as nontrivial zeros, they can only be determined through numerical methods as they
cannot be calculated using the Riemann functional equation (see Figure 6).
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Figure 6: Critical region in the complex plane, where for the variable s ∈ C, it is impossible to ascertain ζ(s)
using the Riemann Functional Equation.

In 1859, the German mathematician Georg Friedrich Bernhard Riemann, in his doctoral thesis ’On prime
numbers less than a given magnitude’ [4], while developing an explicit formula for calculating the number of
prime numbers less than x, conjectured that: ’The real part of every nontrivial zero of the Zeta Func-

tion ζ(s) is 1
2 ’ . Riemann was confident in this assertion, yet unable to prove it, leaving it as one of the most

significant unproven hypotheses for over 160 years.

7 The proof of the hypothesis.

Consider s ∈ C : s = a+ bi, where a, b ∈ R and is a nontrivial zero such that ζ(s) = 0.

According to the Riemann Functional equation, if s is a nontrivial zero, then the following holds:

ζ(a+ bi) = ζ(1− a− bi) = 0 (28)

If we substitute a+ bi into equation (26) and expand the expression:

ζ(a+ bi) = lim
n→∞

[

n
∑

m=1

1

ma+bi
−
∫

1

na+bi
dn−

q
∑

p=1

(−1)pBp

p!
∗ dp−1

dnp−1

(

1

na+bi

)

]

(29)

ζ(a+ bi) = lim
n→∞

[

n
∑

m=1

1

ma+bi
− 1

1− a− bi
n1−a−bi − (−1)1B1

1!
n−a−bi − (−1)2B2

2!
(−a− bi)n−1−a−bi · · ·

]

(30)

Since 0 < a < 1, upon applying the limit, the equation simplifies to:

ζ(a+ bi) = lim
n→∞

[

n
∑

m=1

1

ma+bi
− 1

1− a− bi
n1−a−bi

]

(31)

Given that ζ(a+ bi) = 0, expressing it in polar form yields:

0 = lim
n→∞

[

n
∑

m=1

e−bi ln(m)

ma
− n1−a

√

(1− a)2 + b2
ei[arctan(

b

1−a )−b ln(n)]

]

(32)
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Then:

lim
n→∞

[

n
∑

m=1

e−bi ln(m)

ma

]

= lim
n→∞

[

n1−a

√

(1− a)2 + b2
ei[arctan(

b

1−a )−b ln(n)]

]

(33)

Utilizing Euler’s properties:

lim
n→∞

[

n
∑

m=1

cos(b lnm)

ma
− i

n
∑

m=1

sin(b lnm)

ma

]

= lim
n→∞

[

n1−a

√

(1− a)2 + b2

{

cos

[

arctan

(

b

1− a

)

− b lnn

]

+i sin

[

arctan

(

b

1− a

)

− b lnn

]}]

(34)

Similarly, for the nontrivial zero s = 1− a− bi, we obtain:

lim
n→∞

[

n
∑

m=1

cos(b lnm)

m1−a
+ i

n
∑

m=1

sin(b lnm)

m1−a

]

= lim
n→∞

[

na

√
a2 + b2

{

cos

[

arctan

(

b

a

)

− b lnn

]

−i sin

[

arctan

(

b

a

)

− b lnn

]}]

(35)

By considering the real part of equations (34) and (35), we get:

lim
n→∞

[

n
∑

m=1

cos(b lnm)

ma

]

= lim
n→∞

[

n1−a

√

(1− a)2 + b2
cos

[

arctan

(

b

1− a

)

− b lnn

]

]

(36)

lim
n→∞

[

n
∑

m=1

cos(b lnm)

m1−a

]

= lim
n→∞

[

na

√
a2 + b2

cos

[

arctan

(

b

a

)

− b lnn

]]

(37)

Setting the amplitudes equal to each other to compare equations (36) and (37), given that the axis of both
functions is Re[ζ(a+ bi)] = Re[ζ(1− a− bi)] = 0:

lim
n→∞

[

√

(1− a)2 + b2

n1−a

n
∑

m=1

cos(b lnm)

ma

]

= lim
n→∞

cos

[

arctan

(

b

1− a

)

− b lnn

]

(38)

lim
n→∞

[√
a2 + b2

na

n
∑

m=1

cos(b lnm)

m1−a

]

= lim
n→∞

cos

[

arctan

(

b

a

)

− b lnn

]

(39)

Performing operations on equation (38) to simplify the equality to a basic periodic function:

lim
n→∞

[

√

(1− a)2 + b2

n1−a

n
∑

m=1

cos(b lnm)

ma

]

= lim
n→∞

[

cos

[

arctan

(

b

1− a

)]

cos(b lnn) + sin

[

arctan

(

b

1− a

)]

sin(b lnn)

]

lim
n→∞





√

(1− a)2 + b2

n1−a cos
[

arctan
(

b
1−a

)]

n
∑

m=1

cos(b lnm)

ma



 = lim
n→∞

[

cos(b lnn) + tan

[

arctan

(

b

1− a

)]

sin(b lnn)

]

lim
n→∞





√

(1− a)2 + b2

n1−a cos
[

arctan
(

b
1−a

)]

n
∑

m=1

cos(b lnm)

ma



 = lim
n→∞

[

cos(b lnn) +
b

1− a
sin(b lnn)

]

lim
n→∞





√

(1− a)2 + b2

n1−a cos
[

arctan
(

b
1−a

)]

n
∑

m=1

cos(b lnm)

ma
− cos(b lnn)



 = lim
n→∞

b

1− a
sin(b lnn)

lim
n→∞





(1− a)
√

(1− a)2 + b2

bn1−a cos
[

arctan
(

b
1−a

)]

n
∑

m=1

cos(b lnm)

ma
− 1− a

b
cos(b lnn)



 = lim
n→∞

sin(b lnn) (40)
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Similarly, we manipulate equation (39) and obtain:

lim
n→∞

[

a
√
a2 + b2

bna cos
[

arctan
(

b
a

)]

n
∑

m=1

cos(b lnm)

m1−a
− a

b
cos(b lnn)

]

= lim
n→∞

sin(b lnn) (41)

Now we can equate equations (40) and (41):

lim
n→∞





(1− a)
√

(1− a)2 + b2

bn1−a cos
[

arctan
(

b
1−a

)]

n
∑

m=1

cos(b lnm)

ma
− 1− a

b
cos(b lnn)



 =

lim
n→∞

[

a
√
a2 + b2

bna cos
[

arctan
(

b
a

)]

n
∑

m=1

cos(b lnm)

m1−a
− a

b
cos(b lnn)

]

(42)

Improving the wording: ”Since a+bi is a zero of the Zeta Function, series
∑n

m=1
cos(b lnm)

ma and
∑n

m=1
cos(b lnm)

m1−a

do not converge; however, their average value is zero. Therefore, we can write:

n
∑

m=1

cos(b lnm)

ma
=

n
∑

m=1

cos(b lnm)

m1−a
= 0 (43)

Substituting equation (43) into equation (42), we get:”

0− 1− a

b
cos(b lnn) = 0− a

b
cos(b lnn) (44)

Then, by simplifying terms, factoring, and setting equal to zero, we obtain:

(2a− 1) cos(b lnn) = 0 (45)

Then, the only solution for the equation is:

a =
1

2
(46)

Finally, we can conclude that the Riemann hypothesis is true.
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(Jeremiah 33:3)
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moments of my life, especially to my beloved wife Araceli, my two beautiful children Ocram and Arelys, and
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