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Abstract. In this paper, we have found the exquisite relation between Stirling’s f
ormula and interesting expression for Glaisher—Kinkelin’s constant, Bendersky—Ada
mchik’s constant, and have introduced new constants as their generalization. As w
e calculate the singular integral or sum of series in form of closed expression
by introducing constant w, Euler constant, Glaisher-Kinkelin’s constant, Bendersky—
Adamchik’s constant, new constants will play important role in calculating of the
sum of multi-series which has the multi-power in general term. To demonstrate th
e superiority of our new constants in several calculations, we propose an example
We show that our new constants generalize Glaisher—Kinkelin’s constant and

Bendersky—Adamchik’s constant
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1. Introduction

we can calculate easily the singular integral or sum of series in form of closed
expression by introducing constant , Euler constant, Glaisher-Kinkelin’s constant.

But multiple Hardy series
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where yis Euler’s constant, H, = e
)

can’t calculate by the constants already well known .
We calculate the multiple Hardy series by new constants researched in this paper.

To research new the constants, we firstly study the exquisite relation between some
constants.

Stirling’s formula is one of the most famous formulas and already well known [2, 6].
As you can see, taking logarithm about both sides of the Stirling’s formula
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and calculating a little, we obtain the following expression

In (27)=lim (Zln k — ( jln n+nJ (1.1)
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Also, taking logarithm about both sides in the definition of Glaisher-Kinkelin constant A
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we can obtain [1-3,6,9,12-13]

2

n 2
In A = lim Zklnk—(n—+ﬂ+iJlnn+n—. (1.2)
~ 2 2 12 4

n—oo

These constants play important role in indicating simply singular integral or sum of
series to closed expression type.[2,6,8,12-13].

Comparing (1.1) with (1.2), we can see the interesting type of the sequences
> k" Ink =X, (n)inn+Y (n),
k=1

where x (n) and v, (n) are pth- polynomials.

Motivated by (1.1) and (1.2), a natural question arises, that is, which kinds of the
sequences containing pth- polynomial X (n), Y (n) might converge to any number
peN.

Some constants are defined by limit of the following type of the sequences(see
[1-3,9,12-13]):
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where InL, and InL, are well known constants in Stirling’s formula and Glaisher—

Kinkelin’s constant, and InL, and InL, are Bendersky-Adamchik’s constants[1,
3,12-13].
In [9], it is also called Choi-Srivastava’s constant.

We provide the method finding more general constants, that is, generalized Glaisher —Ki
nkelin’s constant

In Lp =lim

n—o0

{gkplmk_xp(n)mmvp(n)} peN

2. An example concerning with new constants

While we are solving some open problems proposed by the professor Ovidiu Furdui[6],
we realize that we must generalize Glaisher—Kinkelin’s constant and propose an inter
esting example.

Example. Calculate in form of closed expression the multi- series

o0
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where yis Euler’s constant, H, = ZE .
k=1

Solution. using the Abel’s summation formula, we rewrite (2.1) as follows;
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(2.2)

We calculate the n+2 th partial sum of (2.2).
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In (2.3), we calculate odd-th sum and even-th sum separately,
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In (2.4), we let
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then we have

A(n) = 5( jln(2n+1)+5£4+ jln(2n+3)+1o(2+1j|n(2n+1)

n n+1 n+1
- (4] In(2n +2) - [4 ]In( 2n +4) —10(4 ]In( 2n+2) (2.5)

n4 4n® 5n% 2n n® 5n2+197n_415
12 12 288 1152

Thus, (2.4) is equal to the
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Using the simple substitution , we get that
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From (1.1) - (1.4), we have
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To calculate the limit of (2.6), we must use our new constant
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With this constant, we finish the example and the sum is

g_ 31y, ,25NC 245MB 25hA oo 175, 221y
24 4 24 4 288 1152 32

Motivated by this example, we study the method for investigating new constant as the
generalization of Glaisher-Kinkelin’s constant

3. Main result



Theorem  For any natural number p>1,let X (n) Y, (n) be p th- polynomials.

Then sequence

In Lp(n):;kp’llnk—xp(n) Inn+Y,(n), Y,(0)=0 (3.1)
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where B, are the Bernoulli’s numbers defined as([3, 8])
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If p=1, then (See (1.1))
. 1
nL,(n)=> I k—(n+5jln n+n.
k=1

Proof. For any natural number p >1, we are going to find X (n), Y,(n) so that

sequence (3.1) converge
We firstly calculate as follows;
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Since X ,(n)-X,(n—1)=nP", using the formula
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Moreover, we have



X,(n-1)=X (n)-n*=—-

and for sufficiently large n,

and (3.5), we have
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We expand this and rewrite it with respect to polynomial on n, sum on 1 and sum on

n

—, etc. as follows;
1
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X (n—1)|n(1—5J>x (-1 § L, L =x(n)+ﬁ+c—2+p§i (3.9)
P n “knt (p+3)n°*? n n* & '
1 1 1 c, &b
—xp(n—l)ln(l—ﬁj<x (n- 1)(klk s =><(n)+%+n—g+k_3n—kk (3.10)

Using (3.9), (3.10) and definition of V(n), we have

For sufficiently large n, V(n) IS monotonic (increasing (c2<0), decreasing (c2>0) .
and since
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+X,(0)=0, (3.11)

sequence In Lp(n) converges. From (3.11) shows that
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Combining (3.12) with (3.5), we have (3.2).
On the otherhand, using (3.4) and formula

nPt Pl 1 j )
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we can get Y,(n) as follows;



(3.13)



and

p-1
Hi 1 +§Bi i-1 ijl(p_jjnpiHl:

p-1
_ p-1 i i 1 j-1 i i—1 kai+l (p—jjnpk

=S| Pl Z(j—l) il N k—j+lkk—j

p-1
:iinp—kkfl 1 1 S i(i_l] By (p_jj

= Slp 2j-) i j-i |k—j+llk-]

We substitute these terms for (3-13) and get that
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and this is (3.3).
4. Remarks

We use Mathematica software to calculate a few first terms.

In Li—llm{ZInk ( %jln n+n}
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We used (4.1) in calculation of limit of (2.6).

Conclusions
In this paper, a generalization of Glaisher-Kinkelin’s constant has been made. This study
has been based on the our new method. In a forthcoming work, we will take properties of

our new constant .
New constants will play important role in calculating of the sum of multi-series which

has the multi-power in general term in mathematical analysis.
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