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Abstract

Let X be a differential manifold. Let 2’(X) be the space of currents,
and S*°(X) the Abelian group freely generated by regular cells, each
of which is a pair of a polyhedron TT and a differential embedding of a
neighborhood of TT to X. In this paper, we define a variant that is a
bilinear map

S®(X)x S*®(X) — 92'(X)

(01,02) — [Cl AN CQ] (0'1)

called the supportive intersection such that
1) the support of [c1Acz] is contained in the intersection of the supports
of ¢1,co;
2) if ¢1, 2 are closed, [c1 A ¢2] is also closed and its cohomology class
is the cup-product of the cohomology classes of c1, ca.
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This paper explores the notion of the support in differential topology. In general,
the support is not an structural invariant, rather a property possessed by a
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1 INTRODUCTION 2

structural invariant. So, throughout this paper, “support” or “supp” denotes the
closed subset in the usual sense followed by various invariants such as singular
chains, differential forms, currents etc.

Explicitly on a differentiable manifold X, we construct a variant that is a
bilinear map
S®(X) x S*°(X) —» 2/(X)

(01702) — [Cl /\02] (11)

such that

Condition 1.1. (supportivity) the support of [c1 A ca] is contained in the inter-
section of the supports of c1,co;

Condition 1.2. (cohomologicality) if c1,co are closed, [c1 A 3] is also closed
and its cohomology class is the cup-product of the cohomology classes of c1,ca.

The idea of the construction goes back to de Rham’s work on currents.
Originally in order to understand the homology of the complex of currents, de
Rham constructed, for an arbitrary current 7', the regularization R.T for a real
number € > 0 such that the regularization weakly converges to T as ¢ — 0.
The supportive property is a unique part of this regularization. In particular,
it satisfies that

1) there exists another linear operator A, satisfying the homotopy formula

R.T —T =bA.T + AbT (1.2)

where b is the boundary operator on currents,
2) the support of R.T is contained in any given neighborhood of the support
of T provided e is sufficiently small;

The development in the property 1) is well-known. But the implication of
the property 2) has not been explored further.

In this paper, we are going to focus on the property 2). We work with
singular chains which are known to be a particular type of currents. Let ¢ be
a chain, w a smooth form. Denote the current of the integration over ¢ by T,
the current of the integration with w by T,. If for any two regular chains ¢y, cs,
i.e. those chains in S°°(X), we can prove the existence of the weak limit of the
current

Te, N Reca, as e = 0 (1.3)

then Conditions 1.1 and 1.2 easily follow from 1) and 2). The precise statement
is our main theorem in the following.
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Theorem 1.3. (Main theorem) Let X be a differential manifold. For (c1,cq) €
S°(X) x S®(X), the weak limit

eli_I>I(1)Tcl AN RECQ, (14)

exists in 9'(X). Furthermore, the weak limit (1.4) denoted by [c1 A ¢a], called
the supportive intersection satisfies Condition 1.1 and Condition 1.2.

Remark The liI%Tc1 A Reco is a weak limit in functional analysis and also
e—

extrinsically dependent of the regularization. But de Rham’s original work in
[2] is neither in functional analysis nor extrinsically dependent.

We organize the rest as follows. In Section 2, we prove a local property of
de Rham’s regularization R.. In Section 3, we prove that the existence of (1.4)
follows from this property. In section 4, we verify that the limit (1.4) satisfies
Conditions 1.1 and 1.2.

2 A property of de Rham’s Regularization

Throughout the paper we denote the origin of the various Euclidean space R*®
by the same notation 0.

Definition 2.1. ( blow-up forms)

Let F¢ for € > 0 be a family of smooth forms of degree r in an Euclidean
space R™. If there are an orthogonal decomposition R™ = R” x R™™" with
coordinate u for the subspace R” x {0} and a smooth form Fi(u) on R" x {0}
with a compact support such that

Fo= W*Fl(%) (2.1)
or abbreviated as
u
Fe - Fl(i)
€
where m : R™ — R" x {0} is the orthogonal projection, then F . is called a
blow-up form from F1(u) along R" x {0} at {0} x R™~".

One of the main techniques in [2] is the construction of de Rham’s regular-
ization for currents. In today’s standard, the details may be outdated. However,
it is quite unique among other types of regularization.
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Theorem 2.2. (G. de Rham) Let € be a small positive number. Let &(X) be
the space of smooth forms on X. Then there exist linear operators on X,

R:7'(X) — &X)

A 7(X) - P'(X) (2.2)
such that for T € 2'(X)
(1) a homotopy formula
R.T —T = bA.T + AT, (2.3)

holds where b is the boundary operator,

(2) supp(R.T), supp(AT) are contained in any given neighborhood of
supp(T) provided € is sufficiently small,

(8) If a smooth differential form ¢ has the bounded semi-norm ||e||, x where
q 18 a whole number and K is a compact set and € is bounded above, then
R.Ty, ATy are also bounded in the same semi-norm,

(4)
mR.T =T, LmAT =0
e—0 e—0

in the weak topology of 2'(X). Furthermore, the convergence is uniform
on the set of forms with the bounded semi-norms || ® ||4.k -

The collection of the data used in the regularization is called de Rham data.
In particular, it consists of countably many ordered open sets Uy, --- where the
local regqularization occur independently in each U;. The global regqularization R,
18 just the iteration of the local reqularization.

This paper only needs the properties (1) and (2). In addition, we recall
another notion by de Rham: smooth kernel. Let

A:9'(X)— 9'(X)

be a linear operator on currents. The operator is said to be regularizing if
A(2'(X)) is contained in the subset &(X) C 2'(X). This assumption implies
that there is a smooth form L on X x X such that for ¢ € 2(X) and T € 2'(X)
with a compact support

AT)[¢] = (T ® Ty)[L].

The form L is called the smooth kernel of the operator A. It is known that
de Rham’s regulator is regularizing, therefore it has a smooth kernel. In the
following, we prove a local property of this smooth kernel.

Proposition 2.3.

At each point of X, there is a neighborhood U ~ R™  such that the smooth
kernel of de Rham’s regulator R. with sufficiently small € is restricted to a
blow-up form on R™ x R™ at the diagonal A, where R™ is the Euclidean space
diffeomorphic to U.
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Proof. We need to analyze the local structure of the regulator. So, we start
with the reviewing of the de Rham’s construction in its local charts. Let R™
be the Euclidean space of dimension m with a linear structure. Let y1, -, ym
be its coordinates under a basis. They will be collectively denoted by the bold
letter y. Same bold fonts for various Euclidean spaces will be used throughout
this paper. Let f(y) € 2(R™) be a function ( i.e. a mollifier) supported in the

unit ball such that
/ f(y)dpy =1,
yeR'ln

where djiy is the volume form
dyr A= A dypm,.

Let 1
Ve(y) = = F(D)duy. € > 0 (2.4)

be the m-form on R™. Then the de Rham’s regulator on R™ is the operator
that sends each current 7" on R™ to the form

+T[W0e(x —y)ly (2.5)

where the sign + is determined by the dimension of T' and m, the current T is
evaluated at the form of y variable. The operator depends on the coordinates
of R™. We denote this regulator by R.. The form

+d(x —y) (2.6)

on R™ x R™ is denoted by 6.(x —y) where x,y are the variables for the first
and second factors in R™ x R™. Notice that 6.(x — y) is the smooth kernel of
R (with respect to the degree of ¢). The extension to the global X is through a
countable iteration of the local R.. The extension requires countably many local
charts U; ~ R™ in de Rham data that covers X. The covering is locally finite.
By the continuity, we may only consider the point ¢ not on the boundaries of
U;. Such an extension at the point ¢ can be described as follows. Since the
de Rham’s covering is locally finite, there are finitely many ordered open sets,
Uy,Us,--- ,U, that contain q. It suffices to consider the regularization in these
open sets. We denote the regulator on each U; by R! and its smooth kernel
by 0i(x; —y;). By the partition of unity, we may only consider the current T
compactly supported in the overlap r;Ui. Then the global R, sends the T to a

smooth form

RIoRM oo RYT). (2.7)

Above is the description of de Rham’s construction around the point q. The
following is our work to show that the kernel of (2.7) is a blow-up form. First
we’ll express the kernel. In each local regulator

R':2'R™) — 2'(R™)
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we denote the R™ in the domain space by Ry' with the variable y;, and the
R™ in the target space by RY! with variable x;. We identify Ryl = RY'  and
denote the same space by ]le(i_l) (which is a copy of R™). Then each product

RY xR for i =n,---,1is embedded in
m m m m m
]Rxn X Rn,n—l X Rn—l,n—2 X X RQ,I X Ryl

as the zero-section of the trivial bundle. So, we pull back each %(x; —y;) to
the the product

m m m m m
]Rxn X ]Rn,nfl X Rnfl,n72 X X R2,1 X Ryl

and denote the pullback by the same notation 0¢(x; —y;). Then according to
(2.7), the local expression of the global kernel g.(x,,y1) is the fibre integral

/ ezl(xn - Yn) A ezl_l(an - Ynfl)
(Ynyoy2)ER xR X XREY
VARERIVAN 962()(2 — YQ) N 961()(1 — yl), (28)

where 0¢(x; — y;) is the smooth kernel of R;. So the global kernel o.(x,,y1) is
a m-~form on the product

m m __ m m
Ry xRy =R™ xR

where x,,,y; are the coordinates for the first and second factor of the kernel. In
(2.8), we define the new coordinates:

Wi =X —Yi (2:9)
where i =1,--- ,n — 1, also
Xn — Y1 — (W1+"'+Wn1) =Xpn —Yn- (2'10)

Then (2.8) is equal to

/ 9?<XnY1(W1+"'+Wn—1)>
(Wn—1,,w1)ERR XRPY o X XREY
AO (W) A A (wy), (2.11)

Divide each variable by €, we obtain that g.(x,,y1) is equal to

Xn — Y1
n n
/ o7 (_(w1+...+wn1)>
(Wr—1,m W) ERT  XRTY X XRYY €

NIV H(Wo1) Ao ABH(wr). (2.12)
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So, if we denote the m form on R™,

T C——

AOY MWl ) Ao ABH(wy)  (2.13)

/(Wnl"" SW1ERD XREY o X XREY

by F.(z) for the variable z of R™, then
Qe(xn7Y1) =r"F, (214)

where £ is the map: (X,,y1) = X, —y1. Since all forms ¢ (z),j = n, --- , 1 have
compact supports, so 9.(X,,y1) is a blow-up form from a compactly supported
form F;. We complete the proof.

O

3 Convergence in de Rham’s regularization

The main technical result is the following proposition about the convergence.
It concerns a particular type of de Rham’s wedge products between a cell and
a form.

Proposition 3.1. Let ¢ be a p dimensional reqular cell in R™. Let w. be a
blow-up form of degree r < p in R™. Then the current

Te N we (3.1)
converges weakly to a current as € — 0.

The special case of the proposition for the blow-up at a point is used in
cohomology theory (see Example 3.4 below). But the general case for the blow-
up at a higher dimensional subspace has not been looked at. In the technique,
our central idea is to convert the convergence of integrals of forms to that of sets.
Wildly behaved sets usually do not respect arithmetic and not even manifold’s
structures, but they are effectively used in the foundation of probability and
measure theory.

Notice that the convergence only concerns the local Euclidean space and one
cell in it. So we focus on the Euclidean space. Throughout, for an Euclidean
space R! with a coordinate z, we’ll abuse the notation to denote the volume
form of a subspace with the concordant orientation and the volume density in
Lebesgue integrals by the same expression dpu,. The argument starts with a
definition and a lemma about points and sets.
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Definition 3.2. Let W C RP be a subset in an Euclidean space with the origin
o. A point a € RP is said to be a stable point of W if the line segment

{o+t(0d), 0<t<1}

either lies in W completely or in W€ completely, where 04 € T,RP = R is the
vector from o to a, and W€ is the complement RP\W. We denote the collection
of stable points of W by W2.

Let ¢ : TI, — R™ be a regular cell as in Proposition 3.1 with the p-
dimensional polyhedron TT,. Let C' = ¢(IT,) be the image of the cell. Let
R"™, RP~" R™~P be subspaces with coordinates u, v; and vs respectively such
that

R™ =R" x RP™" x R™™P, (3.2)
Let
n:R™ — RP=R"xRP " x {0}

be the projection to its subspace RP. Let D:1 for a positive ¢ be the linear
transformation of R™ defined by the map '

u
(u,Vl,Vz) — (€7V13V2)' (33)

In the context, we denote its restriction to subspaces also by D1. All measures
in the following are the Lebesgue measures on Euclidean spaces.

Lemma 3.3. Denote W := n(C). There exists a subset Wy, C W of measure
0 such that the set-theoretic limit (§4, [1])

lim D (W\qu) (3.4)
e—0 €

exists *.

Proof. We denote
L:={0} xRP™" x {0}

For o € L, 0 = (0,vy,0) is the origin for the partial scalar multiplication D1 .
Let )

We =wn (RT x {v1} x {0}).

*For a family of sets Se, the existence of the set-theoretic limit means

N UsSe=U 5

€1 <1 ea<ey €1<1 e2<ey
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Therefore o is the origin of the affine plane R" x {v1} x {0}. Let R, be the ray
{o+t(0d) :a e We°,t>0}
that starts at the origin in the affine plane. Let
We, Cc We
denote the subset
{a € W°: R, does not contain a stable point of W°}.

We divide W to three disjoint parts.
1) Wy, = ULVVJ?H7 called the set of fully unstable points,
: oc

2) W = LEJLWS"7 called the set of stable points,

3) Wpy is W\ (Wy,, U Ws), called the set of partially unstable points.

Next we should dilate each part by a scalar multiplication D1.

For the fully unstable points Wy,,, we would like to show they are necessarily
on the “boundary” which gives the measure 0. The following is the detail. The
boundary of the polyhedron IT, is defined by multiple hyperplanes. Hence the
boundary of C is also defined by multiple hyperplanes H;. On the other hand
in the its target space, we let

v:R\{0} x RP~" x {0} — P! xRP"x{0}

(u,v1,0) S ([u)vi.0) (8:5)

be the map that is the product of the projectivization map and the identity
map (where P"~! can be regarded as the real projectivization of ToR", the set
of directions). Fix a point o € L. Let a € W2, other than o. Since a is a fully
unstable point, there are two sequences of points p,,q, on the ray R, such
that

lim p, =0 = lim q,
n—oo n—oo

and
pPn € W% q, € W°.

Thus the directions o*pﬁ and o*pﬁ, which are all parallel to the tangent vector
04 must lie on at least one nontrivial plane n,(H;). Since a subplane properly
contained in an Buclidean space has a measure 0, for each fixed o, P(W2,\{0})
has measure 0 in the manifold

P(R™\{0}) x {v1} x {0} ~ P~

where vy is fixed. Since
R™\{0} — P!
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is a bundle’s projection, the inverse W%, also has measure 0. To go further, we
take the union over L to obtain v(Wy,\L) = ULP(W})u\{O}) has measure 0 in
oc

the manifold
P! x RP™" x {0}.

Due to the fibre bundle structure of the projectivization, we conclude Wy, in
R? has measure 0. Notice that D1 is a linear transformation, D1 (Wy,) which

is equal to Wy, also has measure 0. Therefore the limit is of 0. T

For Wy, we consider the set B = D1 (W,). We would like to show B, as
€ — 0 is a decreasing set. Let R, be the ray starting at o € L and through a
stable point a € W2 of W*° for an o € L. Since a is stable, the dilation by the
scalar multiplication D 1 yields

Di(RoNW,) C D1 (RoNW,), for € <e<1.
Now taking the union over all the rays through stables points, we obtain
Di(Wy) C D1 (W), fore <e.

Therefore B, is a decreasing family of measurable sets. Let

By = Ueco.1] <Di (WS)). (3.6)

Then set-theoretically the decreasing family yields
limB, = By
e—0

and B is measurable.
For W, we consider the set A. = D1(W,,). We would like to show A, as

1
the set multiplied by — will be pushed to co as € — 0. Here is the detail. If
€
N U A, is non-empty, there is a point

e1<1 ea<er
e U

€1<1 e2<e1

ie. x € |J A, for any ¢ < 1. So, there is a sequence of numbers ¢, such
e2<e;
that lim €, = 0 and D, (x) lies in Wp,. Suppose that N is a number in the
n—oo
sequence such that D, (x) € Wp,. By the definition of W), there is a smaller
en’ # 0 such that D, , (x) is a stable point, i.e. D, ,(x) € Wg. Then all points
D., (x) are stable whenever €, < eys. But this contradicts the assertion above:
there is a sequence of partially unstable points €,x with €, — 0. Thus

TBut the set W, is not on the boundary of W.
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lE%SUpAG = m U A, = 0. (3.7)

€1<1 e2<e;

Therefore
liminfA. C limsupA.
e—0 e—0

is also empty. Hence 1ir%A6 exists and is equal to an empty set.
€E—>

Combining the results for Wy, W, and Wp,,, we complete the proof.
O

Proof of Proposition 3.1. We continue with all notations in Lemma 3.3. Let
¢ be a test form of degree p — r in R™. It amounts to show the convergence of

the integral
/ wWe A ¢ (3.8)
c

as € = 0, where C = ¢(IT,,) is the image of the regular cell ¢ : TT, — R™. Lemma
3.3 holds for any orthogonal decomposition (3.2) of R™. But, for Proposition
3.1, we have to specify the decomposition that needs to be related to the blow-
up form. Let R” x {0} x {0} be the subspace with coordinates u such that the

blow-up form is written as
1 u

we = —9(=)dpu (3.9)

where g(u) is a C* function of R” x {0} x {0}. Notice that the form we A¢ is the
sum of simple forms in the coordinates of R that can be explicitly expressed.
So, we’ll focus on the integral of a single simple form.

€

We work with the simple form written as

1 u

929wV, va)dpa A dpy, (3.10)

€
where the volume forms dpy, duy, determine two coordinate’s planes
R" x {0} x {0},{0} x RP™" x {0}
with coordinates u, vy respectively, and v is a C'* function on
R™ =R" x RP™" x R™™P

that is the coeflicient of the simple form du,, in a general test ¢. Then the
integral of (3.10) over C' is

/ g(w)(eu, vy, va)dpu A dity, (3.11)
D1 (C)

where u is the new variable obtained from the old u divided by €. Let K; be
the support of g(u), and Ks, K3 be the bounded sets of RP~", R™~" such that
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C' is contained in R" x Ky x K3. Then 9(eu, vy, vs) uniformly converges to
¥(0,v1,vs2) in K7 x Ky x K3. So, for any positive d§, we can find sufficiently
small € such that

[(eu, vy, va) — (0, vy, va)| < 6. (3.12)

Let c. be the composition

RM. (3.13)

b

m =5 R™

Notice
DL(C) N (Kl X K2 X XK3)

€

is a bounded set. Thus all coefficients of the form c}(g(u)duu A dpy,) are
bounded uniformly for all sufficiently small e. Hence

| gu)p(eu, v, va)dpu A dpy, — / g(W)1(0,v1, va)dpu A dpty, |
D

D1 (C) 1(C)
<M
(3.14)
where M is a constant. For the integral
[ a0 va)da A di, (315)
D1 (C)
we make a change of variable from u to % %o find (3.15) is equal to
€
1 u
67 9(€)¢(0,V17V2)dﬂu A d:uV1 (316)
c

Now we apply Lemma A.1, there is a compactly supported integrable function
&.(u,vy) on RP such that

lr g(E)w(Ov V1, Va)dia A dpy, = lr / g(E)gw(ua v1)dpadiy, (3.17)

e Jo7 € € Jw €
where W is the measurable set defined in Lemma 3.3, and the right hand side
is a Lebesgue integral with the density measure dyyudpy,, and éw (u,vy) in the
integrand is a compactly supported L' function on RP. Furthermore, since
¥(0,v1,vs) is a pullback function from {0} x RP~" x R™~ " then gw(u,vl) is
also a pullback of function £, (v1) from {0} xRP~" x {0}. So, in the following, we
express the pullback function @,(u, v1) as £y(v1). Now changing the variables

u
from — back to u, we have
€

(A7) = Jou Xpp | iy (W V)I(WE (v )l dpa

1 3.18
= Jor Xp, i) (W v )IWE (v, dp (3.18)
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where X, denotes the characteristic function of the set o. Next for the Lebesgue
integrals, we’ll omit the notations for variables for the dominant convergence
theorem. We’'ll see that the integrand in (3.18) satisfies

<
IXD%(W\qu)gfwl <1g¢,|

and | g§¢| is an L' function on RP. The set-theoretic convergence in Lemma 3.3

implies the x ) gfw point-wisely converges to the function

D1 (W\Wpy,
X, 98,

By the dominant convergence theorem
ll—% RP XD;(W\qu)ggwd’uudel - /Rp XB(Jgé-l/f'd’uudlllvl

= [ g€ dp dp
/Bo Y Tu vy

Finally, combining (3.14) and (3.19), we obtain that

. 1 u
lim [ Lo, ve, va)dpu A diy, = / (W (v)dpadiiy,

=0 Jo e’ € Bo

(3.19)

(Note the right hand side is an integral of a differential form but the left is a
Lebegue integral). We conclude

T. Nw,

converges to a functional as e — 0. For the continuity of the functional, we see
that if ¢ is bounded to any orders, then in particular ¢ is bounded to the order
of 0. Hence the formula (3.15) is bounded. Then

/ g(u)gw (ua Vl)d/’éuduvl
Bo
is bounded. So, the evaluation
lim (T, A w,) 9]
e—0
is also bounded. Hence the functional
6 = lim (T, A w.)[¢]

defines a current. The proof is completed.
O

Remark The particular type of wedge products in (3.1) provided the early
proof for the homology of the complex of currents (see Chapter IV, [2]). As the
new technique emerged, this type of analysis is no longer necessary. However,
some still remain. The following example is the remaining case in cohomology
theory (see section 1, Chapter 3 in [3]).



3 CONVERGENCE IN DE RHAM’S REGULARIZATION 14

Example 3.4. Let ¢ be an n-dimensional polyhedron in R™ and contain the
origin. Let w, be a blow-up form at the origin with the top degree n (i.e. along the
entire space R™). Then as € — 0, T, Aw, converges weakly to a constant multiple
of & function at the origin. The constant multiple is 1 if w. is normalized.

The following proposition proves the first part of Main theorem 1.3.

Proposition 3.5. Let X be a differential manifold of dimension m. For chains
1, ¢y in S®(X), the exterior product

T., N Reco (3.20)
converges weakly to a current as € — 0.

Proof. 1t suffices to assume ¢, : TI, — R™ is a regular cell and it lies in an
open neighborhood U as in Proposition 2.3. We subdivide ¢; to a sum of
smaller regular cells so that there are finitely many regular cells o; that cover
the supp(R.c,) for sufficient small € and supp(c;) C U. Then

T., AR.c; =Y T, ARecs.
J

So, it suffices to prove the proposition for ¢; whose support lies in U. For a test
form ¢, the evaluation

(Tc1 A R€c2> (@]

is equal to the integral in X x X as

/( AP (3.21)

where P : X xX — X (1st copy) is the projection, o.(x,y) is the kernel of R,. By
Proposition 2.3, go.(x,y) is a blow-up form in the Euclidean space U x U ~ R?™
at the diagonal Ay. Thus (3.21) is the evaluation of the current

Ty xcen N 0(X,Y) (3.22)

at a particular form P*(¢). By Proposition 3.1, the limit

lim 0(%,y) N P (¢)(x) (3.23)

0 (xy) e xez
exists, and bounded by ||¢||s . Hence

limTcl A\ R€C2
e—0

is a current. The proof is completed.
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4 The supportive intersection

Definition 4.1. Let X be a differential manifold. Let ci,cqy be two chains in
S>(X). We define
[e1 A el

to be the weak limit
l% (TC1 A Recg).

It gives a rise to a well-defined bilinear map
S>®(X) x S®(X) = 2'(X).

We call the map the supportive intersection.

The following properties (1) and (2) complete the proof for the second part
of Main theorem 1.3.

Property 4.2.
Let X a differential manifold of dimension m. For chains cq,cy in S®(X),
the supportive intersection [cq A ¢y| satisfies:

(1) (Supportivity)

supp([ey A ca]) C supp(ey) N supp(cy). (4.1)

(2) (Cohomologicity) if c¢i,co are closed, [c; A cy] is closed and

(lex Aea]) = (e1) — (ea) (4.2)

where () denotes the cohomology class of a singular cycle.

(8) (Leibniz rule) If deg(ci) = p, then the differential map of chains follows
Leibniz rule,

dley A es] = [deg A eo] + (—1)P[eq Ades], (4.3)

where the differential map d is the operator (—1)PT1b for the boundary
operator b acting on chains of the codimension p.

Proof. (1) Suppose
a ¢ supp(c1) N supp(cz).
Then a must be either outside of supp(c;) or outside of supp(cy). Let’s assume

first it is not in supp(cy). Since the support of a currents is closed, we choose
a small neighborhood U, of a in X, but disjoint from supp(cy). Let ¢ be a
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C>-form of X with a compact support in U,. According to Theorem 2.2, when
e is small enough R, (c,) is zero in U,. Hence

[c1 A ea][@] = 0. (4.4)

Hence a ¢ supp([c; A ¢o]). If a & supp(ey), U, can be chosen disjoint with
supp(cy). Then since ¢ € 2(U,) is a C°-form of X with a compact support in
U, disjoint with supp(c;), the restriction of ¢ to ¢; is zero. Hence

[e1 A eo][@] = 0.
Then a ¢ supp([c; A ¢3]). Thus
a ¢ supp(cy) N supp(cs)

will always imply
a ¢ supp([er A co)).
This completes the proof.

(2) By the homotopy formula (2.3), R.c, is closed. Next let ¢ be a test form.
By the definition

bler A es][¢)]

=lim | R.co Ado
e—0 1

( since ¢ is closed)

:ilim/ dR.cy A = 0.
e—0 e

So [c1 A ¢o] is closed. For the closed test form ¢, the supportive intersection
number,

dea ({fer neal) = (0)) (1.6
is a well-defined real number that is equal to
limeq [Ro(ca) A @) (4.7
e—0

By the de Rham theorem
C1 [Re (02) A ¢]

is the topological intersection number
(c1) = (Reca) — (). (4.8)
By Formula (2.3) again, (R.co) = (co). Thus

limey [Re(ez) A o] = {e1) — (e2) — (). (4.9)
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Formulas (4.9) and (4.6) imply

([er Aea]) = (e1) — (ca) (4.10)

(3) Let ¢ be a test form. Let

deg(cy) = p,deg(cy) = q.

Then
bler A co][d]
= lim RECQ N d(b
e—0 o
( Leibniz Rule for C* forms )
= lim (=1)9d(Recy A @) + (=1)1T dRecy A &
= lim(—l)q/ R.cog N+ lim(—l)‘”l/ dR.co N\ ¢
e—0 bes e—0 el
(By Formula (2.3), d and R, commute)
= lim(—1)? Reco A ¢+ lim(—1)7H / R.dcy N ¢
e—0 ber e—0 c1
= (=1)bey A ca)[¢] + (1) ey A dey)[d)]
Hence

b[Cl A C2] = (_1)q[bcl A 62] + (_1)q+1 [Cl A dCQ]. (411)
After change the sign, we found (4.11) is the same as (4.3).

Example 4.3. Let X = R2. Let ¢y be the interval (0,1) on the x-awis and
¢ a curve diffeomorphic to ¢. We choose the local data which consists of the
standard coordinates (x,y) for R? and the bump function f satisfying

/f@MMA@=1 (4.12)
]R?

Case 1: ¢y = c¢y. Then [c; Acy] = 0.

Case 2: ¢; # ¢y such that ¢y meets ¢y at countably many points around
the origin. Then the supportive intersection [c; A ¢y] is a current supported at
the intersection of sets. More precisely, let R2 x R? = A x A+ where A is
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the diagonal and AL is the orthogonal complement. Define the partial scalar
multiplication D, as a linear map

AxA+ 5 AxAL

(a,b) — (eab) (4.13)

Let m: A x A+ — A be the orthogonal projection. Then there is measure 0 set
S C m(c; X ¢g) such that set-theoretically

lim D (ﬂ'(cl x cg)\5> (4.14)

e—0 €

exists as a measurable set. Then for a test function ¢ on R?, [c; A cy][¢] is
a finite Lebesgue integral over the measurable set lir%D; (e X 02)\S>. The
e—0 <

intergrand is an L' function dependent of f, ¢.

The example shows the supportive intersection [e A o] depends on the reg-
ularization R.. But the following example shows that the situation could be
otherwise.

Example 4.4. We give two cases where the supportive intersections are inde-
pendent of reqularization R.. Both are classical and pave the way to the modern
topological intersection number. Let X = R2. Let f be a bump function satisfy-
mg

/ fle,y)de Ndy =1 (4.15)
R2
where x,y are the coordinates of R2.

Case 1: Let ¢, be the interval (0,1) on the x-axis and ¢y a curve diffeomor-
phic to ¢, but crosses x-axis only once at the origin. Then

[e1 A ea] = 6o (4.16)

where dg is the 0 function at the point 0. Formula (4.16) holds regardless how
they meet tangentially.

Case 2: Continue the setting in case 1. Let ¢; be as above, ¢y a curve
diffeomorphic to ¢y and meet x-axis only at the origin. But it does not cross the
x-axis. Then

[c1 A e = 0. (4.17)
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Appendix A Orthogonal projection of a cell

Lemma A.1. Let p < m be two whole numbers. Let RP,R™ P be subspaces of
R™ such that R™ = RP x R™P. Let m : R™ — RP x {0} be the orthogonal
projection. Let ¢ be a p-dimensional regular cell in R™, 1 a smooth function on
R™. Then there is a compactly supported L' function &y on RP x {0} such that

(T A1) =&y (A1)

where m(current) denotes the pushforward on currents, and &, represents a
current of degree 0.

Proof. Let p be the Lebesgue measure on RP, ¢ a test function. Let C =
c(TT,,). We should note that since T, is a current with a compact support, the
pushforward = (T, A1) is a well-defined 0-current. Hence it is both a distribution
and a O-current. So it can be evaluated in two different ways, and the evaluation
of the distribution 7(T, A ¢) at ¢ is equal to the current’s evaluation at forms,

m(Te A Y)[odu] (A.2)

which has the integral estimate

(T, A wmsdm\ < \ JREZSGIRY
< M6l

(A.3)

where M is a constant independent of the test function and || ||, = esssup|e].
Thus, 7(T. A1) as a distribution has order 0. Therefore it is a signed measure.
Let A C RP be a set of measure 0. Let T = 7|c. So, 7 is a differential map
between two manifolds of the same dimension p. Let

ﬁ_l(A) - E1 + E2

where E; is a set of critical points of 7, and E, = 7@ (A)\E;. By the same
estimate (A.3), we have

(T, A ¢>[A]\ <M f, ol (A1)

where M is a constant. By Sard’s theorem [, |du| = 0. We let £, = UL, B
such that ' _
gy 0 By — 7(E3) (A.5)

du|, which by
the diffeomorphism (A.5) is the Lebesgue measure of 7(E%), must be 0. Hence

is diffeomorphic. Then each 7(E%) is contained in A. Thus I} B

w(TcwnA]' < i/@'d”' 0.
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Thus the signed measure m(7, Av) is absolutely continuous with respect to the
Lebesgue measure of RP. By the Radon-Nikodym theorem ([1]), we obtain that
the density function between the signed measure and the positive measure,

£y = TN "

is an L' function. The numerator (7, A ) in the formula (A.6) indicates &,
has the bounded support 7(C). We complete the proof.
O
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