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Abstract

Let X be a differential manifold. Let D ′(X) be the space of currents,
and S∞(X) the Abelian group freely generated by regular cells, each
of which is a pair of a polyhedron Π and a differential embedding of a
neighborhood of Π to X. In this paper, we define a variant that is a
bilinear map

S∞(X)× S∞(X) → D ′(X)
(c1, c2) → [c1 ∧ c2]

(0.1)

called the supportive intersection such that
1) the support of [c1∧c2] is contained in the intersection of the supports

of c1, c2;
2) if c1, c2 are closed, [c1 ∧ c2] is also closed and its cohomology class

is the cup-product of the cohomology classes of c1, c2.
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1 Introduction

This paper explores the notion of the support in differential topology. In general,
the support is not an structural invariant, rather a property possessed by a
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structural invariant. So, throughout this paper, “support” or “supp” denotes the
closed subset in the usual sense followed by various invariants such as singular
chains, differential forms, currents etc.

Explicitly on a differentiable manifold X, we construct a variant that is a
bilinear map

S∞(X)× S∞(X) → D ′(X)
(c1, c2) → [c1 ∧ c2]

(1.1)

such that

Condition 1.1. (supportivity) the support of [c1 ∧ c2] is contained in the inter-
section of the supports of c1, c2;

Condition 1.2. (cohomologicality) if c1, c2 are closed, [c1 ∧ c2] is also closed
and its cohomology class is the cup-product of the cohomology classes of c1, c2.

The idea of the construction goes back to de Rham’s work on currents.
Originally in order to understand the homology of the complex of currents, de
Rham constructed, for an arbitrary current T , the regularization RϵT for a real
number ϵ > 0 such that the regularization weakly converges to T as ϵ → 0.
The supportive property is a unique part of this regularization. In particular,
it satisfies that

1) there exists another linear operator Aϵ satisfying the homotopy formula

RϵT − T = bAϵT +AϵbT (1.2)

where b is the boundary operator on currents,
2) the support of RϵT is contained in any given neighborhood of the support

of T provided ϵ is sufficiently small;

The development in the property 1) is well-known. But the implication of
the property 2) has not been explored further.

In this paper, we are going to focus on the property 2). We work with
singular chains which are known to be a particular type of currents. Let c be
a chain, ω a smooth form. Denote the current of the integration over c by Tc,
the current of the integration with ω by Tω. If for any two regular chains c1, c2,
i.e. those chains in S∞(X), we can prove the existence of the weak limit of the
current

Tc1 ∧Rϵc2, as ϵ→ 0 (1.3)

then Conditions 1.1 and 1.2 easily follow from 1) and 2). The precise statement
is our main theorem in the following.
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Theorem 1.3. (Main theorem) Let X be a differential manifold. For (c1, c2) ∈
S∞(X)× S∞(X), the weak limit

lim
ϵ→0

Tc1 ∧Rϵc2, (1.4)

exists in D ′(X). Furthermore, the weak limit (1.4) denoted by [c1 ∧ c2], called
the supportive intersection satisfies Condition 1.1 and Condition 1.2.

Remark The lim
ϵ→0

Tc1 ∧ Rϵc2 is a weak limit in functional analysis and also

extrinsically dependent of the regularization. But de Rham’s original work in
[2] is neither in functional analysis nor extrinsically dependent.

We organize the rest as follows. In Section 2, we prove a local property of
de Rham’s regularization Rϵ. In Section 3, we prove that the existence of (1.4)
follows from this property. In section 4, we verify that the limit (1.4) satisfies
Conditions 1.1 and 1.2.

2 A property of de Rham’s Regularization

Throughout the paper we denote the origin of the various Euclidean space R•

by the same notation 0.

Definition 2.1. ( blow-up forms)
Let 𭟋ϵ for ϵ > 0 be a family of smooth forms of degree r in an Euclidean

space Rm. If there are an orthogonal decomposition Rm = Rr × Rm−r with
coordinate u for the subspace Rr × {0} and a smooth form 𭟋1(u) on Rr × {0}
with a compact support such that

𭟋ϵ = π∗𭟋1(
u

ϵ
) (2.1)

or abbreviated as
𭟋ϵ = 𭟋1(

u

ϵ
)

where π : Rm → Rr × {0} is the orthogonal projection, then 𭟋ϵ is called a
blow-up form from 𭟋1(u) along Rr × {0} at {0} × Rm−r.

One of the main techniques in [2] is the construction of de Rham’s regular-
ization for currents. In today’s standard, the details may be outdated. However,
it is quite unique among other types of regularization.
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Theorem 2.2. (G. de Rham) Let ϵ be a small positive number. Let E (X) be
the space of smooth forms on X. Then there exist linear operators on X,

Rϵ : D ′(X) → E (X)
Aϵ : D ′(X) → D ′(X)

(2.2)

such that for T ∈ D ′(X)
(1) a homotopy formula

RϵT − T = bAϵT +AϵbT, (2.3)

holds where b is the boundary operator,
(2) supp(RϵT ), supp(AϵT ) are contained in any given neighborhood of

supp(T ) provided ϵ is sufficiently small,
(3) If a smooth differential form ϕ has the bounded semi-norm ||•||q,K where

q is a whole number and K is a compact set and ϵ is bounded above, then
RϵTϕ, AϵTϕ are also bounded in the same semi-norm,

(4)
lim
ϵ→0

RϵT = T, lim
ϵ→0

AϵT = 0

in the weak topology of D ′(X). Furthermore, the convergence is uniform
on the set of forms with the bounded semi-norms || • ||q,K .

The collection of the data used in the regularization is called de Rham data.
In particular, it consists of countably many ordered open sets U1, · · · where the
local regularization occur independently in each Ui. The global regularization Rϵ
is just the iteration of the local regularization.

This paper only needs the properties (1) and (2). In addition, we recall
another notion by de Rham: smooth kernel. Let

Λ : D ′(X) → D ′(X)

be a linear operator on currents. The operator is said to be regularizing if
Λ(D ′(X)) is contained in the subset E (X) ⊂ D ′(X). This assumption implies
that there is a smooth form L on X×X such that for ϕ ∈ D(X) and T ∈ D ′(X)
with a compact support

Λ(T )[ϕ] = (T ⊗ Tϕ)[L].

The form L is called the smooth kernel of the operator Λ. It is known that
de Rham’s regulator is regularizing, therefore it has a smooth kernel. In the
following, we prove a local property of this smooth kernel.

Proposition 2.3.
At each point of X, there is a neighborhood U ≃ Rm, such that the smooth

kernel of de Rham’s regulator Rϵ with sufficiently small ϵ is restricted to a
blow-up form on Rm ×Rm at the diagonal ∆, where Rm is the Euclidean space
diffeomorphic to U .
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Proof. We need to analyze the local structure of the regulator. So, we start
with the reviewing of the de Rham’s construction in its local charts. Let Rm
be the Euclidean space of dimension m with a linear structure. Let y1, · · · , ym
be its coordinates under a basis. They will be collectively denoted by the bold
letter y. Same bold fonts for various Euclidean spaces will be used throughout
this paper. Let f(y) ∈ D(Rm) be a function ( i.e. a mollifier) supported in the
unit ball such that ∫

y∈Rm

f(y)dµy = 1,

where dµy is the volume form

dy1 ∧ · · · ∧ dym.

Let

ϑϵ(y) =
1

ϵm
f(

y

ϵ
)dµy, ϵ > 0 (2.4)

be the m-form on Rm. Then the de Rham’s regulator on Rm is the operator
that sends each current T on Rm to the form

±T [ϑϵ
(
x− y

)
]y (2.5)

where the sign ± is determined by the dimension of T and m, the current T is
evaluated at the form of y variable. The operator depends on the coordinates
of Rm. We denote this regulator by Rϵ. The form

±ϑϵ
(
x− y

)
(2.6)

on Rm × Rm is denoted by θϵ(x − y) where x,y are the variables for the first
and second factors in Rm × Rm. Notice that θϵ(x− y) is the smooth kernel of
Rϵ (with respect to the degree of c). The extension to the global X is through a
countable iteration of the localRϵ. The extension requires countably many local
charts Ui ≃ Rm in de Rham data that covers X. The covering is locally finite.
By the continuity, we may only consider the point q not on the boundaries of
Ui. Such an extension at the point q can be described as follows. Since the
de Rham’s covering is locally finite, there are finitely many ordered open sets,
U1, U2, · · · , Un that contain q. It suffices to consider the regularization in these
open sets. We denote the regulator on each Ui by Ri

ϵ and its smooth kernel
by θiϵ(xi − yi). By the partition of unity, we may only consider the current T
compactly supported in the overlap ∩

i
Ui. Then the global Rϵ sends the T to a

smooth form
Rn
ϵ ◦ Rn−1

ϵ ◦ · · · ◦ R1
ϵ(T ). (2.7)

Above is the description of de Rham’s construction around the point q. The
following is our work to show that the kernel of (2.7) is a blow-up form. First
we’ll express the kernel. In each local regulator

Ri : D ′(Rm) → D ′(Rm)
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we denote the Rm in the domain space by Rmyi
with the variable yi, and the

Rm in the target space by Rmxi
with variable xi. We identify Rmyi

= Rmxi−1
and

denote the same space by Rmi,(i−1) (which is a copy of Rm). Then each product
Rmxi

× Rmyi
for i = n, · · · , 1 is embedded in

Rmxn
× Rmn,n−1 × Rmn−1,n−2 × · · · × Rm2,1 × Rmy1

as the zero-section of the trivial bundle. So, we pull back each θiϵ(xi − yi) to
the the product

Rmxn
× Rmn,n−1 × Rmn−1,n−2 × · · · × Rm2,1 × Rmy1

and denote the pullback by the same notation θiϵ(xi − yi). Then according to
(2.7), the local expression of the global kernel ϱϵ(xn,y1) is the fibre integral

∫
(yn,··· ,y2)∈Rm

n,n−1×Rm
n−1,n−2×···×Rm

2,1

θnϵ (xn − yn) ∧ θn−1
ϵ (xn−1 − yn−1)

∧ · · · ∧ θ2ϵ (x2 − y2) ∧ θ1ϵ (x1 − y1), (2.8)

where θiϵ(xi − yi) is the smooth kernel of Ri. So the global kernel ϱϵ(xn,y1) is
a m-form on the product

Rmxn
× Rmy1

= Rm × Rm

where xn,y1 are the coordinates for the first and second factor of the kernel. In
(2.8), we define the new coordinates:

wi = xi − yi (2.9)

where i = 1, · · · , n− 1, also

xn − y1 −
(
w1 + · · ·+wn−1

)
= xn − yn. (2.10)

Then (2.8) is equal to∫
(wn−1,··· ,w1)∈Rm

n,n−1×Rm
n−1,n−2×···×Rm

2,1

θnϵ

(
xn − y1 −

(
w1 + · · ·+wn−1

))
∧ θn−1

ϵ (wn−1) ∧ · · · ∧ θ1ϵ (w1), (2.11)

Divide each variable by ϵ, we obtain that ϱϵ(xn,y1) is equal to

∫
(wn−1,··· ,w1)∈Rm

n,n−1×Rm
n−1,n−2×···×Rm

2,1

θn1

(
xn − y1

ϵ
−
(
w1 + · · ·+wn−1

))
∧ θn−1

1 (wn−1) ∧ · · · ∧ θ11(w1). (2.12)
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So, if we denote the m form on Rm,∫
(wn−1,··· ,w1)∈Rm

n,n−1×Rm
n−1,n−2×···×Rm

2,1

θn1

(
z

ϵ
−
(
w1 + · · ·+wn−1

))
∧ θn−1

1 (wn−1) ∧ · · · ∧ θ11(w1) (2.13)

by Fϵ(z) for the variable z of Rm, then

ϱϵ(xn,y1) = κ∗Fϵ (2.14)

where κ is the map: (xn,y1) → xn−y1. Since all forms θj1(z), j = n, · · · , 1 have
compact supports, so ϱϵ(xn,y1) is a blow-up form from a compactly supported
form F1. We complete the proof.

3 Convergence in de Rham’s regularization

The main technical result is the following proposition about the convergence.
It concerns a particular type of de Rham’s wedge products between a cell and
a form.

Proposition 3.1. Let c be a p dimensional regular cell in Rm. Let ωϵ be a
blow-up form of degree r ≤ p in Rm. Then the current

Tc ∧ ωϵ (3.1)

converges weakly to a current as ϵ→ 0.

The special case of the proposition for the blow-up at a point is used in
cohomology theory (see Example 3.4 below). But the general case for the blow-
up at a higher dimensional subspace has not been looked at. In the technique,
our central idea is to convert the convergence of integrals of forms to that of sets.
Wildly behaved sets usually do not respect arithmetic and not even manifold’s
structures, but they are effectively used in the foundation of probability and
measure theory.

Notice that the convergence only concerns the local Euclidean space and one
cell in it. So we focus on the Euclidean space. Throughout, for an Euclidean
space Rl with a coordinate z, we’ll abuse the notation to denote the volume
form of a subspace with the concordant orientation and the volume density in
Lebesgue integrals by the same expression dµz. The argument starts with a
definition and a lemma about points and sets.
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Definition 3.2. Let W ⊂ Rp be a subset in an Euclidean space with the origin
o. A point a ∈ Rp is said to be a stable point of W if the line segment

{o+ t(−→oa), 0 < t ≤ 1}

either lies in W completely or in W c completely, where −→oa ∈ ToRp = Rp is the
vector from o to a, and W c is the complement Rp\W . We denote the collection
of stable points of W by W o

s .

Let c : Πp → Rm be a regular cell as in Proposition 3.1 with the p-
dimensional polyhedron Πp. Let C = c(Πp) be the image of the cell. Let
Rr,Rp−r,Rm−p be subspaces with coordinates u, v1 and v2 respectively such
that

Rm = Rr × Rp−r × Rm−p. (3.2)

Let
η : Rm → Rp = Rr × Rp−r × {0}

be the projection to its subspace Rp. Let D 1
ϵ
for a positive ϵ be the linear

transformation of Rm defined by the map

(u,v1,v2) → (
u

ϵ
,v1,v2). (3.3)

In the context, we denote its restriction to subspaces also by D 1
ϵ
. All measures

in the following are the Lebesgue measures on Euclidean spaces.

Lemma 3.3. Denote W := η(C). There exists a subset Wfu ⊂ W of measure
0 such that the set-theoretic limit (§4, [1])

lim
ϵ→0

D 1
ϵ

(
W\Wfu

)
(3.4)

exists *.

Proof. We denote
L := {0} × Rp−r × {0}

For o ∈ L, o = (0,v1,0) is the origin for the partial scalar multiplication D 1
ϵ
.

Let

W o =W ∩
(
Rr × {v1} × {0}

)
.

*For a family of sets Sϵ, the existence of the set-theoretic limit means⋂
ϵ1≤1

⋃
ϵ2≤ϵ1

Sϵ2 =
⋃

ϵ1≤1

⋂
ϵ2≤ϵ1

Sϵ2



3 CONVERGENCE IN DE RHAM’S REGULARIZATION 9

Therefore o is the origin of the affine plane Rr ×{v1}×{0}. Let Ro be the ray

{o+ t(−→oa) : a ∈W o, t > 0}

that starts at the origin in the affine plane. Let

W o
fu ⊂W o

denote the subset

{a ∈W o : Ro does not contain a stable point of W
o}.

We divide W to three disjoint parts.
1) Wfu = ∪

o∈L
W o
fu, called the set of fully unstable points,

2) Ws = ∪
o∈L

W o
s , called the set of stable points,

3) Wpu is W\(Wfu ∪Ws), called the set of partially unstable points.

Next we should dilate each part by a scalar multiplication D 1
ϵ
.

For the fully unstable pointsWfu, we would like to show they are necessarily
on the “boundary” which gives the measure 0. The following is the detail. The
boundary of the polyhedron Πp is defined by multiple hyperplanes. Hence the
boundary of C is also defined by multiple hyperplanes Hj . On the other hand
in the its target space, we let

ν : Rr\{0} × Rp−r × {0} → Pr−1 × Rp−r × {0}
(u,v1,0) → ([u],v1,0)

(3.5)

be the map that is the product of the projectivization map and the identity
map (where Pr−1 can be regarded as the real projectivization of T0Rr, the set
of directions). Fix a point o ∈ L. Let a ∈ W o

fu other than o. Since a is a fully
unstable point, there are two sequences of points pn,qn on the ray Ro such
that

lim
n→∞

pn = o = lim
n→∞

qn

and
pn ̸∈W o,qn ∈W o.

Thus the directions −−→opn and −−→opn, which are all parallel to the tangent vector
−→oa must lie on at least one nontrivial plane η∗(Hj). Since a subplane properly
contained in an Euclidean space has a measure 0, for each fixed o, P(W o

fu\{0})
has measure 0 in the manifold

P(Rr\{0})× {v1} × {0} ≃ Pr−1

where v1 is fixed. Since
Rr\{0} → Pr−1
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is a bundle’s projection, the inverse W o
fu also has measure 0. To go further, we

take the union over L to obtain ν(Wfu\L) = ∪
o∈L

P(W o
fu\{o}) has measure 0 in

the manifold
Pr−1 × Rp−r × {0}.

Due to the fibre bundle structure of the projectivization, we conclude Wfu in
Rp has measure 0. Notice that D 1

ϵ
is a linear transformation, D 1

ϵ
(Wfu) which

is equal to Wfu also has measure 0. Therefore the limit is of 0. �

For Ws, we consider the set Bϵ = D 1
ϵ
(Ws). We would like to show Bϵ as

ϵ → 0 is a decreasing set. Let Ro be the ray starting at o ∈ L and through a
stable point a ∈ W o

s of W o for an o ∈ L. Since a is stable, the dilation by the
scalar multiplication D 1

ϵ
yields

D 1
ϵ
(Ro ∩Ws) ⊂ D 1

ϵ′
(Ro ∩Ws), for ϵ′ < ϵ < 1.

Now taking the union over all the rays through stables points, we obtain

D 1
ϵ
(Ws) ⊂ D 1

ϵ′
(Ws), for ϵ′ < ϵ.

Therefore Bϵ is a decreasing family of measurable sets. Let

B0 := ∪ϵ∈(0,1]

(
D 1

ϵ
(Ws)

)
. (3.6)

Then set-theoretically the decreasing family yields

lim
ϵ→0

Bϵ = B0

and B0 is measurable.

For Wpu, we consider the set Aϵ = D 1
ϵ
(Wpu). We would like to show Aϵ as

the set multiplied by
1

ϵ
will be pushed to ∞ as ϵ → 0. Here is the detail. If⋂

ϵ1≤1

⋃
ϵ2≤ϵ1

Aϵ2 is non-empty, there is a point

x ∈
⋂
ϵ1≤1

⋃
ϵ2≤ϵ1

Aϵ2

i.e. x ∈
⋃

ϵ2≤ϵ1
Aϵ2 for any ϵ1 < 1. So, there is a sequence of numbers ϵn such

that lim
n→∞

ϵn = 0 and Dϵn(x) lies in Wpu. Suppose that N is a number in the

sequence such that DϵN (x) ∈Wpu. By the definition of Wpu, there is a smaller
ϵN ′ ̸= 0 such that DϵN′ (x) is a stable point, i.e. DϵN′ (x) ∈WS . Then all points
Dϵn(x) are stable whenever ϵn < ϵN ′ . But this contradicts the assertion above:
there is a sequence of partially unstable points ϵnx with ϵn → 0. Thus

�But the set Wfu is not on the boundary of W .
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lim
ϵ→0

supAϵ =
⋂
ϵ1≤1

⋃
ϵ2≤ϵ1

Aϵ2 = ∅. (3.7)

Therefore
lim
ϵ→0

infAϵ ⊂ lim
ϵ→0

supAϵ

is also empty. Hence lim
ϵ→0

Aϵ exists and is equal to an empty set.

Combining the results for Wfu, Ws and Wpu, we complete the proof.

Proof of Proposition 3.1. We continue with all notations in Lemma 3.3. Let
ϕ be a test form of degree p− r in Rm. It amounts to show the convergence of
the integral ∫

C

ωϵ ∧ ϕ (3.8)

as ϵ→ 0, where C = c(Πp) is the image of the regular cell c : Πp → Rm. Lemma
3.3 holds for any orthogonal decomposition (3.2) of Rm. But, for Proposition
3.1, we have to specify the decomposition that needs to be related to the blow-
up form. Let Rr × {0} × {0} be the subspace with coordinates u such that the
blow-up form is written as

ωϵ =
1

ϵr
g(

u

ϵ
)dµu (3.9)

where g(u) is a C∞ function of Rr×{0}×{0}. Notice that the form ωϵ∧ϕ is the
sum of simple forms in the coordinates of Rm that can be explicitly expressed.
So, we’ll focus on the integral of a single simple form.

We work with the simple form written as

1

ϵr
g(

u

ϵ
)ψ(u,v1,v2)dµu ∧ dµv1

(3.10)

where the volume forms dµu, dµv1 determine two coordinate’s planes

Rr × {0} × {0}, {0} × Rp−r × {0}

with coordinates u,v1 respectively, and ψ is a C∞ function on

Rm = Rr × Rp−r × Rm−p

that is the coefficient of the simple form ψdµv1
in a general test ϕ. Then the

integral of (3.10) over C is∫
D 1

ϵ
(C)

g(u)ψ(ϵu,v1,v2)dµu ∧ dµv1
(3.11)

where u is the new variable obtained from the old u divided by ϵ. Let K1 be
the support of g(u), and K2,K3 be the bounded sets of Rp−r,Rm−r such that
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C is contained in Rr × K2 × K3. Then ψ(ϵu,v1,v2) uniformly converges to
ψ(0,v1,v2) in K1 × K2 × K3. So, for any positive δ, we can find sufficiently
small ϵ such that

|ψ(ϵu,v1,v2)− ψ(0,v1,v2)| ≤ δ. (3.12)

Let cϵ be the composition

Πp
c−→ Rm

D 1
ϵ−−→ Rm. (3.13)

Notice
D 1

ϵ
(C) ∩ (K1 ×K2 ××K3)

is a bounded set. Thus all coefficients of the form c∗ϵ
(
g(u)dµu ∧ dµv1

)
are

bounded uniformly for all sufficiently small ϵ. Hence

|
∫
D 1

ϵ
(C)

g(u)ψ(ϵu,v1,v2)dµu ∧ dµv1 −
∫
D 1

ϵ
(C)

g(u)ψ(0,v1,v2)dµu ∧ dµv1 |

≤ δM

(3.14)

where M is a constant. For the integral∫
D 1

ϵ
(C)

g(u)ψ(0,v1,v2)dµu ∧ dµv1
(3.15)

we make a change of variable from u to
u

ϵ
to find (3.15) is equal to

1

ϵr

∫
C

g(
u

ϵ
)ψ(0,v1,v2)dµu ∧ dµv1

(3.16)

Now we apply Lemma A.1, there is a compactly supported integrable function
ξ̃ϵ(u,v1) on Rp such that

1

ϵr

∫
C

g(
u

ϵ
)ψ(0,v1,v2)dµu ∧ dµv1 =

1

ϵr

∫
W

g(
u

ϵ
)ξ̃ψ(u,v1)dµudµv1 (3.17)

where W is the measurable set defined in Lemma 3.3, and the right hand side
is a Lebesgue integral with the density measure dµudµv1

, and ξ̃ψ(u,v1) in the
integrand is a compactly supported L1 function on Rp. Furthermore, since
ψ(0,v1,v2) is a pullback function from {0} × Rp−r × Rm−r, then ξ̃ψ(u,v1) is
also a pullback of function ξψ(v1) from {0}×Rp−r×{0}. So, in the following, we

express the pullback function ξ̃ψ(u,v1) as ξψ(v1). Now changing the variables

from
u

ϵ
back to u, we have

(3.17) =
∫
Rp
χ
D 1

ϵ
(W )

(u,v
1
)g(u)ξ

ψ
(v

1
)dµ

u
dµ

v1

=
∫
Rp
χ
D 1

ϵ
(W\Wfu)

(u,v
1
)g(u)ξ

ψ
(v

1
)dµ

u
dµ

v1

(3.18)
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where χ
•
denotes the characteristic function of the set •. Next for the Lebesgue

integrals, we’ll omit the notations for variables for the dominant convergence
theorem. We’ll see that the integrand in (3.18) satisfies

|χ
D 1

ϵ
(W\Wfu)

gξ
ψ
| ≤ |gξ

ψ
|

and |gξ
ψ
| is an L1 function on Rp. The set-theoretic convergence in Lemma 3.3

implies the χ
D 1

ϵ
(W\Wfu)

gξ
ψ
point-wisely converges to the function

χ
B0
gξ
ψ
.

By the dominant convergence theorem

lim
ϵ→0

∫
Rp

χ
D 1

ϵ
(W\Wfu)

gξ
ψ
dµ

u
dµ

v1
=

∫
Rp

χ
B0
gξ
ψ
dµ

u
dµ

v1

=

∫
B0

gξ
ψ
dµ

u
dµ

v1

(3.19)

Finally, combining (3.14) and (3.19), we obtain that

lim
ϵ→0

∫
C

1

ϵr
g(

u

ϵ
)ψ(u,v1,v2)dµu ∧ dµv1

=

∫
B0

g(u)ξψ(v1)dµudµv1

(Note the right hand side is an integral of a differential form but the left is a
Lebegue integral). We conclude

Tc ∧ ωϵ
converges to a functional as ϵ→ 0. For the continuity of the functional, we see
that if ϕ is bounded to any orders, then in particular ϕ is bounded to the order
of 0. Hence the formula (3.15) is bounded. Then∫

B0

g(u)ξψ(u,v1)dµudµv1

is bounded. So, the evaluation

lim
ϵ→0

(Tc ∧ ωϵ)[ϕ]

is also bounded. Hence the functional

ϕ→ lim
ϵ→0

(Tc ∧ ωϵ)[ϕ]

defines a current. The proof is completed.
□

Remark The particular type of wedge products in (3.1) provided the early
proof for the homology of the complex of currents (see Chapter IV, [2]). As the
new technique emerged, this type of analysis is no longer necessary. However,
some still remain. The following example is the remaining case in cohomology
theory (see section 1, Chapter 3 in [3]).
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Example 3.4. Let c be an n-dimensional polyhedron in Rn and contain the
origin. Let ωϵ be a blow-up form at the origin with the top degree n (i.e. along the
entire space Rn). Then as ϵ→ 0, Tc∧ωϵ converges weakly to a constant multiple
of δ function at the origin. The constant multiple is 1 if ωϵ is normalized.

The following proposition proves the first part of Main theorem 1.3.

Proposition 3.5. Let X be a differential manifold of dimension m. For chains
c1, c2 in S∞(X), the exterior product

Tc1 ∧Rϵc2 (3.20)

converges weakly to a current as ϵ→ 0.

Proof. It suffices to assume c2 : Πp → Rm is a regular cell and it lies in an
open neighborhood U as in Proposition 2.3. We subdivide c1 to a sum of
smaller regular cells so that there are finitely many regular cells σj that cover
the supp(Rϵc2) for sufficient small ϵ and supp(σj) ⊂ U . Then

Tc1 ∧Rϵc2 =
∑
j

Tσj
∧Rϵc2.

So, it suffices to prove the proposition for c1 whose support lies in U . For a test
form ϕ, the evaluation (

Tc1 ∧Rϵc2
)
[ϕ]

is equal to the integral in X ×X as∫
(x,y)∈c1×c2

ϱϵ(x,y) ∧ P ∗(ϕ)(x) (3.21)

where P : X×X → X(1st copy) is the projection, ϱϵ(x,y) is the kernel of Rϵ. By
Proposition 2.3, ϱϵ(x,y) is a blow-up form in the Euclidean space U ×U ≃ R2m

at the diagonal ∆U . Thus (3.21) is the evaluation of the current

Tc1×c2 ∧ ϱϵ(x,y) (3.22)

at a particular form P ∗(ϕ). By Proposition 3.1, the limit

lim
ϵ→0

∫
(x,y)∈c1×c2

ϱϵ(x,y) ∧ P ∗(ϕ)(x) (3.23)

exists, and bounded by ||ϕ||∞ . Hence

lim
ϵ→0

Tc1 ∧Rϵc2

is a current. The proof is completed.
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4 The supportive intersection

Definition 4.1. Let X be a differential manifold. Let c1, c2 be two chains in
S∞(X). We define

[c1 ∧ c2]

to be the weak limit
lim
ϵ→0

(
Tc1 ∧Rϵc2

)
.

It gives a rise to a well-defined bilinear map

S∞(X)× S∞(X) → D ′(X).

We call the map the supportive intersection.

The following properties (1) and (2) complete the proof for the second part
of Main theorem 1.3.

Property 4.2.
Let X a differential manifold of dimension m. For chains c1, c2 in S∞(X),

the supportive intersection [c1 ∧ c2] satisfies:

(1) (Supportivity)

supp([c1 ∧ c2]) ⊂ supp(c1) ∩ supp(c2). (4.1)

(2) (Cohomologicity) if c1, c2 are closed, [c1 ∧ c2] is closed and

⟨[c1 ∧ c2]⟩ = ⟨c1⟩⌣ ⟨c2⟩ (4.2)

where ⟨•⟩ denotes the cohomology class of a singular cycle.

(3) (Leibniz rule) If deg(c1) = p, then the differential map of chains follows
Leibniz rule,

d[c1 ∧ c2] = [dc1 ∧ c2] + (−1)p[c1 ∧ dc2], (4.3)

where the differential map d is the operator (−1)p+1b for the boundary
operator b acting on chains of the codimension p.

Proof. (1) Suppose
a /∈ supp(c1) ∩ supp(c2).

Then a must be either outside of supp(c1) or outside of supp(c2). Let’s assume
first it is not in supp(c2). Since the support of a currents is closed, we choose
a small neighborhood Ua of a in X, but disjoint from supp(c2). Let ϕ be a
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C∞-form of X with a compact support in Ua. According to Theorem 2.2, when
ϵ is small enough Rϵ(c2) is zero in Ua. Hence

[c1 ∧ c2][ϕ] = 0. (4.4)

Hence a /∈ supp([c1 ∧ c2]). If a ̸∈ supp(c1), Ua can be chosen disjoint with
supp(c1). Then since ϕ ∈ D(Ua) is a C

∞-form of X with a compact support in
Ua disjoint with supp(c1), the restriction of ϕ to c1 is zero. Hence

[c1 ∧ c2][ϕ] = 0.

Then a /∈ supp([c1 ∧ c2]). Thus

a /∈ supp(c1) ∩ supp(c2)

will always imply
a /∈ supp([c1 ∧ c2]).

This completes the proof.

(2) By the homotopy formula (2.3), Rϵc2 is closed. Next let ϕ be a test form.
By the definition

b[c1 ∧ c2][ϕ]

= lim
ϵ→0

∫
c1

Rϵc2 ∧ dϕ

( since c1 is closed)

= ± lim
ϵ→0

∫
c1

dRϵc2 ∧ ϕ = 0.

(4.5)

So [c1 ∧ c2] is closed. For the closed test form ϕ, the supportive intersection
number,

deg

(〈
[c1 ∧ c2]

〉
⌣ ⟨ϕ⟩

)
(4.6)

is a well-defined real number that is equal to

lim
ϵ→0

c1[Rϵ(c2) ∧ ϕ]. (4.7)

By the de Rham theorem
c1[Rϵ(c2) ∧ ϕ]

is the topological intersection number

⟨c1⟩⌣ ⟨Rϵc2⟩⌣ ⟨ϕ⟩. (4.8)

By Formula (2.3) again, ⟨Rϵc2⟩ = ⟨c2⟩. Thus

lim
ϵ→0

c1[Rϵ(c2) ∧ ϕ] = ⟨c1⟩⌣ ⟨c2⟩⌣ ⟨ϕ⟩. (4.9)
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Formulas (4.9) and (4.6) imply

⟨[c1 ∧ c2]⟩ = ⟨c1⟩⌣ ⟨c2⟩ (4.10)

(3) Let ϕ be a test form. Let

deg(c1) = p, deg(c2) = q.

Then

b[c1 ∧ c2][ϕ]

= lim
ϵ→0

∫
c1

Rϵc2 ∧ dϕ

( Leibniz Rule for C∞ forms )

= lim
ϵ→0

∫
c1

(−1)qd(Rϵc2 ∧ ϕ) + (−1)q+1dRϵc2 ∧ ϕ

= lim
ϵ→0

(−1)q
∫
bc1

Rϵc2 ∧ ϕ+ lim
ϵ→0

(−1)q+1

∫
c1

dRϵc2 ∧ ϕ

(By Formula (2.3), d and Rϵ commute)

= lim
ϵ→0

(−1)q
∫
bc1

Rϵc2 ∧ ϕ+ lim
ϵ→0

(−1)q+1

∫
c1

Rϵdc2 ∧ ϕ

= (−1)q[bc1 ∧ c2][ϕ] + (−1)q+1[c1 ∧ dc2][ϕ]

Hence

b[c1 ∧ c2] = (−1)q[bc1 ∧ c2] + (−1)q+1[c1 ∧ dc2]. (4.11)

After change the sign, we found (4.11) is the same as (4.3).

Example 4.3. Let X = R2. Let c2 be the interval (0, 1) on the x-axis and
c1 a curve diffeomorphic to c1. We choose the local data which consists of the
standard coordinates (x, y) for R2 and the bump function f satisfying∫

R2

f(x, y)dx ∧ dy = 1 (4.12)

Case 1: c2 = c1. Then [c1 ∧ c2] = 0.

Case 2: c1 ̸= c2 such that c1 meets c2 at countably many points around
the origin. Then the supportive intersection [c1 ∧ c2] is a current supported at
the intersection of sets. More precisely, let R2 × R2 = ∆ × ∆⊥ where ∆ is
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the diagonal and ∆⊥ is the orthogonal complement. Define the partial scalar
multiplication Dϵ as a linear map

∆×∆⊥ → ∆×∆⊥

(a,b) → (ϵa,b)
(4.13)

Let π : ∆×∆⊥ → ∆ be the orthogonal projection. Then there is measure 0 set
S ⊂ π(c1 × c2) such that set-theoretically

lim
ϵ→0

D 1
ϵ

(
π(c1 × c2)\S

)
(4.14)

exists as a measurable set. Then for a test function ϕ on R2, [c1 ∧ c2][ϕ] is

a finite Lebesgue integral over the measurable set lim
ϵ→0

D 1
ϵ

(
π(c1 × c2)\S

)
. The

intergrand is an L1 function dependent of f, ϕ.

The example shows the supportive intersection [• ∧ •] depends on the reg-
ularization Rϵ. But the following example shows that the situation could be
otherwise.

Example 4.4. We give two cases where the supportive intersections are inde-
pendent of regularization Rϵ. Both are classical and pave the way to the modern
topological intersection number. Let X = R2. Let f be a bump function satisfy-
ing ∫

R2

f(x, y)dx ∧ dy = 1 (4.15)

where x, y are the coordinates of R2.

Case 1: Let c1 be the interval (0, 1) on the x-axis and c2 a curve diffeomor-
phic to c1 but crosses x-axis only once at the origin. Then

[c1 ∧ c2] = δ0 (4.16)

where δ0 is the δ function at the point 0. Formula (4.16) holds regardless how
they meet tangentially.

Case 2: Continue the setting in case 1. Let c1 be as above, c2 a curve
diffeomorphic to c1 and meet x-axis only at the origin. But it does not cross the
x-axis. Then

[c1 ∧ c2] = 0. (4.17)
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Appendix A Orthogonal projection of a cell

Lemma A.1. Let p ≤ m be two whole numbers. Let Rp,Rm−p be subspaces of
Rm such that Rm = Rp × Rm−p. Let π : Rm → Rp × {0} be the orthogonal
projection. Let c be a p-dimensional regular cell in Rm, ψ a smooth function on
Rm. Then there is a compactly supported L1 function ξψ on Rp×{0} such that

π(Tc ∧ ψ) = ξψ (A.1)

where π(current) denotes the pushforward on currents, and ξψ represents a
current of degree 0.

Proof. Let µ be the Lebesgue measure on Rp, ϕ a test function. Let C =
c(Πp). We should note that since Tc is a current with a compact support, the
pushforward π(Tc∧ψ) is a well-defined 0-current. Hence it is both a distribution
and a 0-current. So it can be evaluated in two different ways, and the evaluation
of the distribution π(Tc ∧ ψ) at ϕ is equal to the current’s evaluation at forms,

π(Tc ∧ ψ)[ϕdµ] (A.2)

which has the integral estimate∣∣∣∣π(Tc ∧ ψ)[ϕdµ]∣∣∣∣ ≤ ∣∣∣∣∫
C

ψ ∧ π∗(ϕ) ∧ π∗(dµ)

∣∣∣∣
≤M ||ϕ||∞

(A.3)

whereM is a constant independent of the test function and || • ||∞ = esssup| • |.
Thus, π(Tc ∧ψ) as a distribution has order 0. Therefore it is a signed measure.
Let A ⊂ Rp be a set of measure 0. Let π = π|C . So, π is a differential map
between two manifolds of the same dimension p. Let

π−1(A) = E1 + E2

where E1 is a set of critical points of π, and E2 = π−1(A)\E1. By the same
estimate (A.3), we have∣∣∣∣π(Tc ∧ ψ)[A]∣∣∣∣ ≤M ′ ∫

E1+E2
|dµ| (A.4)

where M ′ is a constant. By Sard’s theorem
∫
E1

|dµ| = 0. We let E2 = ∪∞
i=1E

i
2

such that
π|Ei

2
: Ei2 → π(Ei2) (A.5)

is diffeomorphic. Then each π(Ei2) is contained in A. Thus
∫
Ei

2
|dµ|, which by

the diffeomorphism (A.5) is the Lebesgue measure of π(Ei2), must be 0. Hence∣∣∣∣π(Tc ∧ ψ)[A]∣∣∣∣ ≤ ∞∑
i=1

∫
Ei

2

|dµ| = 0.
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Thus the signed measure π(Tc ∧ψ) is absolutely continuous with respect to the
Lebesgue measure of Rp. By the Radon-Nikodym theorem ([1]), we obtain that
the density function between the signed measure and the positive measure,

ξψ =
π(Tc ∧ ψ)

µ
(A.6)

is an L1 function. The numerator π(Tc ∧ ψ) in the formula (A.6) indicates ξψ
has the bounded support π(C). We complete the proof.
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