Calculus and applications

Teo Banica

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CERGY-PONTOISE, F-95000
CERGY-PONTOISE, FRANCE. teo.banica@gmail.com



2010 Mathematics Subject Classification. 26 A06

Key words and phrases. Calculus, Multivariable calculus

ABSTRACT. This is an introduction to calculus, and its applications to basic questions
from physics. We first discuss the theory of functions f : R — R, with the notion of
continuity, and the construction of the derivative f’(z) and of the integral f; f(z)dz.
Then we investigate the case of the complex functions f : C — C, and notably the
holomorphic functions, and harmonic functions. Then, we discuss the multivariable
functions, f : RV — RM or f : RV — CM or f: CV — CM, with general theory,
integration results, maximization questions, and basic applications to physics.



Preface

Understanding what happens in the real life surrounding us, in phenomena involving
physics, chemistry, biology and so on, is not an easy task. What we can do as humans is
to come up with some machinery, and perform measurements, recording quantities such
as length, volume, temperature, pressure and so on, and then see how these quantities,
called “variables”, and denoted z, v, z, ... depend on each other, and change in time.

Calculus is the study of the correspondences x — y between such variables. Such
correspondences are called “functions”, and are denoted y = f(z), with f standing for
the abstract machinery, or mathematical formula, producing y out of z.

The basics of calculus were developed by Newton, Leibnitz and others, a long time
ago. The idea is very simple. The simplest functions f : R — R are the linear ones,
f(x) = a4+ bxr with a,b € R, but of course not any function is linear. Miraculously,
however, most functions f : R — R are “locally linear”, in the sense that around any
given point ¢ € R, we have a formula of type f(c + x) ~ a + bz, for z small. Why?
Obviously, a € R can only be the value of our function at that point, a = f(c). As for the
number b € R, this can be taken to be the rate of change of f around that point, called
derivative of the function at that point, and denoted b = f’(c).

So, this was the main idea of calculus, “functions are locally linear”. This idea applies
as well to more complicated functions, such as the “multivariable” ones f : RY — RM,
relating vector variables x € RY to vector variables y € R, with the linear approximation
formula f(c + ) ~ a + bx needing this time as parameters a vector a = f(c) € RM, and
a linear map, or beast called rectangular matrix, b = f'(c) € Myr«n(R).

Further ideas of calculus, which are more advanced, include the facts that: (1) the
remainder e(x) given by f(c+ x) = a + bx + e(x) can studied by using again derivatives,
(2) in several variables, the geometric understanding of the derivatives f'(c) € My« n(R)
is best done by using complex numbers, (3) in fact, the use of complex numbers is useful
even for one-variable functions f : R — R, and (4) in one variable at least, there is a
magic relation between derivatives and weighted averages, called integrals and denoted

f; f(z)dz, the idea being that “the derivative of the integral is the function itself”.
3



4 PREFACE

Calculus can be learned from many places, with this being mostly a matter of taste.
Personally as a student I used to be quite interested in science and mathematics, and
so I skipped classes, that I found quite boring, and read Rudin [74], [75] instead. Later
on, however, I had to attend some of these calculus classes, ironically, as the professor
teaching them. For preparing my classes I usually still rely on Rudin, with quite often a
look into internet, Wikipedia or similar websites, and into other good books, or at least
books that I personally like, including those of Lax and Terrell [63], [64].

The present book is an introduction to calculus, based on lecture notes from various
classes that I taught at Cergy, and previously at Toulouse. The material inside claims of
course no originality, basically going back to Newton, Leibnitz and others. But in what
regards the presentation, there are a few ideas behind it, none of these claiming of course
originality either, but their combination being something original, I hope:

1) One complex variable comes before several real variables.

(
(2) Applications to probability everywhere, scattered throughout the book.
(3) Combinatorics, binomials and factorials all over the place, with joy.

(4) Applications to physics too, including the hydrogen atom, at the end.

In the hope that you will like this book. High-school or undergraduate students,
wishing to learn full calculus in a quick way, graduate students in math and science,
wishing to fine-tune their calculus knowledge, or just math professionals like me, wishing
to have a compact analysis book, so that they can grab the appropriate chapter, before
going to class, no matter what the class is about. Hope you will all find this useful.

As already mentioned, the present book is based on lecture notes from classes at
Toulouse and Cergy, and I would like to thank my students. Many thanks go as well to
my cats, for useful pieces of advice, often complementary to the pieces of advice of my
colleagues. And of course, with an homage to Newton’s cat, who the legend goes, used
to hang out in an apple tree, and was at the beginning of everything.
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Part 1

Basic calculus



I've got to stand and fight
In this creation
Vanity I know
Can’t guide I alone



CHAPTER 1

Sequences, series

la. Binomials, factorials

We denote by N the set of positive integers, N = {0,1,2,3,...}, with N standing
for “natural”. Quite often in computations we will need negative numbers too, and
we denote by Z the set of all integers, Z = {...,—2,—1,0,1,2,...}, with Z standing
from “zahlen”, which is German for “numbers”. Finally, there are many questions in
mathematics involving fractions, or quotients, which are called rational numbers:

DEFINITION 1.1. The rational numbers are the quotients of type

_a
r=3
with a,b € Z, and b # 0, identified according to the usual rule for quotients, namely:
a c
g = E <— ad = bc

We denote the set of rational numbers by Q, standing for “quotients”.

Observe that we have inclusions N C Z C Q. The integers add and multiply according
to the rules that you know well. As for the rational numbers, these add according to the
usual rule for quotients, which is as follows, and death penalty for forgetting it:

a c_ad+bc

b d  bd

Also, the rational numbers multiply according to the usual rule for quotients, namely:
a ¢ ac
b d bd

Beyond rationals, we have the real numbers, whose set is denoted R, and which include
beasts such as v/3 = 1.73205... or 7 = 3.14159... But more on these later. For the
moment, let us see what can be done with integers, and their quotients. As a first
theorem, solving a problem which often appears in real life, we have:

THEOREM 1.2. The number of possibilities of choosing k objects among n objects is

(1) =

called binomial number, where n! =1-2-3...(n —2)(n — 1)n, called “factorial n”.

11
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PROOF. Imagine a set consisting of n objects. We have n possibilities for choosing
our 1st object, then n — 1 possibilities for choosing our 2nd object, out of the n—1 objects
left, and so on up to n—k+1 possibilities for choosing our k-th object, out of the n—k—+1
objects left. Since the possibilities multiply, the total number of choices is:

N = nn-1)...(n—k+1)
m—k)n—k—-1)...2-1

= =)k ) T 21

B nn—1)...2-1

 (m—kn—-k—1)...2-1
n!

- (n—k)!

But is this correct. Normally a mathematical theorem coming with mathematical
proof is guaranteed to be 100% correct, and if in addition the proof is truly clever, like
the above proof was, with that fraction trick, the confidence rate jumps up to 200%.

This being said, never knows, so let us doublecheck, by taking for instance n = 3,k = 2.
Here we have to choose 2 objects among 3 objects, and this is something easily done,
because what we have to do is to dismiss one of the objects, and N = 3 choices here, and
keep the 2 objects left. Thus, we have N = 3 choices. On the other hand our genius math
computation gives N = 3!/1! = 6, which is obviously the wrong answer.

So, where is the mistake? Thinking a bit, the number N that we computed is in fact
the number of possibilities of choosing k£ ordered objects among n objects. Thus, we must
divide everything by the number M of orderings of the k£ objects that we chose:

()=

In order to compute now the missing number M, imagine a set consisting of k objects.
There are k choices for the object to be designated #1, then k — 1 choices for the object
to be designated #2, and so on up to 1 choice for the object to be designated #k. We
conclude that we have M = k(k—1)...2-1 = k!, and so:

(Z) - n!/(nk!_ - /c!(nni k)|

And this is the correct answer, because, well, that is how things are. In case you
doubt, at n = 3,k = 2 for instance we obtain 3!/2!1! = 3, which is correct. O

All this is quite interesting, and in addition to having some exciting mathematics going
on, and more on this in a moment, we have as well some philosophical conclusions. For-
mulae can be right or wrong, and as the above shows, good-looking, formal mathematical
proofs can be right or wrong too. So, what to do? Here is my advice:
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ADVICE 1.3. Always doublecheck what you’re doing, regqularly, and definitely at the
end, either with an alternative proof, or with some numerics.

This is something very serious. Unless you're doing something very familiar, that
you're used to for at least 5-10 years or so, like doing additions and multiplications for
you, or some easy calculus for me, formulae and proofs that you can come upon are by
default wrong. In order to make them correct, and ready to use, you must check and
doublecheck and correct them, helped by alternative methods, or numerics.

Which brings us into the question on whether mathematics is an exact science or not.
Not clear. Chemistry for instance is an exact science, because findings of type “a mixture
of water and salt cannot explode” look rock-solid. Same for biology, with findings of type
“crocodiles eat fish” being rock-solid too. In what regards mathematics however, and
theoretical physics too, things are always prone to human mistake.

And for ending this discussion, you might ask then, what about engineering? After
all, this is mathematics and physics, which is usually 100% correct, because most of the
bridges, buildings and other things built by engineers don’t collapse. Well, this is because
engineers follow, and in a truly maniac way, the above Advice 1.3. You won’t declare a
project for a bridge, building, engine and so on final and correct, ready for production,
until you checked and doublechecked it with 10 different methods or so, won’t you.

Back to work now, as an important adding to Theorem 1.2, we have:
CONVENTION 1.4. By definition, 0! = 1.

This convention comes, and no surprise here, from Advice 1.3. Indeed, we obviously
have (Z) = 1, but if we want to recover this formula via Theorem 1.2 we are a bit in
trouble, and so we must declare that 0! = 1, as for the following computation to work:

n n! n!
—_ —— p— 1
n nl0l nlx1

Going ahead now with more mathematics and less philosophy, with Theorem 1.2
complemented by Convention 1.4 being now in final form (trust me), we have:

THEOREM 1.5. We have the binomial formula

(a+b)" = Xn: (Z) akprr

k=0

valid for any two numbers a,b € Q.

Proor. We have to compute the following quantity, with n terms in the product:
(a+b)"=(a+b)(a+b)...(a+Db)
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When expanding, we obtain a certain sum of products of a, b variables, with each such
product being a quantity of type a*b"~*. Thus, we have a formula as follows:

(a+b)" =Y Cypab"*
k=0

In order to finish, it remains to compute the coefficients C}. But, according to our
product formula, C is the number of choices for the k needed a variables among the n
available a variables. Thus, according to Theorem 1.2, we have:

()

We are therefore led to the formula in the statement. O

Theorem 1.5 is something quite interesting, so let us doublecheck it with some numer-
ics. At small values of n we obtain the following formulae, which are all correct:

a+b=a+b
(a+b)? =a*+2ab+V?
(a+0b)* = a® + 3a*b + 3ab® + b’
(a+b)* = a* + 4a’b + 6a*b* + 4ab® + b*
(a+b)° = a® + 5a*b + 10a’6* + 10a°b* + 5a*b + b°

Now observe that in these formulae, say for memorization purposes, the powers of the
a, b variables are something very simple, that can be recovered right away. What matters
are the coefficients, which are the binomial coefficients (Z), which form a triangle. So, it
is enough to memorize this triangle, and this can be done by using:

THEOREM 1.6. The Pascal triangle, formed by the binomial coefficients (Z),
1,1

has the property that each entry is the sum of the two entries above it.



1A. BINOMIALS, FACTORIALS 15

PROOF. As a first observation, for having a full triangle we should normally add a

(8) = 1 entry on top, corresponding to the formula (a + b)? = 1, but let us not bother

with that. In practice, the theorem states that the following formula must hold:
n n—1 n—1
()G ()
There are many ways of proving this formula, all instructive, as follows:

(1) Brute-force computation. We have indeed, as desired:

n—1 n—1 (n—1)! (n—1)!

+ = +

k—1 k (k—Dln—Fk)!  kl(n—k—1)!

(n—1)! 1 1
_'_ —

Yn—k—-1)"\n—-Fk k&
(n—1
)

(k—1
n—1)! n

k—Dln—k—1)! k(n—k)
_(n
- \k
(2) Algebraic proof. We have the following formula, to start with:
(a+b)" = (a+b)""(a+b)

By using now the binomial formula, this formula becomes:

O

(a+0b)

k=0 r=0

Now let us perform the multiplication on the right. We obtain a certain sum of terms
of type a*b"*, and to be more precise, each such a*b"* term can either come from the
(r~)) terms a*~'6"* multiplied by a, or from the (", ') terms a*6"~'~* multiplied by b.
Thus, the coefficient of a*b"~* on the right is (Zj) + (";1), as desired.

(3) Combinatorics. Let us count k objects among n objects, with one of the n objects
having a hat on top. Obviously, the hat has nothing to do with the count, and we obtain

(Z) On the other hand, we can say that there are two possibilities. Either the object

with hat is counted, and we have (Zj) possibilities here, or the object with hat is not

counted, and we have (”;1) possibilities here. Thus (Z) = (Zj) + (”;1), as desired. [

There are many more things that can be said about binomial coefficients, with all
sorts of interesting formulae, but the idea is always the same, namely that in order to find
such formulae you have a choice between algebra and combinatorics, and that when it
comes to proofs, the brute-force computation method is useful too. In practice, the best
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is to master all 3 techniques. Among others, because of Advice 1.3. You will have in this
way 3 different methods, for making sure that your formulae are correct indeed.

1b. Real numbers, analysis

All the above was very nice, but remember that we are here for doing science and
physics, and more specifically for mathematically understanding the numeric variables
x,Y, 2, ... coming from real life. Such variables can be lengths, volumes, pressures and so
on, which vary continuously with time, and common sense dictates that there is little to
no chance for our variables to be rational, z,y, z,... ¢ Q. In fact, we will even see soon a
theorem, stating that the probability for such a variable to be rational is exactly 0. Or,
to put it in a dramatic way, “rational numbers don’t exist in real life”.

You are certainly familiar with the real numbers, but let us review now their definition,
which is something quite tricky. As a first goal, we would like to construct a number
z = v/2 having the property z2 = 2. But how to do this? Let us start with:

PROPOSITION 1.7. There is no number r € Q. satisfying r* = 2. In fact, we have

Q+:{p€@+p2<2}|_|{q€<@+q2>2}

with this being a disjoint union.

PROOF. In what regards the first assertion, assuming that » = a/b with a, b € N prime
to each other satisfies 72 = 2, we have a? = 2b%, so a € 2N. But by using again a? = 2b2
we obtain b € 2N, contradiction. As for the second assertion, this is obvious. U

It looks like we are a bit stuck. We can’t really tell who v/2 is, and the only piece of
information about v/2 that we have comes from the knowledge of the rational numbers
satisfying p? < 2 or ¢ > 2. To be more precise, the picture that emerges is:

CONCLUSION 1.8. The number \/2 is the abstract beast which is bigger than all ratio-
nals satisfying p* < 2, and smaller than all positive rationals satisfying ¢* > 2.

This does not look very good, but you know what, instead of looking for more clever
solutions to our problem, what about relaxing, or being lazy, or coward, or you name it,
and taking Conclusion 1.8 as a definition for v/2. This is actually something not that bad,
and leads to the following “lazy” definition for the real numbers:

DEFINITION 1.9. The real numbers x € R are formal cuts in the set of rationals,
Q=0Q<«,UQ:,
with such a cut being by definition subject to the following condition:

pP€Qw, Qs = p<gq
These numbers add and multiply by adding and multiplying the corresponding cuts.
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This might look quite original, but believe me, there is some genius behind this defi-
nition. As a first observation, we have an inclusion Q C R, obtained by identifying each
rational number r € Q with the obvious cut that it produces, namely:

@gr={p€(@’p§r} ; Q>r={q€@‘q>r}

As a second observation, the addition and multiplication of real numbers, obtained
by adding and multiplying the corresponding cuts, in the obvious way, is something very
simple. To be more precise, in what regards the addition, the formula is as follows:

Q<ity = Q< + Qg

As for the multiplication, the formula here is similar, namely Q<,, = Q<,Q<,, up to
some mess with positives and negatives, which is quite easy to untangle, and with this
being a good exercise. We can also talk about order between real numbers, as follows:

IESy <~ QSJECQSy

But let us perhaps leave more abstractions for later, and go back to more concrete
things. As a first success of our theory, we can formulate the following theorem:

THEOREM 1.10. The equation x> = 2 has two solutions over the real numbers, namely
the positive solution, denoted /2, and its negative counterpart, which is —v/2.

PROOF. By using x — —uz, it is enough to prove that z? = 2 has exactly one positive
solution v/2. But this is clear, because v/2 can only come from the following cut:

q2>2}

Q2= Q- [{re .

p2§2} ) @>\/§:{QEQ+
Thus, we are led to the conclusion in the statement. O

More generally, the same method works in order to extract the square root /r of any
number r € Q, or even of any number r» € R, and we have the following result:

THEOREM 1.11. The solutions of ax® + bx + ¢ = 0 with a,b,c € R are

—b+ Vb2 — 4dac
2a

T12 =

provided that b*> — 4ac > 0. In the case b*> — 4ac < 0, there are no solutions.
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PROOF. We can write our equation in the following way:

b
ar’+br+c=0 <— :cz—l——x—l—E:O
a a

( b>2 o e
= |(z4+—) ——+-=0

2a 4a2  «a

N b\? b — 4ac

— T+ —| = —
2a 4a?

b Vb?% — 4ac
<— I+ —-—="t—
2a 2a

Thus, we are led to the conclusion in the statement. U

Summarizing, we have a nice definition for the real numbers, that we can certainly
do some math with. However, for anything more advanced we are in need of the decimal
writing for the real numbers. The result here is as follows:

THEOREM 1.12. The real numbers x € R can be written in decimal form,
r = :I:a1 e an.b1b2b3 ......
with a;,b; € {0,1,...,9}, with the convention ...999...=...(b+1)000...

Proor. This is something quite non-trivial, assuming that you already have some
familiarity with such things, for the rational numbers. The idea is as follows:

(1) First of all, our precise claim is that any € R can be written in the form in the
statement, with the integer +a, ...a, and then each of the digits by, by, b3, ... providing
the best approximation of x, at that stage of the approximation.

(2) Moreover, we have a second claim as well, namely that any expression of type
T = £ai...a,.b1bbs...... corresponds to a real number x € R, and that with the
convention ...5999...=...(b+1)000..., the correspondence is bijective.

(3) In order to prove now these two assertions, our first claim is that we can restrict
the attention to the case x € [0,1), and with this meaning of course 0 < x < 1, with
respect to the order relation for the reals discussed in the above.

(4) Getting started now, let x € R, coming from a cut Q = Q<, U Q.. Since the set
Q<; NZ consists of integers, and is bounded from above by any element ¢ € Q- of your
choice, this set has a maximal element, that we can denote [z]:

[z] = max (Q<, NZ)
It follows from definitions that [x] has the usual properties of the integer part, namely:

[z] <z <[z]+1
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Thus we have z = [¢]+y with [z] € Z and y € [0, 1), and getting back now to what we
want to prove, namely (1,2) above, it is clear that it is enough to prove these assertions
for the remainder y € [0,1). Thus, we have proved (3), and we can assume z € [0, 1).

(5) So, assume z € [0,1). We are first looking for a best approximation from below of
type 0.by, with b; € {0,...,9}, and it is clear that such an approximation exists, simply
by comparing x with the numbers 0.0,0.1,...,0.9. Thus, we have our first digit b;, and
then we can construct the second digit by as well, by comparing & with the numbers
0.610,0.611,...,0.619. And so on, which finishes the proof of our claim (1).

(6) In order to prove now the remaining claim (2), let us restrict again the attention,
as explained in (4), to the case x € [0,1). First, it is clear that any expression of type
x = 0.b1babs . . . defines a real number x € [0, 1], simply by declaring that the corresponding
cut Q = Q<, UQ-, comes from the following set, and its complement:

Q< = U {pE @‘pg O.bl...bn}
n>1

(7) Thus, we have our correspondence between real numbers as cuts, and real numbers
as decimal expressions, and we are left with the question of investigating the bijectivity
of this correspondence. But here, the only bug that happens is that numbers of type
x =...0999..., which produce reals z € R via (6), do not come from reals = € R via (5).
So, in order to finish our proof, we must investigate such numbers.

(8) So, consider an expression of type ...0999... Going back to the construction in
(6), we are led to the conclusion that we have the following equality:

Q<..b999... = Q<. (b+1)000...

Thus, at the level of the real numbers defined as cuts, we have:

00999, .= ... (b+1)000...
But this solves our problem, because by identifying ...5999...=...(b+1)000... the
bijectivity issue of our correspondence is fixed, and we are done. U

The above theorem was of course quite difficult, but this is how things are. You
might perhaps say why bothering with cuts, and not taking x = 4ay...a,.b1bsbs. ... ..
as definition for the real numbers. Well, this is certainly possible, but when it comes to
summing such numbers, or making products, or proving basic things such as the existence
of /2, things become fairly complicated with the decimal writing picture. So, all the above
is not as stupid as it seems. And we will come back anyway to all this later on, with a
3rd picture for the real numbers, involving scary things like € and 9, and it will be up to
you to decide, at that time, which picture is the one that you prefer.

Moving on, we made the claim in the beginning of this chapter that “in real life, real
numbers are never rational”. Here is a theorem, justifying this claim:
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THEOREM 1.13. The probability for a real number x € R to be rational is 0.

Proor. This is something quite tricky, the idea being as follows:

(1) Before starting, let us point out the fact that probability theory is something quite
tricky, with probability 0 not necessarily meaning that the event cannot happen, but
rather meaning that “better not count on that”. For instance according to my compu-
tations the probability of you winning 1 billion at the lottery is 0, but you are of course
free to disagree, and prove me wrong, by playing every day at the lottery.

(2) With this discussion made, and extrapolating now from finance and lottery to
our question regarding real numbers, your possible argument of type “yes, but if I pick
x € R to be x = 3/2, I have proof that the probability for x € Q is nonzero” is therefore
dismissed. Thus, our claim as stated makes sense, so let us try now to prove it.

(3) By translation, it is enough to prove that the probability for a real number x € [0, 1]
to be rational is 0. For this purpose, let us write the rational numbers r € [0, 1] in the
form of a sequence ry,79,73..., with this being possible say by ordering our rationals
r = a/b according to the lexicographic order on the pairs (a,b):

Qﬂ [O, 1] = {7’1,7"2,7"3,...}

Let us also pick a number ¢ > 0. Since the probability of having x = ry is certainly
smaller than ¢/2, then the probability of having z = r is certainly smaller than ¢/4, then
the probability of having x = rj3 is certainly smaller than ¢/8 and so on, the probability
for x to be rational satisfies the following inequality:

c ¢ ¢
P < —+-+-—-+...
< 2+4—|—8—|—

Y

= C

Here we have used the well-known formula %+ i + % +... =1, which comes by dividing
[0, 1] into half, and then one of the halves into half again, and so on, and then saying in
the end that the pieces that we have must sum up to 1. Thus, we have indeed P < ¢, and
since the number ¢ > 0 was arbitrary, we obtain P = 0, as desired. U

As a comment here, all the above is of course quite tricky, and a bit bordeline in respect
to what can be called “rigorous mathematics”. But we will be back to this, namely general
probability theory, and in particular meaning of the mysterious formula P = 0, countable
sets, infinite sums and so on, on several occasions, throughout this book.

Moving ahead now, let us construct now some more real numbers. We already know
about v/2 and other numbers of the same type, namely roots of polynomials, and our
knowledge here being quite decent, no hurry with this, we will be back to it later. So, let
us get now into 7 and trigonometry. To start with, we have the following result:
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THEOREM 1.14. The following two definitions of ™ are equivalent:

(1) The length of the unit circle is L = 2.
(2) The area of the unit disk is A = .

PROOF. In order to prove this theorem let us cut the unit disk as a pizza, into N
slices, and forgetting about gastronomy, leave aside the rounded parts:

/NN

VAV

The area to be eaten can be then computed as follows, where H is the height of the
slices, S is the length of their sides, and P = N.S is the total length of the sides:

O O

A = Nx H—S
2
_ HP
2
o 1x L
a 2
Thus, with N — oo we obtain that we have A = L/2, as desired. U

In what regards now the precise value of 7, the above picture at N = 6 shows that
we have m > 3, but not by much. The precise figure is 7 = 3.14159. .., but we will come
back to this later, once we will have appropriate tools for dealing with such questions. It
is also possible to prove that 7 is irrational, 7 ¢ Q, but this is not trivial either.

Let us end this discussion about real numbers with some trigonometry. There are
many things that can be said, that you certainly know, the basics being as follows:

THEOREM 1.15. The following happen:

(1) We can talk about angles x € R, by using the unit circle, in the usual way, and
in this correspondence, the right angle has a value of w/2.

(2) Associated to any x € R are numbers sinx,cosx € R, constructed in the usual
way, by using a triangle. These numbers satisfy sin? x 4 cos®z = 1.

PROOF. There are certainly things that you know, the idea being as follows:

(1) The formula L = 27 from Theorem 1.14 shows that the length of a quarter of the
unit circle is [ = 7/2, and so the right angle has indeed this value, 7 /2.



22 1. SEQUENCES, SERIES

(2) As for sin® x+cos? z = 1, called Pythagoras’ theorem, this comes from the following
picture, with the edges of the outer and inner square being sinz + cosx and 1:

o —0O

/
I>Zo

Indeed, when computing the area of the outer square, we obtain:

sin x cos
(sinz +cosz)? =144 x %
Now when expanding we obtain sin® z + cos? x = 1, as claimed. U

It is possible to say many more things about angles and sin x, cos x, and also talk about
some supplementary quantities, such as tanx = sin x/ cos x. But more on this later, once
we will have some appropriate tools, beyond basic geometry, in order to discuss this.

lc. Sequences, convergence

We already met, on several occasions, infinite sequences or sums, and their limits.
Time now to clarify all this. Let us start with the following definition:

DEFINITION 1.16. We say that a sequence {x,}neny C R converges to x € R when:
Ve >0,dN e NNVn > N, |z, —z| < ¢
In this case, we write lim,, . x, = x, or simply x, — x.
This looks quite scary, but isn’t. Let us think a bit, how shall we translate x,, — x into
mathematical language. The condition z,, — x tells us that “when n is big, z,, is close
to 7, and to be more precise, it tells us that “when n is big enough, x,, gets arbitrarily

close to x”. But n big enough means n > N, for some N € N, and z,, arbitrarily close to
x means |z, — x| < &, for some € > 0. Thus, we are led into the above definition.

As a basic example for all this, we have:
PROPOSITION 1.17. We have 1/n — 0.

Proor. This is obvious, but let us prove it by using Definition 1.16. We have:

1 ‘ 1 1
— 0l <e &= —<eg << —-<n
n n 19

Thus we can take N = [1/¢] 4+ 1 in Definition 1.16, and we are done. O
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There are many other examples, and more on this in a moment. Going ahead with
more theory, let us complement Definition 1.16 with:

DEFINITION 1.18. We write x,, — oo when the following condition is satisfied:
VK >0,dN e NNVn > Nz, > K
Similarly, we write x,, — —oo when the same happens, with x, < —K at the end.

Again, this is something very intuitive, coming from the fact that z, — oo can only
mean that z,, is arbitrarily big, for n big enough. As a basic illustration, we have:

PROPOSITION 1.19. We have n* — .

PROOF. As before, this is obvious, but let us prove it using Definition 1.18. We have:
n?>K < n>VK

Thus we can take N = [v/K] + 1 in Definition 1.18, and we are done. O

We can generalize Proposition 1.17 and Proposition 1.19, as follows:

PrRoOPOSITION 1.20. We have the following convergence, with n — oo:

0 (a<0)
n*—=<¢1 (a=0)
oo (a>0)

Proor. This follows indeed by using the same method as in the proof of Proposition
1.17 and Proposition 1.19, first for a rational, and then for a real as well. Il

We have some general results about limits, summarized as follows:

THEOREM 1.21. The following happen:

(1) The limit im,, o x,,, if it exists, is unique.

(2) If x,, — z, with x € (—o00,00), then x,, is bounded.

(3) If x,, is increasing or descreasing, then it converges.

(4) Assuming x, — x, any subsequence of x,, converges to x.

PRrROOF. All this is elementary, coming from definitions:

(1) Assuming x, — z, z,, — y we have indeed, for any £ > 0, for n big enough:
|z =yl <z — 2| + oo —y| <2

(2) Assuming z,, — x, we have |z, —z| < 1 for n > N, and so, for any k € N:

|zk] < 14 |x| +sup (|1], ..., |201])
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(3) By using © — —uz, it is enough to prove the result for increasing sequences. But
here we can construct the limit z € (—oo, 00] in the following way:

U(—oo,xn) = (—o00, )

neN
(4) This is clear from definitions. O

Here are as well some general rules for computing limits:

THEOREM 1.22. The following happen, with the conventions co+00 = 00, 0000 = 00,
1/00 =0, and with the conventions that oo — 0o and 0o - 0 are undefined:

) x, — = implies \x,, — Az.

) T, = T, Yo — y implies x, +y, = T+ Y.
) T, — T, Yo — y implies x,y, — TY.

) xp, — x with x # 0 implies 1/x,, — 1/x.

Proor. All this is again elementary, coming from definitions:
(1) This is something which is obvious from definitions.
(2) This follows indeed from the following estimate:
|0+ yn — 7 = y| < |vn — 2]+ Yo — Yl

(3) This follows indeed from the following estimate:

[Znyn — 2yl = (&0 — 2)yn + 2(yn — y)|

< o =2l ynl + 1] - [yn — vl

(4) This is again clear, by estimating 1/x,, — 1/x, in the obvious way. O
As an application of the above rules, we have the following useful result:
PROPOSITION 1.23. The n — oo limits of quotients of polynomials are given by

-1
ap,n? +a,_nP"" + ...+ ag . apn?

n—o0 bynd + by nd=l 4+ ... +by  n—oo bynt

with the limit on the right being o0, 0, a,/b,, depending on the values of p,q.

PrROOF. The first assertion comes from the following computation:

a,n? + ap,lnp—l +...+a . n_p ap, + ap,ln—l +...+apmn™P
n—oo bynd 4 by_1nd=t + ...+ b n—oond by +bgnt+ ...+ byn?
. ayn?
= lim -2
n—00 bqnq

As for the second assertion, this comes from Proposition 1.20. O
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Getting back now to theory, some sequences which obviously do not converge, like for
instance z,, = (—1)", have however “2 limits instead of 1”. So let us formulate:

DEFINITION 1.24. Given a sequence {x,}neny C R, we let

liminf x,, € [—00,00] , limsupz, € [—oc0, 0]
Nn—00 n—o00

to be the smallest and biggest limit of a subsequence of (x,).

Observe that the above quantities are defined indeed for any sequence z,,. For instance,
for x,, = (—1)" we obtain —1 and 1. Also, for z,, = n we obtain co and co. And so on.
Of course, and generalizing the x,, = n example, if x,, — = we obtain x and =x.

Going ahead with more theory, here is a key result:
THEOREM 1.25. A sequence x, converges, with finite limit x € R, precisely when
Ve > 0,IN e NNVm,n > N, |z, —x,| < ¢
called Cauchy condition.

PROOF. In one sense, this is clear. In the other sense, we can say for instance that
the Cauchy condition forces the decimal writings of our numbers x,, to coincide more and
more, with n — oo, and so we can construct a limit x = lim,,_, z,, as desired. Il

The above result is quite interesting, and as an application, we have:

THEOREM 1.26. R is the completion of Q, in the sense that it is the space of Cauchy
sequences over Q, identified when the virtual limit is the same, in the sense that:

Ty~ Yy = [Ty —yn| =0
Moreover, R is complete, in the sense that it equals its own completion.

PROOF. Let us denote the completion operation by X — X = Cx/ ~, where Cy is
the space of Cauchy sequences over X, and ~ is the above equivalence relation. Since by
Theorem 1.25 any Cauchy sequence (z,) € Cg has a limit x € R, we obtain Q = R. As
for the equality R = R, this is clear again by using Theorem 1.25. U

1d. Series, the number e

With all the above understood, we are now ready to get into some truly interesting
mathematics. Let us start with the following definition:

DEFINITION 1.27. Given numbers xg, x1, 22, ... € R, we write

o0
E Ty, =X
n=0

with © € [—00, 00| when limy_, ZZ:O T, = .
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As before with the sequences, there is some general theory that can be developed for
the series, and more on this in a moment. As a first, basic example, we have:

THEOREM 1.28. We have the “geometric series” formula

e}
Ea:":

n=0

valid for any |x| < 1. For |z| > 1, the series diverges.

PRroOOF. Our first claim, which comes by multiplying and simplifying, is that:

1—I+1

1—ac

M;r

n=0

But this proves the first assertion, because with £ — co we get:

" 1
Z:v _>1—:L’

n=0

As for the second assertion, this is clear as well from our formula above. O

Less trivial now is the following result, due to Riemann:

THEOREM 1.29. We have the following formula:

L
—+-+-+4+...=©
2 3 4
In fact, Y 1/n® converges for a > 1, and diverges for a < 1.
ProoF. We have to prove several things, the idea being as follows:

(1) The first assertion comes from the following computation:

L4444, = 1+1+(1+1)+(1+1+1+1)+...
2 3 4 2 3 4 5 6 7 8
> 1+1+(1+1)+(1+1+1+1)+...
- 2 4 4 8§ 8 8 8

—1+1+1+1+
N 2 2 92
= o0

(2) Regarding now the second assertion, we have that at @ = 1, and so at any a < 1.
Thus, it remains to prove that at a > 1 the series converges. Let us first discuss the case
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a = 2, which will prove the convergence at any a > 2. The trick here is as follows:

TIEEEE P I
479716 < 36 10 7

_ 2(1+1+i+i+...>
2 6 12 20
(G-
2 2 3 3 4 4 5
= 2
(3) It remains to prove that the series converges at a € (1,2), and here it is enough

to deal with the case of the exponents a = 1+ 1/p with p € N. We already know how to
do this at p = 1, and the proof at p € N will be based on a similar trick. We have:

= 1 L
Z ni/p (n+1)/p

n=0

Let us compute, or rather estimate, the generic term of this series. By using the
formula a? — b = (a — b)(a?™* + aP2b+ ... + abP~? + VP~!), we have:

1 1 (n+1)V/P —nl/p
n/e " () nle(n+ 1)UP
1

— ntP(n 4+ D)VYP[(n 4 1)1e 4 4 plol/p)
- 1
= pl/p(n 4+ 1)Vr . p(n+ 1)1-/p
B 1
= )
- 1

p(n + 1)1+1/p

We therefore obtain the following estimate for the Riemann sum:

o0 [e.9]

1 1
St = Y
1+1 1+1
“—n +1/p ot (n+1)+1/p
/1 1
S 1+p§(n1/p_(n+1)l/p)
Thus, we are done with the case a = 1 + 1/p, which finishes the proof. O

Here is another tricky result, this time about alternating sums:
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THEOREM 1.30. We have the following convergence result:

1 1—|—1 1—|— <
——F+-—-+4... <
2 3 4

However, when rearranging terms, we can obtain any x € [—oo, 00| as limit.

PROOF. Both the assertions follow from Theorem 1.29, as follows:

(1) We have the following computation, using the Riemann criterion at a = 2:

| 1+1 1+ B 11 N 1 1 N
2 3 4 2 3 4 o
= 1+14—1+
2 12 30
1 1 1
< ?—f—?—f‘?—i-...
< o0

(2) We have the following formulae, coming from the Riemann criterion at a = 1:

1_|_1_|_1_|_1_|_“.—1(14—1—1—14—1—{—...)_OO
2 4 6 8 2 2 3 4
TSI VI I I I I
3 5 7 —2 4 6 8

Thus, both these series diverge. The point now is that, by using this, when rearranging
terms in the alternating series in the statement, we can arrange for the partial sums to
go arbitrarily high, or arbitrarily low, and we can obtain any z € [—o0, 00] as limit. O

Back now to the general case, we first have the following statement:

THEOREM 1.31. The following hold, with the converses of (1) and (2) being wrong,
and with (3) not holding when the assumption ,, > 0 is removed:

(1) If >, =, converges then x,, — 0.
(2) If X, |zs| converges then Y x, converges.
(3) If >, xn converges, x, >0 and x,/y, — 1 then ) vy, converges.

PrROOF. This is a mixture of trivial and non-trivial results, as follows:

(1) We know that ) x, converges when S, = Zﬁ:o x, converges. Thus by Cauchy
we have rp = Sy — Si_1 — 0, and this gives the result. As for the simplest counterexample
for the converse, this is 1+ 3 + 5 + + 4 ... = 0o, coming from Theorem 1.29.

(2) This follows again from the Cauchy criterion, by using:
|$n + Tpp1 + .o+ In+k| < |mn| + |$n+1| +...+ |mn+k|

As for the simplest counterexample for the converse, this is 1 — % + % — %1 + ... <00,
coming from Theorem 1.30, coupled with 1+ 4 + 5+ 1 +... = oo from (1).
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(3) Again, the main assertion here is clear, coming from, for n big:
(]- - 5)1‘71 S Yn S (1 + 5)1:71

In what regards now the failure of the result, when the assumption x,, > 0 is removed,
this is something quite tricky, the simplest counterexample being as follows:

) S Ok

Tp = ) n —
NG e T

To be more precise, we have y,, /x,, — 1, so x,,/y, — 1 too, but according to the above-
mentioned results from (1,2), modified a bit, >, converges, while > v, diverges. O

Summarizing, we have some useful positive results about series, which are however
quite trivial, along with various counterexamples to their possible modifications, which
are non-trivial. Staying positive, here are some more positive results:

THEOREM 1.32. The following happen, and in all cases, the situtation where ¢ =1 is
indeterminate, in the sense that the series can converge or diverge:

(1) If |zps1/xn| — ¢, the series Y x, converges if ¢ < 1, and diverges if ¢ > 1.
(2) If {/|xn| = ¢, the series Y x, converges if ¢ < 1, and diverges if ¢ > 1.
(3) With ¢ =limsup,,_,., ¥/|Tul, D, Tn converges if ¢ < 1, and diverges if ¢ > 1.

PROOF. Again, this is a mixture of trivial and non-trivial results, as follows:

(1) Here the main assertions, regarding the cases ¢ < 1 and ¢ > 1, are both clear by
comparing with the geometric series ) ¢". As for the case ¢ = 1, this is what happens
for the Riemann series ) 1/n%, so we can have both convergent and divergent series.

(2) Again, the main assertions, where ¢ < 1 or ¢ > 1, are clear by comparing with the
geometric series ) ", and the ¢ = 1 examples come from the Riemann series.

(3) Here the case ¢ < 1 is dealt with as in (2), and the same goes for the examples at
¢ = 1. As for the case ¢ > 1, this is clear too, because here x, — 0 fails. U

Finally, generalizing the first assertion in Theorem 1.30, we have:
THEOREM 1.33. If x, \, 0 then > (—1)"x, converges.
PROOF. We have the ) (—1)"z, =Y, yi, where:

Yk = T2k — T2k+1

But, by drawing for instance the numbers x; on the real line, we see that y; are positive
numbers, and that ), v is the sum of lengths of certain disjoint intervals, included in
the interval [0, zo]. Thus we have ), yx < xo, and this gives the result. O

All this was a bit theoretical, and as something more concrete now, we have:
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THEOREM 1.34. We have the following convergence
1 n
(1 + —) — e
n
where e = 2.71828 ... is a certain number.

Proor. This is something quite tricky, as follows:

(1) Our first claim is that the following sequence is increasing:

(e2)
Tp= (14—
n

In order to prove this, we use the following arithmetic-geometric inequality:

n 1 n
n

n+1 - Pl

In practice, this gives the following inequality:

1 1 n/(n+1)
> (14 =
n+1 n

Now by raising to the power n 4+ 1 we obtain, as desired:

1 n+1 1 n
1+ > 1+ —
n+1 n

(2) Normally we are left with proving that x, is bounded from above, but this is
non-trivial, and we have to use a trick. Consider the following sequence:

1 n+1
(102
n

We will prove that this sequence y,, is decreasing, and together with the fact that we
have x,,/y, — 1, this will give the result. So, this will be our plan.

1+

(3) In order to prove now that y, is decreasing, we use, a bit as before:

L+ (0 -3) o 1,ﬁ<1_1>

n—+1 - Pl n

In practice, this gives the following inequality:

1 1 n/(n+1)
Y
n+1 n
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Now by raising to the power n + 1 we obtain from this:

1 n+1 1 n
(=) 2 0-3)
n+1 n

The point now is that we have the following inversion formulae:

1 \*! n \' n+il 1
n-+1 n—+1 n

n

. -1\ !
n N n S n—1 n—1
Thus by inverting the inequality that we found, we obtain, as desired:

1 n+1 1 n
(1) = (i)
n n—1
(4) But with this, we can now finish. Indeed, the sequence x,, is increasing, the
sequence vy, is decreasing, and we have z,, < y,, as well as:

, 1
I 14 51
T n

Thus, both sequences x,, vy, converge to a certain number e, as desired.

(5) Finally, regarding the numerics for our limiting number e, we know from the above
that we have z, < e <y, for any n € N, which reads:

1 n 1 n+1
<1—|——> <e<(1+—)
n n

Thus e € [2,3], and with a bit of patience, or a computer, we obtain e = 2.71828. ..
We will actually come back to this question later, with better methods. O

We should mention that there are many other ways of getting into e. For instance it
is possible to prove that we have the following formula, which is a bit more conceptual
than the formula in Theorem 1.34, and also with the convergence being very quick:

> -

- =
0 n.

Importantly, all this not the end of the story with e. For instance, in relation with
the first formula that we found, from Theorem 1.34, we have, more generally:

<1+§> — e
n
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Also, in relation with the second formula, from above, we have, more generally:
> _n
DL
o n!

To be more precise, these latter two formulae are something that we know at z = 1.
The case x = 0 is trivial, the case x = —1 follows from the case x = 1, via some simple
manipulations, and with a bit more work, we can get these formulae for any z € N, and
then for any € Z. However, the general case x € R is quite tricky, requiring a good
knowledge of the theory of real functions. And, good news, real functions will be what
we will be doing in the remainder of this first part, in chapters 2-4 below.

le. Exercises

This opening chapter was a bit special, containing a lot of material in need to be
known, and compacted to the maximum. As exercises, again compacted, we have:

EXERCISE 1.35. Prove that the rational numbers r € Q are exactly the real numbers
whose decimal expansion is periodic.

EXERCISE 1.36. Find geometric proofs, using triangles in the plane, for the well-known
formulae for sin(z +y) and cos(z + y).

EXERCISE 1.37. Develop some convergence theory for x, = a™ with a > 0, notably by
proving that a™/n* — oo for any a > 1, and any k € N.

EXERCISE 1.38. Prove that y - % = e. Also, prove that (1 + %)n — e, and that
S L=, for x = —1, then for v € Z, then for v € R.

n=0 n!
These exercises are probably quite difficult, unless you are already a bit familiar with

all this. If this is not the case, a good idea at this point is to pick a random entry-level
calculus book, and work out a few dozen exercises from there, as a warm-up.



CHAPTER 2

Functions, continuity

2a. Continuous functions

We are now ready to talk about functions, which are the main topic of this book. A
function f : R — R is a correspondence x — f(x), which to each real number z € R
associates a real number f(z) € R. As examples, we have f(r) = 22, f(z) = 2% and
so on. This suggests that any function f : R — R should be given by some kind of
“mathematical formula”, but unfortunately this is not correct, because, with suitable
definitions of course, there are more functions than mathematical formulae.

This being said, we will see that under suitable regularity assumptions on f: R — R,
we have indeed a mathematical formula for f(x) in terms of z, at least locally. And with
this being actually the main idea of calculus, that will take some time to be developed.
But more on this later, once we will know more about functions.

Getting started now, let us keep from the above discussion the idea that we should
focus our study on the functions f : R — R having suitable regularity properties. In what
regards these regularity properties, the most basic of them is continuity:

DEFINITION 2.1. A function f : R — R, or more generally f : X — R, with X C R
being a subset, is called continuous when, for any x,,x € X:

Also, we say that f : X — R is continuous at a given point x € X when the above
condition s satisfied, for that point x.

Observe that a function f : X — R is continuous precisely when it is continuous at
any point x € X. We will see examples in a moment. Still speaking theory, there are
many equivalent formulations of the notion of continuity, with a well-known one, coming
by reminding in the above definition what convergence of a sequence means, twice, for
both the convergences =, — = and f(x,) — f(z), being as follows:

Vee X,Ve>0,30>0,|z—y|<d = |f(x)— fly)] <e

At the level of examples, basically all the functions that you know, including powers
%, exponentials a”, and more advanced functions like sin, cos, exp,log, are continuous.
However, proving this will take some time. Let us start with:

a

33
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THEOREM 2.2. If f, g are continuous, then so are:
(1) f+g.
(2) fg.
(3) f/g.
(4) fog.

PROOF. Before anything, we should mention that the claim is that (1-4) hold indeed,
provided that at the level of domains and ranges, the statement makes sense indeed. For
instance in (1,2,3) we are talking about functions having the same domain, and with
g(x) # 0 for the needs of (3), and there is a similar discussion regarding (4).

(1) The claim here is that if both f, g are continuous at a point z, then so is the sum
f + g. But this is clear from the similar result for sequences, namely:
lim (z, + y,) = lim z, + lim y,
n—oo n—oo n—oo
(2) Again, the statement here is similar, and the result follows from:

lim z,y, = lim z, lim y,
n—oo n—0o0 n—oo

(3) Here the claim is that if both f, g are continuous at z, with g(x) # 0, then f/g is
continuous at x. In order to prove this, observe that by continuity, g(z) # 0 shows that
g(y) # 0 for |x — y| small enough. Thus we can assume g # 0, and with this assumption
made, the result follows from the similar result for sequences, namely:

lim z,/y, = lim z,/ lim y,
n—oo n—oo n—oo

(4) Here the claim is that if g is continuous at x, and f is continuous at g(z), then

f o g is continuous at x. But this is clear, coming from:

T, = = g(z,) — g(z)
= f(g(zn)) = f(g(z))

Alternatively, let us prove this as well by using that scary €,d condition given after
Definition 2.1. So, let us pick € > 0. We want in the end to have something of type
|f(g(z)) — f(g9(y))| < &, so we must first use that €, condition for the function f. So, let
us start in this way. Since f is continuous at g(z), we can find § > 0 such that:

9(z) — 2| <0 = |f(g(x)) — f(2)] <e
On the other hand, since g is continuous at x, we can find v > 0 such that:
[r—yl <7 = lg(z) —g(y)| <0
Now by combining the above two inequalities, with z = g(y), we obtain:

lz -yl <v = |f(g(x)) = flgly))| <e

Thus, the composition f o g is continuous at x, as desired. U
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As a first comment, (3) shows in particular that 1/f is continuous, and we will use
this many times, in what follows. As a second comment, more philosophical, the proof of
(4) shows that the €, § formulation of continuity can be sometimes more complicated than
the usual formulation, with sequences, which leads us into the question of why bothering
at all with this €, condition. Good question, and in answer:

(1) It is usually said that “for doing advanced math, you must use the ¢, ¢ condition”,
but this is not exactly true, because sometimes what happens is that “for doing advanced
math, you must use open and closed sets”. With these sets, and the formulation of
continuity in terms of them, being something that we will discuss a bit later.

(2) This being said, the point is that the use of open and closed sets, technology that
we will discuss in a moment, requires some prior knowledge of the ¢, condition. So, you
cannot really run away from this €, condition, and want it or not, in order to do later
some more advanced mathematics, you'll have to get used to that.

(3) But this should be fine, because you're here since you love math and science, aren’t
you, and good math and science, including this €, d condition, will be what you will learn
from here. So, everything fine, more on this later, and in the meantime, no matter what
we do, always take a few seconds to think at what that means, in €, terms.

Back to work now, at the level of examples, we have:

THEOREM 2.3. The following functions are continuous:

(1) a™, with n € Z.
(2) P/Q, with P,Q € R[X].
(3) sinz, cosx, tanzx, cot z.

PROOF. This is a mixture of trivial and non-trivial results, as follows:

(1) Since f(z) = x is continuous, by using Theorem 2.2 we obtain the result for
exponents n € N, and then for general exponents n € Z too.

(2) The statement here, which generalizes (1), follows exactly as (1), by using the
various findings from Theorem 2.2.

(3) We must first prove here that x,, — = implies sinz,, — sinz, which in practice
amounts in proving that sin(z + y) ~ sinx for y small. But this follows from:

sin(z + y) = sinz cosy + cos xsiny

To be more precise, let us first establish this formula. In order to do so, consider the
following picture, consisting of a length 1 line segment, with angles x,y drawn on each
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side, and with everything being completed, and lengths computed, as indicated:

O
1/cosx
sinz/cosz
O———2O
1
siny/ cosy
1/cosy
o

Now let us compute the area of the big triangle, or rather the double of that area. We
can do this in two ways, either directly, with a formula involving sin(z + y), or by using
the two small triangles, involving functions of x,y. We obtain in this way:

1 1 . sinx sin y
. sin(x +y) = -1+ .
COST COSY cosT cos Yy

1

But this gives the formula for sin(z + y) claimed above.

(4) Now with this formula in hand, we can establish the continuity of sin z, as follows,
with the limits at 0 which are used being both clear on pictures:

il_}l% sin(z +vy) = Zl}l_)I% (sinz cosy + cos xsiny)

= sinzlim cosy + cosx lim siny
y—0 y—0

= sinz-1+cosxz-0

= sinz

(5) Moving ahead now with cosz, here the continuity follows from the continuity of
sin x, by using the following formula, which is obvious from definitions:

. s
COS T = S1n 5—1'

(6) Alternatively, and let us do this because we will need later the formula, by using
the formula for sin(z + y) we can deduce a formula for cos(z + y), as follows:

™

cos(x+y) = sin (5 - —y)

= sin [(g — x) + (—y)}
= sin (g — a:) cos(—y) + cos (g — 37) sin(—y)

= COSXCOosYy — Sinxsiny
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But with this, we can use the same method as in (4), and we get, as desired:
limcos(x +y) = lim (coszcosy —sinxsiny)
y—0 y—0
= coszlimcosy — sinx lim siny
y—0 y—0
= cosx-1—sinz-0

= COsT

(7) Finally, the fact that tanz, cot x are continuous is clear from the fact that sinz,
cos z are continuous, by using the result regarding quotients from Theorem 2.2. U

We will be back to more examples later, and in particular to functions of type x* and
a” with a € R, which are more tricky to define. Also, we will talk as well about inverse
functions f~!, with as particular cases the basic inverse trigonometric functions, namely
arcsin, arccos, arctan, arccot, once we will have more tools for dealing with them.

Going ahead with more theory, some functions are “obviously” continuous:

PrRoPOSITION 2.4. If a function f: X — R has the Lipschitz property

[f(z) = f(y)| < K|z —y]

for some K > 0, then it is continuous.

Proor. This is indeed clear from our definition of continuity. O

Along the same lines, we can also argue, based on our intuition, that “some functions
are more continuous than other”. For instance, we have the following definition:

DEFINITION 2.5. A function f: X — R is called uniformly continuous when:
Ve>0,30>0,lx —y|<d = |f(x)— fly)| <e
That is, f must be continuous at any x € X, with the continuity being “uniform”.

As basic examples of uniformly continuous functions, we have the Lipschitz ones. Also,
as a basic counterexample, we have the following function:

fR=R | f(z)=2"

Indeed, it is clear by looking at the graph of f that, the further our point = € R is from
0, the smaller our 4 > 0 must be, compared to € > 0, in our ¢, definition of continuity.
Thus, given some £ > 0, we have no § > 0 doing the |z —y| <d = |f(z) — f(y)| <€
job at any x € R, and so our function is indeed not uniformly continuous.

Quite remarkably, we have the following theorem, due to Heine and Cantor:



38 2. FUNCTIONS, CONTINUITY
THEOREM 2.6. Any continuous function defined on a closed, bounded interval
f:la,b] > R
is automatically uniformly continuous.

Proor. This is something quite subtle, and we are punching here a bit above our
weight, but here is the proof, with everything or almost included:

(1) Given € > 0, for any « € [a,b] we know that we have a d, > 0 such that:
£
v =yl <0 = |f(2) = f)l <3

So, consider the following open intervals, centered at the various points x € [a, b]:

0 0

These intervals then obviously cover [a, b], in the sense that we have:

a0 |J Us

z€[a,b]

Now assume that we managed to prove that this cover has a finite subcover. Then we
can most likely choose our § > 0 to be the smallest of the §, > 0 involved, or perhaps
half of that, and then get our uniform continuity condition, via the triangle inequality.

(2) So, let us prove first that the cover in (1) has a finite subcover. For this purpose,
we proceed by contradiction. So, assume that [a, b] has no finite subcover, and let us cut
this interval in half. Then one of the halves must have no finite subcover either, and we
can repeat the procedure, by cutting this smaller interval in half. And so on. But this
leads to a contradiction, because the limiting point = € [a, b] that we obtain in this way,
as the intersection of these smaller and smaller intervals, must be covered by something,
and so one of these small intervals leading to it must be covered too, contradiction.

(3) With this done, we are ready to finish, as announced in (1). Indeed, let us denote
by [a,b] C |, Uy, the finite subcover found in (2), and let us set:

O,

§ = min —

min =
Now assume |z — y| < §, and pick i such that = € U,,. By the triangle inequality we
have then |z; — y| < d,,, which shows that we have y € U,, as well. But by applying now
f, this gives as desired |f(z) — f(y)| < €, again via the triangle inequality. O



2B. INTERMEDIATE VALUES 39

2b. Intermediate values

Moving ahead with more theory, we would like to explain now an alternative formula-
tion of the notion of continuity, which is quite abstract, and a bit difficult to understand
and master when you are a beginner, but which is definitely worth learning, because it is
quite powerful, solving some of the questions that we have left. Let us start with:

DEFINITION 2.7. The open and closed sets are defined as follows:

(1) Open means that there is a small interval around each point.
(2) Closed means that our set is closed under taking limits.

As basic examples, the open intervals (a, b) are open, and the closed intervals [a, b] are
closed. Observe also that R itself is open and closed at the same time. Further examples,
or rather results which are easy to establish, include the fact that the finite unions or
intersections of open or closed sets are open or closed. We will be back to all this later,
with some precise results in this sense. For the moment, we will only need:

PROPOSITION 2.8. A set O C R is open precisely when its complement C' C R is
closed, and vice versa.

PROOF. It is enough to prove the first assertion, since the “vice versa” part will follow
from it, by taking complements. But this can be done as follows:

“ =7 Assume that O C R is open, and let C' =R — O. In order to prove that C is
closed, assume that {z,},en C C converges to z € R. We must prove that € C, and if
this happens indeed, we are done. Otherwise, we have x ¢ C, and so x € O, and since O
is open we can find a small interval (z — e,z +¢) C O. But since z,, — z this shows that
x, € O for n big enough, which contradicts x,, € C for all n, and we are done.

“«—=" Assume that C' C R is open, and let O = R — C. In order to prove that O is
open, let x € O, and consider the intervals (z —1/n,z+1/n), with n € N. If one of these
intervals lies in O, we are done. Otherwise, this would mean that for any n € N we have
at least one point x,, € (x — 1/n,x + 1/n) satistying x,, ¢ O, and so x,, € C. But since C
is closed and z,, — x, we get « € C, and so x ¢ O, contradiction, and we are done. U

As a basic example for this, R — (a,b) = (—o0,a] U [b,c0) is closed, as a union of two
closed sets, and R — [a, b] = (—00,a) U (b, 00) is open, as a union of two open sets. More
on this in a moment, and getting now back to functions, we have:

THEOREM 2.9. A function is continuous precisely when f~1(O) is open, for any O
open. Equivalently, f~1(C) must be closed, for any C closed.

PRrROOF. Here the first assertion follows from definitions, and more specifically from
the e, definition of continuity, which was as follows:

Vee X,Ve>0,30 >0,|z—y| <0 = |f(z)— fly) <e
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Indeed, if f satisfies this condition, it is clear that if O is open, then f~1(O) is open,
and the converse holds too. As for the second assertion, this can be proved either directly,
by using the f(x,) — f(x) definition of continuity, or by taking complements. O

As a test for the above criterion, let us reprove the fact, that we know from Theorem
2.2, that if f, g are continuous, so is f o g. But this is clear, coming from:

(fog)™(0) =g '(f7(0))
In short, not bad, because at least in relation with this specific problem, our proof

using open sets is as simple as the simplest proof, namely the one using f(z,) — f(z),
and is simpler than the other proof that we know, namely the one with ¢, .

In order to reach to true applications of Theorem 2.9, we will need to know more
about the open and closed sets. Let us begin with a useful result, as follows:
PrRoOPOSITION 2.10. The following happen:

(1) Union of open sets is open.

(2) Intersection of closed sets is closed.

(3) Finite intersection of open sets is open.
(4) Finite union of closed sets is closed.

PRrROOF. Here (1) is clear from definitions, (3) is clear from definitions too, and (2,4)
follow from (1,3) by taking complements F — E°, using the following formulae:

Thus, we are led to the conclusions in the statement. Il

As an important comment, (3,4) above do not hold when removing the finiteness
assumption. Indeed, in what regards (3), the simplest counterexample here is:

N (-1/n.1/n) = {0}
neN
As for (4), here the simplest counterexample is as follows:
neN
All this is quite interesting, and leads us to the question about what the open and
closed sets really are. And fortunately, this question can be answered, as follows:
THEOREM 2.11. The open and closed sets are as follows:

(1) The open sets are the disjoint unions of open intervals.
(2) The closed sets are the complements of these unions.
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PrROOF. We have two assertions to be proved, the idea being as follows:

(1) We know that the open intervals are those of type (a,b) with a < b, with the values
a,b = +oo allowed, and by Proposition 2.10 a union of such intervals is open.

(2) Conversely, given O C R open, we can cover each point z € O with an open
interval I, C O, and we have O = U, I, so O is a union of open intervals.

(3) In order to finish the proof of the first assertion, it remains to prove that the union
O = U,I, in (2) can be taken to be disjoint. For this purpose, our first observation is
that, by approximating points x € O by rationals y € Q N O, we can make our union to
be countable. But once our union is countable, we can start merging intervals, whenever
they meet, and we are left in the end with a countable, disjoint union, as desired.

(4) Finally, the second assertion comes from Proposition 2.8. O

The above result is quite interesting, philosophically speaking, because contrary to
what we have been doing so far, it makes the open sets appear quite different from the
closed sets. Indeed, there is no way of having a simple description of the closed sets
C C R, similar to the above simples description of the open sets O C R.

Moving towards more concrete things, and applications, let us formulate:

DEFINITION 2.12. The compact and connected sets are defined as follows:

(1) Compact means that any open cover has a finite subcover.
(2) Connected means that it cannot be broken into two parts.

As basic examples, the closed bounded intervals [a, b] are compact, as we know from
the proof of Theorem 2.6, and so are the finite unions of such intervals. As for connected
sets, the basic examples here are the various types of intervals, namely (a,b), (a,b], [a,b),
[a,b], and it looks impossible to come up with more examples. In fact, we have:

THEOREM 2.13. The compact and connected sets are as follows:

(1) The compact sets are those which are closed and bounded.
(2) The connected sets are the various types of intervals.

Proor. This is something quite intuitive, the idea being as follows:

(1) The fact that compact implies both closed and bounded is clear from our definition
of compactness, because assuming non-closedness or non-boundedness leads to an open
cover having no finite subcover. As for the converse, we know from the proof of Theorem
2.6 that any closed bounded interval [a,b] is compact, and it follows that any K C R
closed and bounded is a closed subset of a compact set, which follows to be compact.

(2) This is something which is obvious, and this regardless of what “cannot be bro-
ken into parts” in Definition 2.12 exactly means, mathematically speaking, with several
possible definitions being possible here, all being equivalent. Indeed, £ C R having this
property is equivalent to a,b € E = [a,b] C F, and this gives the result. U
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We will be back to all this later in this book, when looking at open, closed, compact
and connected sets in RY, or more general spaces, where things are more complicated
than in R. Now with this discussed, let us go back to continuous functions. We have:

THEOREM 2.14. Assuming that f is continuous:
(1) If K is compact, then f(K) is compact.
(2) If E is connected, then f(F) is connected.

PROOF. These assertions both follow from our definition of compactness and connect-
edness, as formulated in Definition 2.12. To be more precise:

(1) This comes from the fact that if a function f is continuous, then the inverse
function f~! returns an open cover into an open cover.

(2) This is something clear as well, because if f(E) can be split into two parts, then
by applying f~! we can split as well E into two parts. U

Let us record as well the following useful generalization of Theorem 2.6:
THEOREM 2.15. Any continuous function defined on a compact set
f: X—=R
is automatically uniformly continuous.
PrROOF. We can prove this exactly as Theorem 2.6, by using the compactness of X. [J

You might perhaps ask at this point, were Theorems 2.14 and 2.15 worth all this
excursion into open and closed sets. Good point, and here is our answer, a beautiful and
powerful theorem based on the above, which can be used for a wide range of purposes:

THEOREM 2.16. The following happen for a continuous function f : [a,b] — R:

(1) f takes all intermediate values between f(a), f(b).
(2) f has a minimum and mazimum on [a,b).

(3) If f(a), f(b) have different signs, f(x) =0 has a solution.

PRrROOF. All these statements are related, and are called altogether “intermediate value
theorem”. Regarding now the proof, one way of viewing things is that since [a,b] is
compact and connected, the set f([a,b]) is compact and connected too, and so it is a
certain closed bounded interval [c, d], and this gives all the results. However, this is based
on rather advanced technology, and it is possible to prove (1-3) directly as well. U

Along the same lines, we have as well the following result:

THEOREM 2.17. Assuming that a function f is continuous and invertible, this function
must be monotone, and its inverse function f~' must be monotone and continuous too.
Moreover, this statement holds both locally, and globally.



2B. INTERMEDIATE VALUES 43
PROOF. The fact that both f and f~! are monotone follows from Theorem 2.16.
Regarding now the continuity of f~!, we want to prove that we have:
Tn = = [T (za) = [T (2)
But with =, = f(y,) and = = f(y), this condition becomes:
fm) = ) = yn =y

And this latter condition being true since f is monotone, we are done. O

As a basic application of Theorem 2.17, we have:

PROPOSITION 2.18. The various usual inverse functions, such as the inverse trigono-
metric functions arcsin, arccos, arctan, arccot, are all continuous.

Proor. This follows indeed from Theorem 2.17, with a course the full discussion
needing some explanations on bijectivity and domains. But you surely know all that, and
in what concerns us, our claim is simply that these beasts are all continuous, proved. [J

As another basic application of this, we have:

PRrROPOSITION 2.19. The following happen:

(1) Any polynomial P € R[X] of odd degree has a root.
(2) Given n € 2N+ 1, we can extract /x, for any x € R.
(3) Givenn € N, we can extract {/x, for any x € [0,00).

PRrROOF. All these results come as applications of Theorem 2.16, as follows:

(1) This is clear from Theorem 2.16 (3), applied on [—o0, o).

(2) This follows from (1), by using the polynomial P(z) = 2" — z.

(3) This follows as well by applying Theorem 2.16 (3) to the polynomial P(z) = 2" —z,
but this time on [0, c0). O

There are many other things that can be said about roots of polyomials, and solutions
of other equations of type f(x) = 0, by using Theorem 2.16. We will be back to this.

As a concrete application, in relation with powers, we have the following result, com-
pleting our series of results regarding the basic mathematical functions:

THEOREM 2.20. The function x* is defined and continuous on (0,00), for any a € R.
Moreover, when trying to extend it to R, we have 4 cases, as follows,
(1) For a € Quqq, a > 0, the mazimal domain is R.
(2) For a € Quaq, a <0, the mazimal domain is R —{0}.
(3) Fora € R—Q ora € Qeen, a > 0, the mazimal domain is [0, 00).
(4) Fora € R —Q or a € Qeen, a < 0, the mazimal domain is (0, 00).

where Qoqq is the set of rationals r = p/q with q odd, and Qepen, = Q — Qoaa-
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PRrROOF. The idea is that we know how to extract roots by using Proposition 2.19, and
all the rest follows by continuity. To be more precise:

(1) Assume a = p/q, with p,q € N, p # 0 and ¢ odd. Given a number x € R, we can
construct the power x® in the following way, by using Proposition 2.19:

q

:L’a = :L‘p

Then, it is straightforward to prove that x® is indeed continuous on R.

(2) In the case a = —p/q, with p,q € N and ¢ odd, the same discussion applies, with
the only change coming from the fact that x® cannot be applied to x = 0.

(3) Assume first @ € Qepen, @ > 0. This means ¢ = p/q with p,q € N, p # 0 and ¢
even, and as before in (1), we can set % = /a? for x > 0, by using Proposition 2.19. It is
then straightforward to prove that 2 is indeed continuous on [0, 00), and not extendable
either to the negatives. Thus, we are done with the case a € Qpen, @ > 0, and the case
left, namely a € R — Q, a > 0, follows as well by continuity.

(4) In the cases a € Qepen, a < 0 and a € R — Q, a < 0, the same discussion applies,
with the only change coming from the fact that z* cannot be applied to z = 0. O

Let us record as well a result about the function a”, as follows:

THEOREM 2.21. The function a® is as follows:

(1) For a >0, this function is defined and continuous on R.
(2) For a =0, this function is defined and continuous on (0, 00).
(3) For a < 0, the domain of this function contains no interval.

PRrROOF. This is a sort of reformulation of Theorem 2.20, by exchanging the variables,
x <> a. To be more precise, the situation is as follows:

(1) We know from Theorem 2.20 that things fine with z* for x > 0, no matter what
a € R is. But this means that things fine with a” for a > 0, no matter what = € R is.

(2) This is something trivial, and we have of course 0° = 0, for any « > 0. As for the
powers 0° with x < 0, these are impossible to define, for obvious reasons.

(3) Given a < 0, we know from Theorem 2.20 that we cannot define a” for x € Qeyen-
But since Q.pen is dense in R, this gives the result. |

Summarizing, we have been quite successful with our theory of continuous functions,
having how full results, regarding the definition and continuity property, for all basic
functions from mathematics. All this is of course just a beginning, and we will be back
to these functions on regular occasions, in what follows. In particular, we will discuss the
function a® at the special value a = e, and its inverse log x, at the end of this chapter.
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2c. Sequences and series

Our goal now is to extend the material from chapter 1 regarding the numeric sequences
and series, to the case of the sequences and series of functions. To start with, we can talk
about the convergence of sequences of functions, f,, — f, as follows:

DEFINITION 2.22. We say that f, converges pointwise to f, and write f, — f, if
fn(z) = f(2)
for any x. Equivalently, Yx,¥Ye > 0,3N € N,Vn > N, |f.(z) — f(x)] <e.

The question is now, assuming that f,, are continuous, does it follow that f is contin-
uous? I am pretty much sure that you think that the answer is “yes”, based on:

hin f(y) = lim lim f,(y)

Y—T N—00

= lim lim f,(y)

n—00 Yy—
= 25 1)
= f(=)
However, this proof is wrong, because we know well from chapter 1 that we cannot
intervert limits, and with a death penalty coming for that. In fact, the result itself is

wrong in general, because if we consider the functions f,, : [0,1] — R given by f,(z) = 2™,
which are obviously continuous, their limit is discontinuous, given by:

lim 2" — 0 , z€][0,1)
n—00 1, z=1

Of course, you might say here that allowing x = 1 in all this might be a bit unnatural,
for whatever reasons, but there is an answer to this too. We can do worse, as follows:

PROPOSITION 2.23. The basic step function, namely the sign function

-1 , =<0
sgn(z) =¢0 , =0
1 , x>0

can be approzimated by suitable modifications of arctan(x). Even worse, there are exam-
ples of f, — f with each f, continuous, and with f totally discontinuous.

PROOF. To start with, arctan(x) looks a bit like sgn(x), so to say, but one problem
comes from the fact that its image is [—7/2,7/2], instead of the desired [—1,1]. Thus,
we must first rescale arctan(z) by 7/2. Now with this done, we can further stretch the
variable z, as to get our function closer and closer to sgn(x), as desired. This proves the
first assertion, and the second assertion, which is a bit more technical, and that we will
not really need in what follows, is left as an exercise for you, reader. O
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Sumarizing, we are a bit in trouble, because we would like to have in our bag of theo-
rems something saying that f, — f with f,, continuous implies f continuous. Fortunately,
this can be done, with a suitable refinement of the notion of convergence, as follows:

DEFINITION 2.24. We say that f, converges uniformly to f, and write f, —., f, if:
Ve > 0,IN € N,Vn > N, |fu(z) — f(z)] <e,Va
That is, the same condition as for f, — f must be satisfied, but with the Vx at the end.

And it is this “Vz at the end” which makes the difference, and will make our theory
work. In order to understand this, which is something quite subtle, let us compare
Definition 2.22 and Definition 2.24. As a first observation, we have:

PROPOSITION 2.25. Uniform convergence implies pointwise convergence,
but the converse is not true, in general.

PROOF. Here the first assertion is clear from definitions, just by thinking at what
is going on, with no computations needed. As for the second assertion, the simplest
counterexamples here are the functions f, : [0,1] — R given by f,(z) = 2™, that we met
before Proposition 2.23. Indeed, uniform convergence on [0, 1) would mean:

Ve > 0,IN e N\Vn > N, 2" < e,Vz € ]0,1)

But this is wrong, because no matter how big N is, we have lim,_,; 2" = 1, and so
we can find x € [0, 1) such that ¥ > . Thus, we have our counterexample. U

Moving ahead now, let us state our main theorem on uniform convergence, as follows:
THEOREM 2.26. Assuming that f, are continuous, and that
then f is continuous. That is, uniform limit of continuous functions is continuous.

PROOF. As previously advertised, it is the “Vx at the end” in Definition 2.24 that will
make this work. Indeed, let us try to prove that the limit f is continuous at some point
x. For this, we pick a number £ > 0. Since f,, —, f, we can find N € N such that:

€

fvlz) - F) < 5

On the other hand, since fy is continuous at x, we can find § > 0 such that:

, Vz

€

lz -yl <d = |fn(z) — fn(y)] < 3
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But with this, we are done. Indeed, for |z — y| < & we have:

[f(@) = fW)l < 1f(x) = fnv(@)| + | fn(@) = In)] + [fn () — f()l
e € ¢
< 44z
- 3 * 3 + 3
= ¢
Thus, the limit function f is continuous at x, and we are done. Il

Obviously, the notion of uniform convergence in Definition 2.24 is something quite
interesting, worth some more study. As a first result, we have:

PrOPOSITION 2.27. The following happen, regarding uniform limits:

2) fo=u [y gn —u g Py fogn —u f9-

3) fo—=u [. f# 0 imply 1/ fr —u 1/ f.

4) fn —u [, g continuous imply f,og —, fog.
5) fu —u f, g continuous imply go f, =, go f.

PrOOF. All this is routine, exactly as for the results for numeric sequences from
chapter 1, that we know well, with no difficulties or tricks involved. O

Finally, there is some abstract mathematics to be done as well. Indeed, observe that
the notion of uniform convergence, as formulated in Definition 2.24, means that:

Sgp ‘fn(‘r) - f(:):){ —nooc

This suggests measuring the distance between functions via a supremum as above,
and in relation with this, we have the following result:

THEOREM 2.28. The uniform convergence, f, —, f, means that we have f, — f with
respect to the following distance,

d(f,9) = sup |f(z) — g(2)]

which s indeed a distance function.

ProOF. Here the fact that d is indeed a distance follows from definitions, and the fact
that the uniform convergence can be interpreted as above is clear as well. O

Finally, regarding the series, some general theory can be developed here as well, in
connection with the notion of uniform convergence, and in connection with the notion of
convergence radius. We will see applications of all this, in a moment.
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2d. Basic functions

With the above theory in hand, let us get now to interesting things, namely compu-
tations. Among others, because this is what a mathematician’s job is, doing all sorts
of weird computations. We will be mainly interested in the functions z* and a”, which
remain something quite mysterious. Regarding z¢, we first have the following result:

THEOREM 2.29. We have the generalized binomial formula

(1+2)" = i (Z)x’f

k=0
with the generalized binomial coefficients being given by
a\ ala—1)...(a—k+1)
k) k!

valid for any exponent a € Z, and any |x| < 1.

ProoOF. This is something quite tricky, the idea being as follows:

(1) For exponents a € N, this is something that we know well from chapter 1, and
which is valid for any x € R, coming from the usual binomial formula, namely:

(1+z)" = kzn; <Z>xk

(2) For the exponent a = —1 this is something that we know from chapter 1 too,
coming from the following formula, valid for any |z| < 1:

=l—z+2®>—23+...

1+
Indeed, this is exactly our generalized binomial formula at a = —1, because:
S\ (DR
= = —1
(3) Let us discuss now the general case a € —N. With ¢ = —n, and n € N, the

generalized binomial coefficients are given by the following formula:
—n\  (=n)(-n—-1)...(-—n—k+1)
( k ) B k!
nn+1)...n+k—1
(n+k—1)!
(n — 1)!k!

- ()

- (-1
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Thus, our generalized binomial formula at a = —n, and n € N, reads:
1 - n+k—1
= (M)
1+t = n—1

(4) In order to prove this formula, it is convenient to write it with —t instead of ¢, in
order to get rid of signs. The formula to be proved becomes:

1 (n+k—1\ ,
= t
(i)

We prove this by recurrence on n. At n = 1 this formula definitely holds, as explained
in (2) above. So, assume that the formula holds at n € N. We have then:

1 1 1

(1—t)yntl 1 —t (1—t)"
N N A
t
>
1=0
s 28: <n +1— 1)
n—1
1=0
On the other hand, the formula that we want to prove is:

= ()

s=0

oo
21
k=0
oo
21
s=0

Thus, in order to finish, we must prove the following formula:

i (n—i—l—l) B (n—i—s)
n—1 N n
1=0
(5) In order to prove this latter formula, we proceed by recurrence on s € N. At s =0

the formula is trivial, 1 = 1. So, assume that the formula holds at s € N. In order to
prove the formula at s + 1, we are in need of the following formula:

+ =
n n—1 n
But this is the Pascal formula, that we know from chapter 1, and we are done. O

Quite interestingly, the formula in Theorem 2.29 holds in fact at any a € R, but this
is something non-trivial, whose proof will have to wait until chapter 3 below. However,
in the meantime, let us investigate the case a € Z/2. Indeed, not only the results here
are interesting, and very useful in practice, but also they can be proved with elementary
methods. At a = £1/2, to start with, we have the following result:
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THEOREM 2.30. The generalized binomial formula, namely

(1+2)" = i (Z)x’f

k=0

holds as well at a = £1/2. In practice, at a = 1/2 we obtain the formula

[ee) —t k
Vitt= 1—2;@1 (I)

with Cy = = (Qkk) being the Catalan numbers, and at a = —1/2 we obtain

m}
1 > —t\"
=N"Dp, (=
V1+tt kzg ’“<4>

with Dy, = (2:) being the central binomial coefficients.

PRrOOF. This can be done in several steps, as follows:

(1) At a = 1/2, the generalized binomial coefficients are as follows:

(y? C1/2(=1/2)...(3/2— k)

k k!
L, 1-3-5...(2k—3)
_ k—1
= =D 2k !
(2k — 2)!

= (-1
261 (k — 1)12k!

—1\*
- (=) oo

(2) At a = —1/2, the generalized binomial coefficients are as follows:
—1/2\  —1/2(=3/2)...(1/2 - k)
k) k!
1-3-5...(2k—1)
_ k
= 2k !
— (_ )k (2k>'
a 2k 12k !

(@)

(3) Summarizing, we have proved so far that the binomial formula at a

+1/2 is

equivalent to the explicit formulae in the statement, involving the Catalan numbers CY,
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and the central binomial coefficients D;. It remains now to prove that these two explicit
formulae hold indeed. For this purpose, let us write these formulae as follows:

> 1
VI—dt=1-2> Gt |, ——=> Dyt
k=1 =

In order to check these latter formulae, we must prove the following identities:

2 2
o0 oo 1
1-2 ath ) =1- o=
( e 1t> 1—4t (ZD;J) —
k=1 k=0
(4) As a first observation, the formula on the left is equivalent to:

Y GiCi=Cun

k+l=n

By using the series for 1/(1 — 4t), the formula on the right is equivalent to:

Z DD, = 4™

k+l=n

Finally, observe that if our formulae hold indeed, by multiplying we must have:

Z Cle _ Dn+1

2
k+l=n

(5) Summarizing, we have to understand 3 formulae, which look quite similar. Let us
first attempt to prove ), ., DyD; = 4", by recurrence. We have:

2k + 2 4k + 2 (2k 2
o (k;+1> k+1<k) ( k:+1) g
Thus, assuming that we have ), ., DyD; = 4", we obtain:

2
Y DiDi = DoDupi+ Y (4—k—+1) D;.Dy

k+l=n+1 k+l=n
DDy
= Dy +4 > DiDi—2 ) "
= Dy +4" =2 )" D,
k+l=n

Thus, this leads to a sort of half-failure, the conclusion being that for proving by
recurrence the second formula in (4), we need the third formula in (4).

(6) All this suggests a systematic look at the three formulae in (4). According to our
various observations above, these three formulae are equivalent, and so it is enough to
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prove one of them. We will chose here to prove the first one, namely:

Y CiCi=Co

k+l=n

(7) For this purpose, we must trick. Let us count the Dyck paths in the plane, which
are by definition the paths from (0,0) to (n,n), marching North-East over the integer
lattice Z? C R?, by staying inside the square [0,n] x [0,n], and staying as well under the
diagonal of this square. As an example, here are the 5 possible Dyck paths at n = 3:

o O O O O O O O O O o O O O
o O O é O O ©O (!) o O O—é o O o©O é o O O—é
o O O (I) o O O—(I) o O (I) (0] O O—O—é O O—(I) O
O—O—O—(I) O—O—CI) O O—O—(I) o O—CI) o O O—(I) o O

In fact, the number C/ of these paths is as follows, coinciding with C,:
1,1,2,5,14,42,132,429, . ..

(8) So, here is our trick. We will prove on one hand that the numbers C, satisfy the
recurrence for the numbers C,, that we want to prove, from (6), and on the other hand we
will prove that we have C/, = C,,. Which is smart, isn’t it. Getting to work now, in what
regards our first task, this is easy, because when looking when our path last intersects the
diagonal of the square, we obtain the recurrence relation that we want, namely:

Ch= > G
k+l=n—1
(9) In what regards now our second task, proving that we have C/, = C,,, this is more
tricky. If we ignore the assumption that our path must stay under the diagonal of the
square, we have (27?) such paths. And among these, we have the “good” ones, those that
we want to count, and then the “bad” ones, those that we want to ignore.

(10) So, let us count the bad paths, those crossing the diagonal of the square, and
reaching the higher diagonal next to it, the one joining (0,1) and (n,n + 1). In order to
count these, the trick is to “flip” their bad part over that higher diagonal, as follows:



2D. BASIC FUNCTIONS 53

(11) Now observe that, as it is obvious on the above picture, due to the flipping, the
flipped bad path will no longer end in (n,n), but rather in (n — 1,7+ 1). Moreover, more
is true, in the sense that, by thinking a bit, we see that the flipped bad paths are precisely
those ending in (n — 1,n + 1). Thus, we can count these flipped bad paths, and so the
bad paths, and so the good paths too, and so good news, we are done.

(12) To finish now, by putting everything together, we have:
« - ()
" n n—1

~(2n n (2n

- ()75 )

B 1 2n

B n+1<n>
Thus we have indeed C!, = C,,, and this finishes the proof. O

As already mentioned, the binomial formula holds in fact for any exponent a € Z/2,
after some combinatorial pain, and even for any a € R, but this is non-trivial, and the
elementary study stops with Theorem 2.30. However, we will see in chapter 3 below that
the problem can be solved, and in a very elegant way, by guess whom: calculus.

As another application of our methods, let us get now into the other version of the
exponential function, namely a®. The idea is that some very interesting results appear
with a = e, the number that we know from chapter 1. We first have:

PROPOSITION 2.31. We have the following formula,
<1 + £> — e
n
valid for any v € R.

Proor. We already know from chapter 1 that the result holds at x = 1, and this
because the number e was by definition given by the following formula:

(e0)
1+—-) —e
n

By taking inverses, we obtain as well the result at x = —1, namely:

(1) =
1——) ==
n €

In general now, when € R is arbitrary, the best is to proceed as follows:

(o) =[] -

Thus, we are led to the conclusion in the statement. U
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We have the following result, which is something quite far-reaching:
THEOREM 2.32. We have the formula
© _k
e x
=
k=0
valid for any x € R.

PROOF. This can be done in several steps, as follows:

(1) At = = 1, which is the key step, we want to prove that we have the following
equality, between the sum of a series, and a limit of a sequence:

°°1_1, . 1\"
> gy = Jim (14
k=0

(2) For this purpose, the first observation is that we have the following estimate:

1 1
2<) <2 g3
k=0 k=0
Thus, the series Y~ % converges indeed, towards a limit in (2, 3).
(3) In order to prove now that this limit is e, observe that we have:

(+3) = 2()

in(n—l)...(n—k—l—l) 1

k! nk

k=0

"1
< Zy

k=0

Thus, with n — oo, we get that the limit of the series > 7 & belongs to [e, 3).
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(4) For the reverse inequality, we use the following computation:

1 1\" 1 nn-1)..n—k+1) 1
a-(1) - 22 g o

B 1 zn:n(n—l)...(n—k’—i—l)

n

k! k! 'k
k=2 k=2
o nf-nn-1)...(n—k+1)
o Z nkk!
k=2

IA
(]
3
B
|
£l
|
™
=

(5) In order to estimate the above expression that we found, we can use the following
trivial inequality, valid for any number = € (0, 1):

l—af=(1—a)1+a+a®+.. +2") <1 —2)k

Indeed, we can use this with z = 1 — k/n, and we obtain in this way:

n

1 L " " Ek
k! n - k!
k=0 k=2

IN

<

Now since with n — oo this goes to 0, we obtain that the limit of the series Y-, %

is the same as the limit of the sequence (1 + %)n, manely e. Thus, getting back now to
what we wanted to prove, our theorem, we are done in this way with the case x = 1.



56 2. FUNCTIONS, CONTINUITY

(6) In order to deal now with the general case, consider the following function:

=) 4
k=0
Observe that, by using our various results above, this function is indeed well-defined.
Moreover, again by using our various results above, f is continuous.
(7) Our next claim, which is the key one, is that we have:
fl@+y) = f@)fy)

Indeed, by using the binomial formula, we have the following computation:

flx+y) = Z—(x+y)k

k!
k=0

- 220

k=0 s=0

o

B e fL’yk s
N ;;s‘(k—s)'

= f@)f(y)

(8) In order to finish now, we know that our function f is continuous, that it satisfies

flx+y) = f(z)f(y), and that we have:
fO)=1 ., f)=e

But it is easy to prove that such a function is necessarily unique, and since e obviously
has all these properties too, we must have f(x) = e®, as desired. O

We will be back to all this, and to the logarithm and trigonometric functions as well,
in chapter 3 below, when talking about derivatives and the Taylor formula.

2e. Exercises
There are many possible exercises on the above, and we have here:
EXERCISE 2.33. Find some interesting examples of Lipschitz functions.
EXERCISE 2.34. Find a simple proof for the intermediate value theorem.
EXERCISE 2.35. Prove the generalized binomial formula, for exponents a € Z/2.
EXERCISE 2.36. Rewrite the theory of e, with e =), 1/k! as definition.

For the rest, business as usual, more exercises are easy to find. Find and solve them.



CHAPTER 3

Derivatives

3a. Derivatives, rules

Welcome to calculus. In this chapter we go for the real thing, namely developement
of modern calculus, following some amazing ideas of Newton, Leibnitz and others. The
material will be quite difficult, mixing geometry and intuition with formal mathematics
and computations, and needing some time to be understood. But we will survive.

The basic idea of calculus is very simple. We are interested in functions f : R — R, and
we already know that when f is continuous at a point x, we can write an approximation
as follows, for the values of our function f around that point z:

fla+1t) ~ f(z)
The problem is now, how to improve this? And a bit of thinking at all this suggests
to look at the slope of f at the point z. Which leads us into the following notion:

DEFINITION 3.1. A function f: R — R s called differentiable at x when

o) — i LG D = 1)

t—0 t

called derivative of f at that point x, exists.

As a first remark, in order for f to be differentiable at z, that is to say, in order for
the above limit to converge, the numerator must go to 0, as the denominator ¢ does:

lim [f(z +1) = f(z)] =0

Thus, f must be continuous at . However, the converse is not true, a basic coun-
terexample being f(z) = |z| at = 0. Let us summarize these findings as follows:

PROPOSITION 3.2. If f is differentiable at x, then f must be continuous at x. However,
the converse is not true, a basic counterexample being f(z) = |x|, at x = 0.

PRrROOF. The first assertion is something that we already know, from the above. As
for the second assertion, regarding f(x) = |z|, this is something quite clear on the picture
of f, but let us prove this mathematically, based on Definition 3.1. We have:

0+t —10 t—0
fim 1A= 100 120
N0 t N0

57
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On the other hand, we have as well the following computation:
0+t — —t —
hmw - hm_O S—
t 0 t t 0 t

Thus, the limit in Definition 3.1 does not converge, so we have our counterexample. [

Generally speaking, the last assertion in Proposition 3.2 should not bother us much,
because most of the basic continuous functions are differentiable, and we will see examples
in a moment. Before that, however, let us recall why we are here, namely improving the
basic estimate f(z +t) ~ f(x). We can now do this, using the derivative, as follows:

THEOREM 3.3. Assuming that f is differentiable at x, we have:
fla+1t) = f(z)+ f'(2)t
In other words, f is, approximately, locally affine at x.
PrRoOF. Assume indeed that f is differentiable at z, and let us set, as before:

o) — i LD = 1)

t—0 t
By multiplying by ¢, we obtain that we have, once again in the t — 0 limit:

fla+t) = flx) ~ f(=)t

Thus, we are led to the conclusion in the statement. Il

All this is very nice, and before developing more theory, let us work out some examples.
As a first illustration, the derivatives of the power functions are as follows:

PROPOSITION 3.4. We have the differentiation formula
(a?) = pa?~!
valid for any exponent p € R.
PrROOF. We can do this in three steps, as follows:
(1) In the case p € N we can use the binomial formula, which gives, as desired:

(z+t)P = i(i)x”"“t’“

k=0
= P4 paP 4 P
~ P 4 paPt
(2) Let us discuss now the general case p € Q. We write p = m/n, with m € N and
n € Z. In order to do the computation, we use the following formula:

a* = b= (a—b)(a" P +a" b+ + b
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We set in this formula a = (z +¢)™™ and b = 2™/". We obtain in this way:
(x+t)™ —a™
(I + t)m(n—l)/n 4+ .+ rm(n=1)/n
(x+t)™ —a™
nxmn—1)/n

12

mx™ 1t
m(n—1)/n

12

. xm—l—m-ﬁ-m/n ot

_ m/n—1 ¢

T

SI3=13E

(3) In the general case now, where p € R is real, we can use a similar argument.
Indeed, given any integer n € N, we have the following computation:
(x + )P — 2P
(z + )P0 4+ 4 gp(n—1)
(x + )P — P
nxp(n_l)

(x+t)P —aP =

~

Now observe that we have the following estimate, with [.] being the integer part:
(z + )P < (@ + )" < (2 + )Pt

By using the binomial formula on both sides, for the integer exponents [pn| and [pn]+1
there, we deduce that with n >> 0 we have the following estimate:

(z + )P ~ 2™ + pnaP™ 't

Thus, we can finish our computation started above as follows:

naP"
(x +1t)P —aP ~ pnxpnip = paP 't
But this gives (2P)’ = paxP~!, which finishes the proof. O

Here are some further computations, for other basic functions that we know:

PROPOSITION 3.5. We have the following results:

(1) (sinz)" = cos .
(2) (cosz) = —sinwx.
(3) () = e,

(4) (logzx) =z~

Proor. This is quite tricky, as always when computing derivatives, as follows:
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(1) Regarding sin, the computation here goes as follows:

oy sin(z +t) —sinx
(sinz)" = lim ,
t—0
sinzcost 4 cosxsint — sinx

= lim

t—0 t

. . cost — 1 sint
= limsiny - ——— +cosx - —

t—0 t
= CoSZ

Here we have used the fact, which is clear on pictures, by drawing the trigonometric
circle, that we have sint ~ t for t ~ 0, plus the fact, which follows from this and from
Pythagoras, sin® + cos® = 1, that we have as well cost ~ 1 —t2/2, for t ~ 0.

(2) The computation for cost is similar, as follows:

, cos(x +1t) —cosx
(cosz) = lim ;
t—0
coszcost —sinzsint — cosx

= lim

t—0 t

. cost — 1 . sint
= limcosx+ —— —sinx - ——

t—0 t t
= —ginx

(3) For the exponential, the derivative can be computed as follows:

o= (2)

k=0

00
k=0
ev

k—1

kx
k

!

(4) As for the logarithm, the computation here is as follows, using log(1 + y) ~ y for
y ~ 0, which follows from e¥ ~ 1 + y that we found in (3), by taking the logarithm:

lim log(x +t) — logx

/
(logx) = lim ,
_ lim log(1+t/x)
t—0 t
1
oz
Thus, we are led to the formulae in the statement. Il

Speaking exponentials, we can now formulate a nice result about them:
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THEOREM 3.6. The exponential function, namely

k

> X
Gm:ZF
k=0

is the unique power series satisfying f' = f and f(0) = 1.

PRrROOF. Consider indeed a power series satisfying f' = f and f(0) = 1. Due to
f(0) = 1, the first term must be 1, and so our function must look as follows:

o0
flx)=1+ cha:k
k=1
According to our differentiation rules, the derivative of this series is given by:
o0
f(z) = Z kepah
k=1

Thus, the equation f’ = f is equivalent to the following equalities:
ley =1 , 2co=c¢c1 , 3c3=c , 4dcy=c3 |,

But this system of equations can be solved by recurrence, as follows:

1 1
= ]_ = — = e —
“ 2T 0 BT o T axsxd
Thus we have ¢, = 1/k!, leading to the conclusion in the statement. U

Observe that the above result leads to a more conceptual explanation for the number
e itself. To be more precise, e € R is the unique number satisfying:

(6:(:)/ — €$
Let us work out now some general results. We have here the following statement:

THEOREM 3.7. We have the following formulae:

(D) (f+9)=f+4g"
(2) (fg) =f'g+f9g.
(3) (fog)=(fog)-9g.

Proor. All these formulae are elementary, the idea being as follows:
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(1) This follows indeed from definitions, the computation being as follows:

i 9 +1) — (f +9)(x)

(f+9)(z) = lim ;
o (fla+t)—fa) | glz+t) —g(x)
- 15%( ¢ + t )
_ PD[(l)f(ifﬂ”fi—f(x) ﬂir%g(%ti—g(m)
= fl(z) + ()

(2) This follows from definitions too, the computation, by using the more convenient
formula f(x +1t) ~ f(z) + f'(x)t as a definition for the derivative, being as follows:

(fo)x+t) = flz+t)g(x+1)
(f(@) + f(2)t)(g(x) + ¢'(2)t)
=~ f(x)g(x) + (f'(x)g(x) + f(2)g'(2))t

Indeed, we obtain from this that the derivative is the coefficient of ¢, namely:

(f9)'(z) = fi(x)g(x) + f(z)g (x)

(3) Regarding compositions, the computation here is as follows, again by using the
more convenient formula f(x +t) ~ f(z) + f'(x)t as a definition for the derivative:

(fog)x+t) = flg(z+1))
~ f(g(z) +g'(2)t)
~ flg(x)) + f'(g(x))g' ()t

Indeed, we obtain from this that the derivative is the coefficient of ¢, namely:

(fog)(x) = f(g(x))g'(x)

Thus, we are led to the conclusions in the statement. U

12

We can of course combine the above formulae, and we obtain for instance:

PROPOSITION 3.8. The derivatives of fractions are given by:

([)' _f9— 14
g 9

In particular, we have the following formula, for the derivative of inverses:

(1)’_1’
7)o

In fact, we have (fP) = pfP=t, for any exponent p € R.
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PROOF. This statement is written a bit upside down, and for the proof it is better to
proceed backwards. To be more precise, by using (z?)" = pzP~! and Theorem 3.7 (3), we
obtain the third formula. Then, with p = —1, we obtain from this the second formula.
And finally, by using this second formula and Theorem 3.7 (2), we obtain:

0 - 0

Thus, we are led to the formulae in the statement. U

All the above might seem to start to be a bit too complex, with too many things to
be memorized and so on, and as a piece of advice here, we have:

ADVICE 3.9. Memorize and cherish the formula for fractions

(i)' _f9- 14
g 9?

along with the usual addition formula, that you know well

a c_ad+bc

bt dT

and generally speaking, never mess with fractions.

With this coming from a lifelong calculus teacher and scientist, mathematics can be
difficult, and many things can be pardoned, but not messing with fractions. And with this
going beyond mathematics too, if you want to make a living by selling apples or tomatoes
at the market, fine, but you'll need to know well fractions, trust me.

Back to work now, with the above formulae in hand, we can do all sorts of computations
for other basic functions that we know, including tan x, or arctan x:

PROPOSITION 3.10. We have the following formulae,

1 1
tanz)’ =
, (arctanz) e

and the derivatives of the remaining trigonometric functions can be computed as well.

tanx) =
( ) cos? x
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PRrOOF. For tan, we have the following computation:

. !/
(tanz) — (smx)
CoS T

sin’ x cos x — sin z cos’ &

cos?
2 .2
cos“x +sin“x
cos?
1
cos?
As for arctan, we can use here the following computation:

(tanoarctan)’(z) = tan’(arctanz)arctan’(x)

= — — arctan’
cos?(arctan x) arctant (z)

Indeed, since the term on the left is simply 2’ = 1, we obtain from this:
arctan’(z) = cos?(arctan )

On the other hand, with ¢ = arctan x we know that we have tant = x, and so:
1 1

1+tan?t 1+ 22

Thus, we are led to the formula in the statement, namely:

cos?(arctan ) = cos’t =

1
arctanx) =
( ) 1+ 2?2
As for the last assertion, we will leave this as an exercise. Il

At the theoretical level now, further building on Theorem 3.3, we have:

THEOREM 3.11. The local minima and mazima of a differentiable function f : R — R
appear at the points x € R where:

fl@)=0
However, the converse of this fact is not true in general.
PROOF. The first assertion follows from the formula in Theorem 3.3, namely:
fla+1) = f(z) + f(2)t
Indeed, let us rewrite this formula, more conveniently, in the following way:
fl@+t) = fla) = f(2)t

Now saying that our function f has a local maximum at x € R means that there exists
a number ¢ > 0 such that the following happens:

fle+t)> fa) . Vtel—]
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We conclude that we must have f’'(z)t > 0 for sufficiently small ¢, and since this small
t can be both positive or negative, this gives, as desired:

f'(x) =0

Similarly, saying that our function f has a local minimum at x € R means that there
exists a number € > 0 such that the following happens:

flx+t) < flz) , Vie|-e¢

Thus f/'(z)t < 0 for small ¢, and this gives, as before, f’(x) = 0. Finally, in what
regards the converse, the simplest counterexample here is the following function:

fla)=a’
Indeed, we have f’(z) = 3z?%, and in particular f’(0) = 0. But our function being
clearly increasing, x = 0 is not a local maximum, nor a local minimum. U

As an important consequence of Theorem 3.11, we have:

THEOREM 3.12. Assuming that f : [a,b] — R is differentiable, we have

for some ¢ € (a,b), called mean value property of f.

PROOF. In the case f(a) = f(b), the result, called Rolle theorem, states that we have
f'(¢) = 0 for some ¢ € (a,b), and follows from Theorem 3.11. Now in what regards our
statement, due to Lagrange, this follows from Rolle, applied to the following function:

_ f(b) — f(a)
o) = fa) - L=
Indeed, we have g(a) = g(b) due to our choice of the constant on the right, so we get
g'(c) = 0 for some ¢ € (a,b), which translates into the formula in the statement. O

In practice, Theorem 3.11 can be used in order to find the maximum and minimum
of any differentiable function, and the method is best recalled as follows:

ALGORITHM 3.13. In order to find the minimum and mazimum of f : [a,b] — R:

(1) Compute the derivative f'.

(2) Solve the equation f'(x) = 0.

(3) Add a,b to your set of solutions.

(4) Compute f(x), for all your solutions.

(5) Compute the min/maz of these f(x) values.
(6) Then this is the min/max of your function.
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To be more precise, we are using here Theorem 3.11, or rather the obvious extension
of this result to the case of the functions f : [a,b] — R. This tells us that the local minima
and maxima of our function f, and in particular the global minima and maxima, can be
found among the zeroes of the first derivative f’, with the endpoints a,b added. Thus,
what we have to do is to compute these “candidates”, as explained in steps (1-2-3), and
then see what each candidate is exactly worth, as explained in steps (4-5-6).

Needless to say, all this is very interesting, and powerful. The general problem in
any type of applied mathematics is that of finding the minimum or maximum of some
function, and we have now an algorithm for dealing with such questions. Very nice.

3b. Second derivatives

The derivative theory that we have is already quite powerful, and can be used in order
to solve all sorts of interesting questions, but with a bit more effort, we can do better.
Indeed, at a more advanced level, we can come up with the following notion:

DEFINITION 3.14. We say that f : R — R is twice differentiable if it is differentiable,
and its derivative f': R — R is differentiable too. The derivative of f' is denoted

f":R—=R
and is called second derivative of f.

You might probably wonder why coming with this definition, which looks a bit abstract
and complicated, instead of further developing the theory of the first derivative, which
looks like something very reasonable and useful. Good point, and answer to this coming
in a moment. But before that, let us get a bit familiar with f”. We first have:

INTERPRETATION 3.15. The second derivative f"(x) € R is the number which:

(1) Expresses the growth rate of the slope f'(z) at the point x.

(2) Gives us the acceleration of the function f at the point x.

(3) Computes how much different is f(x), compared to f(z) with z ~ x.
(4) Tells us how much convex or concave is f, around the point x.

So, this is the truth about the second derivative, making it clear that what we have
here is a very interesting notion. In practice now, (1) follows from the usual interpretation
of the derivative, as both a growth rate, and a slope. Regarding (2), this is some sort
of reformulation of (1), using the intuitive meaning of the word “acceleration”, with the
relevant physics equations, due to Newton, being as follows:

a=v , Vv=2x

To be more precise, here a, v,z are the acceleration, speed and position, and the dot
denotes the time derivative, and according to these equations, we have a = x, second
derivative. We will be back to these equations at the end of the present chapter.
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Regarding now (3) in the above, this is something more subtle, of statistical nature,
that we will clarify with some mathematics, in a moment. As for (4), this is something
quite subtle too, that we will again clarify with some mathematics, in a moment.

All in all, what we have above is a mixture of trivial and non-trivial facts, and do not
worry, we will get familiar with all this, in the next few pages.

In practice now, let us first compute the second derivatives of the functions that we
are familiar with, see what we get. The result here, which is perhaps not very enlightening
at this stage of things, but which certainly looks technically useful, is as follows:

PROPOSITION 3.16. The second derivatives of the basic functions are as follows:

(1) (27)" = p(p —1)2""%.
(2) sin” = —sin.

(3) cos” = — cos.

(4) exp’ = exp.

(5) log'(x) = —1/27.

Also, there are functions which are differentiable, but not twice differentiable.

PRrROOF. We have two assertions here, the idea being as follows:

(1) Regarding the various formulae in the statement, these all follow from the various
formulae for the derivatives established before, as follows:

(a?)" = (pa"™")" = p(p — 1)a"~*
(sinz)” = (cosx) = —sinx
(cosz)" = (—sinz) = —cosx
(eiﬂ)// — (6113)/ — 6$
(logz)" = (=1/z) = ~1/a
Of course, this is not the end of the story, because these formulae remain quite opaque,
and must be examined in view of Interpretation 3.15, in order to see what exactly is going

on. Also, we have tan(z) and the inverse trigonometric functions too. In short, plenty of
interesting exercises here, and the more you solve, the better your calculus will be.

(2) Regarding the counterexample, recall first that the simplest example of a function
which is continuous, but not differentiable, was f(z) = |z|, the idea behind this being
to use a “piecewise linear function whose branches do not fit well”. In connection now
with our question, piecewise linear will not do, but we can use a similar idea, namely
“piecewise quadratic function whose branches do not fit well”. So, let us set:

ar? (z <0)
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This function is then differentiable, with its derivative being:

) = {Qaas (x <0)

2bx (x> 0)
Now for getting our counterexample, we can set a = —1,b =1, so that f is:
—z? (z <0)
f(:L‘) = 2
x (x >0)

Indeed, the derivative is f'(x) = 2|z|, which is not differentiable, as desired.

Getting now to theory, we first have the following key result:

THEOREM 3.17. Any function of one variable f : R — R is locally quadratic,

flott) = fla)+ e+ D10

where f"(x) is the derivative of the function f': R — R at the point x.

PROOF. Assume indeed that f is twice differentiable at x, and let us try to construct

an approximation of f around z by a quadratic function, as follows:

flx+1t) ~a+bt+ct?

We must have a = f(z), and we also know from Theorem 3.3 that b = f’(z) is the
correct choice for the coefficient of ¢. Thus, our approximation must be as follows:

flaz+1t) = f(z) + f'(2)t + ct?

In order to find the correct choice for ¢ € R, observe that the function ¢t — f(x + t)
matches with t — f(z) + f'(x)t + ¢t in what regards the value at ¢ = 0, and also in what
regards the value of the derivative at ¢ = 0. Thus, the correct choice of ¢ € R should be

the one making match the second derivatives at ¢t = 0, and this gives:

fx) =2c
We are therefore led to the formula in the statement, namely:

f"(z) £2

fla+t) = f(o) + f )t +

In order to prove now that this formula holds indeed, we will use L’Hopital’s rule,

which states that the 0/0 type limits can be computed as follows:

flx)  f'(x)

—_—~

g(x) — g'(z)
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Observe that this formula holds indeed, as an application of Theorem 3.3. Now by
using this, if we denote by ¢(t) ~ P(t) the formula to be proved, we have:

p(t) —P) ¢ - P

12 a 2t
o ') = P(t)
o 2
_ fe) = (=)
2
=0
Thus, we are led to the conclusion in the statement. Il

The above result substantially improves Theorem 3.3, and there are many applications
of itt. As a first such application, justifying Interpretation 3.15 (3), we have the following
statement, which is a bit heuristic, but we will call it however Proposition:

PROPOSITION 3.18. Intuitively speaking, the second derivative f"(x) € R computes
how much different is f(x), compared to the average of f(z), with z ~ x.

PROOF. As already mentioned, this is something a bit heuristic, but which is good to
know. Let us write the formula in Theorem 3.17, as such, and with ¢ — —t too:

flo 1) = fa) + flag+ D0

flo—t) = f(o) — g+ T g

By making the average, we obtain the following formula:

r+t)+ flx—t "(x
2 2
Now assume that we have found a way of averaging things over ¢t € [—¢,¢], with the

corresponding averages being denoted /. We obtain from the above:

10 = 1@+ w1 ()

But this is what our statement says, save for some uncertainties regarding the aver-
aging method, and the precise value of I(¢?/2). We will leave this for later. O

Back to rigorous mathematics now, and of course with apologies for the physics inter-
mezzo, but Proposition 3.18 is really cool isn’t it, and we will be back later to this with
full mathematical details, after developing more theory, that is promised, as a second
application of Theorem 3.17, we can improve as well Theorem 3.11, as follows:
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THEOREM 3.19. The local minima and local maxima of a twice differentiable function
f R — R appear at the points x € R where

f'(x) =0

with the local minima corresponding to the case f'(x) > 0, and with the local mazima
corresponding to the case f"(z) <0.

PROOF. The first assertion is something that we already know. As for the second
assertion, we can use the formula in Theorem 3.17, which in the case f'(z) = 0 reads:

"
flx+1t) ~ f(x)+ #z@
Indeed, assuming f”(x) # 0, it is clear that the condition f”(z) > 0 will produce a
local minimum, and that the condition f”(x) < 0 will produce a local maximum. O

As before with Theorem 3.11, the above result is not the end of the story with the
mathematics of the local minima and maxima, because things are undetermined when:

f@) = f"(x) =0
For instance the functions +2" with n € N all satisfy this condition at x = 0, which

is a minimum for the functions of type 2™, a maximum for the functions of type —z*™,
and not a local minimum or local maximum for the functions of type 2™

There are some comments to be made in relation with Algorithm 3.13 as well. Nor-
mally that algorithm stays strong, because Theorem 3.19 can only help in relation with
the final steps, and is it worth it to compute the second derivative f”, just for getting rid
of roughly 1/2 of the f(x) values to be compared. However, in certain cases, this method
proves to be useful, so Theorem 3.19 is good to know, when applying that algorithm.

As a main concrete application now of the second derivative, which is something very
useful in practice, and related to Interpretation 3.15 (4), we have the following result:

THEOREM 3.20. Given a convex function f : R — R, we have the following Jensen
inequality, for any x1,...,xxy € R, and any A1,..., Ay > 0 summing up to 1,
f()\ll'l + ..+ )\N.I'N) S )\1f<£L‘1) + ..+ )\NJZ'N

with equality when x1 = ... = xn. In particular, by taking the weights \; to be all equal,
we obtain the following Jensen inequality, valid for any x,...,xy € R,

f($1+...+l’N> Sf(x1)++f(a:N)
N N

and once again with equality when x1 = ... = xn. We have a similar statement holds for
the concave functions, with all the inequalities being reversed.
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Proor. This is indeed something quite routine, the idea being as follows:

(1) First, we can talk about convex functions in a usual, intuitive way, with this
meaning by definition that the following inequality must be satisfied:

; (:c+y> _ @)+ f)

2 - 2
(2) But this means, via a simple argument, by approximating numbers ¢ € [0, 1] by
sums of powers 27%, that for any ¢ € [0, 1] we must have:

fltz+ (1 —t)y) <tf(z)+ (1 —1)f(y)
Alternatively, via yet another simple argument, this time by doing some geometry
with triangles, this means that we must have:

f(a;1+...+xN) Sf(:vl)+...—|—f(xN)

N N
But then, again alternatively, by combining the above two simple arguments, the
following must happen, for any Ay,..., Ay > 0 summing up to 1:

f()\lxl + ...+ )\NLL’N) S )\1f<l’1) + ...+ >\NxN

(3) Summarizing, all our Jensen inequalities, at N = 2 and at N € N arbitrary, are
equivalent. The point now is that, if we look at what the first Jensen inequality, that we
took as definition for the convexity, means, this is simply equivalent to:

f”($) >0

(4) Thus, we are led to the conclusions in the statement, regarding the convex func-
tions. As for the concave functions, the proof here is similar. Alternatively, we can say
that f is concave precisely when — f is convex, and get the results from what we have. [J

As a second result on the subject, which is very classical as well, we have:
THEOREM 3.21. For p € (1,00) we have the following Hélder inequality,
T+ ... tay ”< |21 P + ...+ NP

N - N
and for p € (0,1) we have the following reverse Hélder inequality,
T+ ...ty p> |z [P+ ...+ |z NP

N - N

with in both cases equality precisely when |xi| = ... = |zx]|.

Proor. This follows indeed from Theorem 3.20, because we have:
(a")" = p(p — )2

Thus 2P is convex for p > 1 and concave for p < 1, which gives the results. U



72 3. DERIVATIVES

Observe that at p = 2 we obtain as particular case of the Holder inequality the
Cauchy-Schwarz inequality, or rather something equivalent to it, namely:

T+ .. 4y 2<x%+...+x§v
N = N

We will be back to this later on in this book, when talking scalars products and Hilbert
spaces, with some more conceptual proofs for such inequalities.

Finally, as yet another important application of the Jensen inequality, we have:

THEOREM 3.22. We have the Young inequality,
P e

ab < 42

p q

valid for any a,b > 0, and any exponents p,q > 1 satisfying % + % =1

PROOF. We use the logarithm function, which is concave on (0, 00), due to:

1\’ 1
1 " — _ - —_
(log z) ( x) =

Thus we can apply the Jensen inequality, and we obtain in this way:

p q p q
» (a_+ b ) . log(@) , log(b")
p

q p q
= log(a) +log(b)
= log(ab)
Now by exponentiating, we obtain the Young inequality. O

Observe that for the simplest exponents, namely p = ¢ = 2, the Young inequality
gives something which is trivial, but is very useful and basic, namely:

2 b2
ab < a” +
2
In general, the Young inequality is something non-trivial, and the idea with it is that

“when stuck with a problem, and with ab < # not working, try Young”. We will be
back to this general principle, later in this book, with some illustrations.

3c. The Taylor formula

We can further develop our approximation method, at order 3, at order 4, and so on,
the ultimate result on the subject, called Taylor formula, being as follows:
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THEOREM 3.23. Any function f: R — R can be locally approrimated as
M)
=0

where f*)(x) are the higher derivatives of f at the point x.
PRroOOF. Consider the function to be approximated, namely:

p(t) = flz +1)
Let us try to best approximate this function at a given order n € N. We are therefore
looking for a certain polynomial in ¢, of the following type:

P(t) =ap+ait + ...+ ayt"
The natural conditions to be imposed are those stating that P and ¢ should match
at t = 0, at the level of the actual value, of the derivative, second derivative, and so on
up the n-th derivative. Thus, we are led to the approximation in the statement:

k)
farn~y e
k=0 '

In order to prove now that this approximation holds indeed, we use L’Hopital’s rule,
applied several times, as in the proof of Theorem 3.17. To be more precise, if we denote
by ¢(t) ~ P(t) the approximation to be proved, we have:

p(t) = P(t) @) = P'(1)

tn N ntr1
_ S —P
— n(n—1)t2

P () = PO(1)

= n!
_ (@) = f"(2)
B n!
=0
Thus, we are led to the conclusion in the statement. Il

Here is a related interesting statement, inspired from the above proof:

PROPOSITION 3.24. For a polynomial of degree n, the Taylor approximation
n
f® () k
k=0

is an equality. The converse of this statement holds too.
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PROOF. By linearity, it is enough to check the equality in question for the monomials
f(z) = 2P, with p < n. But here, the formula to be proved is as follows:

(x_i_t)p:ip(p—l)..l.d(p—k%—l)
k=0 '

PRk

We recognize the binomial formula, so our result holds indeed. As for the converse,
this is clear, because the Taylor approximation is a polynomial of degree n. O

There are many other things that can be said about the Taylor formula, at the theo-
retical level, and we will be back to this later, in chapter 4 below.

As an application of the Taylor formula, we can now improve the binomial formula,
which was actually our main tool so far, in the following way:

THEOREM 3.25. We have the following generalized binomial formula, with p € R,

(x4 1) = i (Z) P hih

k=0

with the generalized binomial coefficients being given by the formula

(p) _pp=1)...(p=k+1)

k k!
valid for any |t| < |x|. With p € N, we recover the usual binomial formula.

PRrOOF. It is customary to divide everything by x, which is the same as assuming
x = 1. The formula to be proved is then as follows, under the assumption |¢| < 1:

(1417 = kf; (i)t’“

Let us discuss now the validity of this formula, depending on p € R:

(1) Case p € N. According to our definition of the generalized binomial coefficients,
we have (p ) = 0 for k > p, so the series is stationary, and the formula to be proved is:

(1417 = i <z)tk

k=0

But this is the usual binomial formula, which holds for any ¢ € R.

(2) Case p = —1. Here we can use the following formula, valid for |t| < 1:

1
—  =1—t+t? -+ ...
1+t + +
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But this is exactly our generalized binomial formula at p = —1, because:
-1\ _ (=D(=2)...(=F) K
= = (-1

(3) Case p € —N. This is a continuation of our study at p = —1, which will finish the
study at p € Z. With p = —m, the generalized binomial coefficients are:

(—;n) _ Cmiemob. em ok

_ (_ka(m +1). .k.!(m +k—1)

B p(m—+k—1)!
= U T

kE—1
_ (1) (m + >
m—1
Thus, our generalized binomial formula at p = —m reads:

(e RN (T

k=0

But this is something which holds indeed, as we know from chapter 2.

(4) General case, p € R. As we can see, things escalate quickly, so we will skip the
next step, p € Q, and discuss directly the case p € R. Consider the following function:

fla)=a

The derivatives at = 1 are then given by the following formula:

fEM) =pp—1)...(p—k+1)

Thus, the Taylor approximation at x = 1 is as follows:

k!
k=0

But this is exactly our generalized binomial formula, so we are done with the case
where ¢ is small. With a bit more care, we obtain that this holds for any [¢| < 1. O

We can see from the above the power of the Taylor formula, saving us from quite
complicated combinatorics. Remember indeed the mess from chapter 2.

As a main application now of our generalized binomial formula, which is something
very useful in practice, we can extract square roots, as follows:
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PROPOSITION 3.26. We have the following formula,

[e%S) k

—t

1 =1-2 R
VITT > i ( . )

with Cy = (2:) being the Catalan numbers. Also, we have

T+
1 > —t\*
=N"D [ —
VI+t ; k<4>

with Dy, = (2:) being the central binomial coefficients.

PRroOF. This is something that we already know from chapter 2, but time to review
all this. At p = 1/2, the generalized binomial coefficients are:

<1/2) C1/2(=1/2)...(3/2— k)
k k!
(2k — 2)!
2F—1(k — 1)128]

—1\*
= -2 — _
<4)Ck1

— (_1)k—1

Also, at p = —1/2, the generalized binomial coefficients are:
-1/2\  —1/2(=3/2)...(1/2 — k)
k N k!
_(c1p (2k)!
- 2k K12k k!
—1\*
= |(— | D
(7) >
Thus, Theorem 3.25 at p = +1/2 gives the formulae in the statement. U

As another basic application of the Taylor series, we have:

THEOREM 3.27. We have the following formulae,
o0 2241 o0 21

inr = 1) | cosz= 1)L
S ;< o v ;( )
as well as the following formulae,
" ixk o (1+$) i( 1)k+1xk
e’ = — = — —
k=0 Al ° k=0 k

as Taylor series, and in general as well, with |x| < 1 needed for log.
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PROOF. There are several statements here, the proofs being as follows:
(1) Regarding sin and cos, we can use here the following formulae:
(sinz) =cosx , (cosx) = —sinx
Thus, we can differentiate sin and cos as many times as we want to, so we can compute

the corresponding Taylor series, and we obtain the formulae in the statement.

(2) Regarding exp and log, here the needed formulae, which lead to the formulae in
the statement for the corresponding Taylor series, are as follows:

<€CC>/ — eaz

(logz) = x7!

(a?) = pa?™!
(3) Finally, the fact that the formulae in the statement extend beyond the small ¢
setting, coming from Taylor series, is something standard too. U

3d. Differential equations

Good news, with the calculus that we know we can do some physics, in 1 dimension.
Let us start with something immensely important, in the history of science:

Fact 3.28. Newton invented calculus for formulating the laws of motion as
a=v , V==&
where a,v,x are the acceleration, speed and position, and the dots are time derivatives.

To be more precise, the variable in Newton’s physics is time ¢ € R, playing the role of
the variable x € R that we have used in the above. And we are looking at a particle whose
position is described by a function x = (¢). Then, it is quite clear that the speed of this
particle should be described by the first derivative v = 2/(t), and that the acceleration of
the particle should be described by the second derivative a = v'(t) = 2" ().

So, this was for the story, and there are some further related stories, involving an
apple falling from a tree, on the ground, or even on Newton’s head, according to certain
accounts. According however to some other accounts, it all started with Newton’s cat
hunting a bird in that same apple tree, and whether the cat made fall the apple, or even
fell himself, on the ground, or on Newton’s head, remains a matter of debate.

Leaving this to science historians, and getting back to serious matters, let us mention
too that higher derivatives can be considered. For instance the following quantity is called
in physics the jerk, in analogy with a jerk driving an open-exhaust Lamborghini:

j:d:fi}'::i“
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Summarizing, with Newton’s theory of derivatives, as we learned it in this chapter,
we can certainly do some mathematics for the motion of bodies. But, for these bodies to
move, we need them to be acted upon by some forces, right? The simplest such force is
gravity, and in our present, modest 1 dimensional setting, we have:

THEOREM 3.29. The equation of a gravitational free fall, in 1 dimension, is

with M being the attracting mass, and G ~ 6.674 x 10~ being a constant.
PROOF. Assume indeed that we have a free falling object, in 1 dimension:

[

o\

In order to reach to calculus as we know it, we must peform a rotation, as to have all
this happening on the Oz axis. By doing this, and assuming that M is fixed at 0, our
picture becomes as follows, with the attached numbers being now the coordinates:

.O - Ox
Now comes the physics. The gravitational force exterted by M, which is fixed in our
formalism, on the object m which moves, is subject to the following equations:

Mm

12

F=-¢

, F=ma , a=v , v=zx

To be more precise, in the first equation G' ~ 6.674x 107! is the gravitational constant,
in usual SI units, and the sign is — because F' is attractive. The second equation is
something standard and very intuitive, and the last two equations are those from Fact
3.28. Now observe that, with the above data for F', the equation F' = ma reads:

M
x
Thus, by simplifying, we are led to the equation in the statement. U

As more phsyics, we can talk as well about waves in 1 dimension, as follows:

THEOREM 3.30. The wave equation in 1 dimension is

G = 0290//

with the dot denoting time deriwatives, and v > 0 being the propagation speed.
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PROOF. In order to understand the propagation of the waves, let us model the space,
which is R for us, as a network of balls, with springs between them, as follows:

e XXX @ XXX @ XXX @ XXX @ XXX @ XXX - - -

Now let us send an impulse, and see how balls will be moving. For this purpose, we
zoom on one ball. The situation here is as follows, [ being the spring length:

...... ® (1) XXX @ () XXX @ gy v ree e

We have two forces acting at x. First is the Newton motion force, mass times accel-
eration, which is as follows, with m being the mass of each ball:
And second is the Hooke force, displacement of the spring, times spring constant.
Since we have two springs at x, this is as follows, £ being the spring constant:
F, = FJ —F
= k(p(z+1) —p(z) — klp(x) — o(z — 1))
= kp(z+1) = 20(x) + o(z = 1))

We conclude that the equation of motion, in our model, is as follows:

m - ¢(z) = k(p(z +1) = 2¢(z) + o(z — 1))

Now let us take the limit of our model, as to reach to continuum. For this purpose
we will assume that our system consists of N >> 0 balls, having a total mass M, and
spanning a total distance L. Thus, our previous infinitesimal parameters are as follows,
with K being the spring constant of the total system, which is of course lower than k:

M L
m=— k=KN l=—
N 7 ’ N

With these changes, our equation of motion found in (1) reads:

_ Kj\jj (p(z +1) — 2p(x) + ¢z — 1))

Now observe that this equation can be written, more conveniently, as follows:
KI? oz +1) = 20(x) + p(z — 1)
M [?
With N — oo, and therefore [ — 0, we obtain in this way:
KL?> d*p (z)
—_— ——— x
M dx?
Thus, we are led to the conclusion in the statement. U

p(x)

px) =

Plx) =

Along the same lines, we can talk as well about the heat equation in 1D, as follows:
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THEOREM 3.31. The heat equation in 1 dimension is
()b — Oé(p//
where a > 0 is the thermal diffusivity of the medium.

PROOF. As before with the wave equation, this is not exactly a theorem, but rather
what comes out of experiments, but we can justify this mathematically, as follows:

(1) As an intuitive explanation for this equation, since the second derivative ¢” com-
putes the average value of a function ¢ around a point, minus the value of ¢ at that
point, as we know from Proposition 3.18, the heat equation as formulated above tells us
that the rate of change ¢ of the temperature of the material at any given point must be
proportional, with proportionality factor e > 0, to the average difference of temperature
between that given point and the surrounding material. Which sounds reasonable.

(2) In practice now, we can use, a bit like before for the wave equation, a lattice model
as follows, with distance [ > 0 between the neighbors:

l l
z—I Og Oz+l

In order to model now heat diffusion, we have to implement the intuitive mechanism
explained above, and in practice, this leads to a condition as follows, expressing the change
of the temperature ¢, over a small period of time § > 0:

Pl t+6) = ol 1) + 5y 3 [0, 1) — ol )]

z~y
But this leads, via manipulations as before, to ¢(x,t) = a - " (z,t), as claimed. O

All this is very nice, so with the calculus that we know, we can certainly talk about
physics. We will see later in this book how to deal with the above equations.

3e. Exercises
Here are some basic exercises, in relation with the above:
EXERCISE 3.32. Work out, geometrically, estimates for sin, cos, tan at x = 0.
EXERCISE 3.33. Work out all the details in the proof of the Jensen inequality.
EXERCISE 3.34. Clarify the use of I’Hopital’s rule, in the proof of the Taylor formula.
EXERCISE 3.35. Complete the proof of the generalized binomial formula, at |t| < 1.

As a bonus exercise, try solving the gravity, wave and heat equations in 1D.



CHAPTER 4

Integration

4a. Integration theory

We have seen so far the foundations of calculus, with lots of interesting results regard-
ing the functions f : R — R, and their derivatives f’ : R — R. The general idea was
that in order to understand f, we first need to compute its derivative f’. The overall
conclusion, coming from the Taylor formula, was that if we are able to compute f’, but
then also f”, and f” and so on, we will have a good understanding of f itself.

However, the story is not over here, and there is one more twist to the plot. Which will
be a major twist, of similar magnitude to that of the Taylor formula. For reasons which
are quite tricky, that will become clear later on, we will be interested in the integration
of the functions f : R — R. With the claim that this is related to calculus.

There are several possible viewpoints on the integral, which are all useful, and good
to know. To start with, we have something very simple, as follows:

DEFINITION 4.1. The integral of a continuous function f : [a,b] — R, denoted

/ ()

is the area below the graph of f, signed + where f >0, and signed — where f < 0.

Here it is of course understood that the area in question can be computed, and with
this being something quite subtle, that we will get into later. For the moment, let us just
trust our intuition, our function f being continuous, the area in question can “obviously”
be computed. More on this later, but for being rigorous, however, let us formulate:

METHOD 4.2. In practice, the integral of f > 0 can be computed as follows,

(1) Cut the graph of f from 3mm plywood,

(2) Plunge that graph into a square container of water,

(3) Measure the water displacement, as to have the volume of the graph,
(4) Divide by 3 x 1073 that volume, as to have the area,

and for general f, we can use this plus f = f. — f_, with f., f- > 0.
81
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So far, so good, we have a rigorous definition, so let us do now some computations.
In order to compute areas, and so integrals of functions, without wasting precious water,
we can use our geometric knowledge. Here are some basic results of this type:
PROPOSITION 4.3. We have the following results:

(1) When f is linear, we have the following formula:

' b
/ f(x)dx = (b—a) - M
(2) In fact, when f is piecewise linear on [a = ay,as,...,a, = b|, we have:
n—1
/b f(@)dr = > (a1 —a;)- flai) +2f(ai+l)

i=1
(3) We have as well the formula ffl V1—22de =7/2.

PROOF. These results all follow from basic geometry, as follows:

(1) Assuming f > 0, we must compute the area of a trapezoid having sides f(a), f(b),
and height b—a. But this is the same as the area of a rectangle having side (f(a)+ f(b))/2
and height b — a, and we obtain (b — a)(f(a) + f(b))/2, as claimed.

(2) This is clear indeed from the formula found in (1), by additivity.

(3) The integral in the statement is by definition the area of the upper unit half-disc.
But since the area of the whole unit disc is 7, this half-disc area is /2. 4

As an interesting observation, (2) in the above result makes it quite clear that f does
not necessarily need to be continuous, in order to talk about its integral. Indeed, assuming
that f is piecewise linear on [a = ay,as, ..., a, = b], but not necessarily continuous, we
can still talk about its integral, in the obvious way, exactly as in Definition 4.1, and we
have an explicit formula for this integral, generalizing the one found in (2), namely:

/ f(z)dz = i(ai—l—l —a;)- flait) +2f(ai+1_)

Based on this observation, let us upgrade our formalism, as follows:

DEFINITION 4.4. We say that a function f : [a,b] — R is integrable when the area
below its graph is computable. In this case we denote by

/a ()

this area, signed + where f > 0, and signed — where f < 0.



4A. INTEGRATION THEORY 83

As basic examples of integrable functions, we have the continuous ones, provided
indeed that our intuition, or that Method 4.2, works indeed for any such function. We will
soon see that this is indeed true, coming with mathematical proof. As further examples,
we have the functions which are piecewise linear, or more generally piecewise continuous.
We will also see, later, as another class of examples, that the piecewise monotone functions
are integrable. But more on this later, let us not bother for the moment with all this.

This being said, one more thing regarding theory, that you surely have in mind: is
any function integrable? Not clear. I would say that if the Devil comes with some sort
of nasty, totally discontinuous function f : R — R, then you will have big troubles in
cutting its graph from 3mm plywood, as required by Method 4.2. More on this later.

Back to work now, here are some general results regarding the integrals:

PROPOSITION 4.5. We have the following formulae,

[ 1w+ owar = [ s+ [ otwras
[rsw=a[ s

valid for any functions f,g and any scalar A € R.
PRrROOF. Both these formulae are indeed clear from definitions. U

Moving ahead now, passed the above results, which are of purely algebraic and geo-
metric nature, and perhaps a few more of the same type, which are all quite trivial and
that we we will not get into here, we must do some analysis, in order to compute integrals.
This is something quite tricky, and we have here the following result:

THEOREM 4.6. We have the Riemann integration formula,

/abf(a:)da::(b—a xjvlgréo—Zf< b_“ k)

which can serve as a definition for the integral.

Proor. This is standard, by drawing rectangles. We have indeed the following for-
mula, which can stand as a definition for the signed area below the graph of f:

/f )dz = lim sz]_v“-f(wb]—v“-k)

k=1

Thus, we are led to the formula in the statement. U
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Observe that the above formula suggests that fab f(z)dz is the length of the interval
[a,b], namely b — a, times the average of f on the interval [a,b]. Thinking a bit, this is
indeed something true, with no need for Riemann sums, coming directly from Definition
4.1, because area means side times average height. Thus, we can formulate:

THEOREM 4.7. The integral of a function f : [a,b] — R is given by

b
[ r@de=o-a) < A(p)
where A(f) is the average of f over the interval |a, b].

PROOF. As explained above, this is clear from Definition 4.1, via some geometric
thinking. Alternatively, this is something which certainly comes from Theorem 4.6. [

The point of view in Theorem 4.7 is something quite useful, and as an illustration for
this, let us review the results that we already have, by using this interpretation. First,
we have the formula for linear functions from Proposition 4.3, namely:

/f e = 3 oy LI

But this formula is totally obvious with our new viewpoint, from Theorem 4.7. The
same goes for the results in Proposition 4.5, which become even more obvious with the
viewpoint from Theorem 4.7. However, not everything trivializes in this way, and the
result which is left, namely the formula f_ll V1 —2x2dx = w/2 from Proposition 4.3 (3),
not only does not trivialize, but becomes quite opaque with our new philosophy.

In short, modesty. Integration is a quite delicate business, and we have several equiv-
alent points of view on what an integral means, and all these points of view are useful,
and must be learned, with none of them being clearly better than the others.

Going ahead with more interpretations of the integral, we have:

THEOREM 4.8. We have the Monte Carlo integration formula,

/a fla)dr = (b—a) x lim %;f@:i)

with x1,...,xN € [a,b] being random.

ProOF. We recall from Theorem 4.7 that the idea is to use a formula as follows, with
the points z1,...,xy € [a,b] being uniformly distributed:

b N
/a F@)dz = (b— a) x ]\}EI;O%Z]C(%)
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But this works as well when the points z1,...,xy € [a,b] are randomly distributed,
for somewhat obvious reasons, and this gives the result. O

Observe that the Monte Carlo integration works better than Riemann integration, for
instance when trying to improve the estimate, via N — N + 1. Indeed, in the context of
Riemann integration, assume that we managed to find an estimate as follows, which in
practice requires computing N values of our function f, and making their average:

b b—a b—a
/af(x)dq:: ~ ;f<a+ N k)

In order to improve this estimate, any extra computed value of our function f(y) will
be unuseful. For improving our formula, what we need are N extra values of our function,
f(y1), ..., f(yn), with the points yi, ..., yn being precisely the midpoints of the previous
division of [a, b], so that we can write an improvement of our formula, as follows:

b dNb—aQN b—ak
lf(x)x_ 5N kz:;f(a—i— N )

With Monte Carlo, things are far more flexible. Assume indeed that we managed to
find an estimate as follows, which again requires computing N values of our function:

[ Haide =TS )

Now if we want to improve this, any extra computed value of our function f(y) will
be helpful, because we can set z,,; = y, and improve our estimate as follows:

N+1

b b—a
/a f(x)dx ~ N1 kz:;f(xz)

And isn’t this potentially useful, and powerful, when thinking at practically computing
integrals, either by hand, or by using a computer. Let us record this finding as follows:

CONCLUSION 4.9. Monte Carlo integration works better than Riemann integration,
when it comes to computing as usual, by estimating, and refining the estimate.

As another interesting feature of Monte Carlo integration, this works much better
than Riemann integration, for functions having various symmetries, because Riemann
integration can get “fooled” by these symmetries, while Monte Carlo remains strong.

As an example for this phenomeon, chosen to be quite drastic, let us attempt to
integrate, via both Riemann and Monte Carlo, the following function f : [0, 7] — R:

flx) =

sin(lZOx)‘
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The first few Riemann sums for this function are then as follows:
L(f) = g(y sin 0| + | sin 607|) = 0

L(f) = g(| sin 0] + | sin 407| + | sin 807|) = 0
L(f) = %(| sin 0] 4 | sin 307| + | sin 607| 4 |sin 907|) = 0

™

K="
Ieg(f) = %(| sin 0| 4 | sin 207| + | sin 407| + | sin 607| + | sin 807| + | sin 1007|) = 0

(|sin 0] + |sin 247| 4 | sin 487 | + | sin 727| + | sin 967|) = 0

Based on this evidence, we will conclude, obviously, that we have:

/O " fla)dz = 0

With Monte Carlo, however, such things cannot happen. Indeed, since there are
finitely many points = € [0, 7| having the property sin(120z) = 0, a random point = € [0, 7]
will have the property |sin(120x)| > 0, so Monte Carlo will give, at any N € N:

T b—a
/ f(x)dx ~ N Zf(a:z) >0
0 k=1

Again, this is something interesting, when practically computing integrals, either by
hand, or by using a computer. So, let us record, as a complement to Conclusion 4.9:

CONCLUSION 4.10. Monte Carlo integration is smarter than Riemann integration,
because the symmetries of the function can fool Riemann, but not Monte Carlo.

All this is good to know, and we will be back to this later, when knowing more about
random numbers, whose production and manipulation is in fact something quite tricky.
To be more precise, the problem usually comes from the fact that the various algorithms
producing random numbers have, as any piece of mathematics has, some “symmetries”,
that you don’t want to see on your output numbers. But more on this later.

Hang on, we are not done yet. Here is one more interpretation of the integral:

THEOREM 4.11. The integral of a function f : [a,b] — R is given by

b
[ ra)ds = -0 x B(p)
where B(f) is the expectation of f, regarded as random variable.

Proo¥r. This is just some sort of fancy reformulation of Theorem 4.8, the idea being
that what we can “expect” from a random variable is of course its average. U
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Summarizing, we have so far a deep knowledge of what the integral is, philosophically
speaking, but unfortunately, not many concrete results about it. Fixing this, with several
explicit computations of integrals, will be our main purpose, in what follows.

4b. Riemann sums

Our purpose now will be to understand which functions f : R — R are integrable,
and how to compute their integrals. For this purpose, the Riemann formula in Theorem
4.6 will be our favorite tool. So, let us recall this formula, namely:

/bf()d —(b—a) x li lif Lhma
I E T BN &I\

=1

Let us begin with some theory. We first have the following result:

THEOREM 4.12. The following functions are integrable:
(1) The piecewise continuous functions.
(2) The piecewise monotone functions.

Proor. This is indeed something quite standard, coming from the definition of the
integral as a limit of Riemann sums, via some routine analysis:

(1) It is enough to prove the first assertion for a function f : [a,b] — R which is
continuous, and our claim here is that this follows from the uniform continuity of f. To
be more precise, given € > 0, let us choose § > 0 such that the following happens:

lz—y| <6 = [f(z) - fly) <e
In order to prove the result, let us pick two arbitrary divisions of the interval [a, b],
not necessarily uniform, denoted as follows:
I=la=a<ay<...<a,=10
I'=la=d <ady<...<a, =0
Our claim, which will prove the result, is that if these divisions are sharp enough, of
resolution < 6/2, then the associated Riemann sums X;(f), X/(f) are close within e:
)
2
(2) In order to prove this claim, let us denote by [ the length of the intervals on the
real line. Our assumption is that the lengths of the divisions I, I’ satisfy:

d ;o J
1([as, aiga]) < 5 [(laf, aip]) < 2

Now let us intersect the intervals of our divisions 7, I, and set:

Qip1 — Q; < ,CL2+1—G/Z-<52 - ‘El(f>_21’<f){<6

lz’j = l([ai, (Zi+1] N [CL;, a;+1])
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The difference of Riemann sums that we are interested in is then given by:

S =S| = [P laf(@) = Y1 f(@)

(3) Now let us estimate f(a;) — f(a}). Since in the case l;; = 0 we do not need this
estimate, we can assume [;; > 0. Now by remembering what the definition of the numbers
l;; was, we conclude that we have at least one point z € R satisfying:

x € [ag, aia] N laj, ajy,]
But then, by using this point z and our assumption on I, I’ involving ¢, we get:
la; — agl < a;— x|+ |z — a}]
o

_|__

)
< Z
-2 2
)

Thus, according to our definition of ¢ from (1), in relation to e, we get:
f(a:) — f(a))| <e

(4) But this is what we need, in order to finish. Indeed, with the estimate that we
found, we can finish the computation started in (2), as follows:

i) = Sn(f)| =

1l @) - £a})
< 62%

= e(b—a)

Thus our two Riemann sums are close enough, provided that they are both chosen to
be fine enough, and this finishes the proof of the first assertion.

(5) Regarding now the second assertion, this is something more technical, that we will
not really need in what follows. We will leave the proof here, which uses similar ideas to
those in the proof of (1) above, namely subdivisions and estimates, as an exercise. U

Going ahead with more theory, let us establish now some abstract properties of the
integration operation. We already know from Proposition 4.5 that the integrals behave
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well with respect to sums and multiplication by scalars, the formulae being as follows:

[ 1w+ owar = [ s+ [ otwas

/:Af(x) :A/abﬂx)

Along the same lines, but at a more advanced level, we have the following result, which
is equally useful, in practice, for the concrete computation of integrals:

THEOREM 4.13. The integrals behave well with respect to taking limits,

’ lim f,(z))dr = lim bfn(:v)d:v
[ () ao=m

n—o0

and with respect to taking infinite sums as well,

/ (Z fn(ac)) dr = Z folz)dz

n=0"%

with both these formulae being valid, undwer mild assumptions.

Proor. This is something quite standard, by using the general theory developed in
chapter 3 for the sequences and series of functions. To be more precise, (1) follows by
using the material there, via Riemann sums, and then (2) follows as a particular case of
(1). We will leave the clarification of all this as an instructive exercise. O

Finally, still at the general level, let us record as well the following result:

THEOREM 4.14. Given a continuous function f : [a,b] — R, we have

b
eclat] [ fa)d=0-af©
with this being called mean value property.

PROOF. Our claim is that this follows from the following trivial estimate:

min(f) < f < max(f)

Indeed, by integrating this over [a, b], we obtain the following estimate:

b
(b~ aymin(f) < [ fla)do < (b~ o) max(1)
Now observe that this latter estimate can be written as follows:

min(f) < P

< max()
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Since f must takes all values on [min(f), max(f)], we get a ¢ € [a, b] such that:
fr@d_ g
b—a
Thus, we are led to the conclusion in the statement. l

We will be back to more theory later. At the level of examples now, which is what
matters the most, let us first look at the simplest functions that we know, namely the
power functions f(x) = xP. However, things here are tricky, and we only have:

THEOREM 4.15. We have the integration formula
b
bp+1 _ ,p+1
/ 2Pdx = e
a p+1
valid at p=0,1,2,3.
ProoF. This is something quite tricky, the idea being as follows:

(1) By linearity we can assume that our interval [a,b] is of the form [0, ¢|, and the
formula that we want to establish is as follows:

(2) We can further assume ¢ = 1, and by expressing the left term as a Riemann sum,
we are in need of the following estimate, in the N — oo limit:

NP+l
p+1

(3) So, let us try to prove this. At p = 0, obviously nothing to do, because we have
the following formula, which is exact, and which proves our estimate:

194204 .+ N =N

P+2P 4+ ...+ NP~

(4) At p = 1 now, we are confronted with a well-known question, namely the compu-
tation of 1 +2 + ... + N. But this is simplest done by arguing that the average of the

numbers 1,2, ..., N being the number in the middle, we have:
1+24+...+N N+1
N 2

Thus, we obtain the following formula, which again solves our question:
N(N+1) N 2
2 2

(5) At p = 2 now, go compute 12 4+ 22 + ... + N2 This is not obvious at all, so as
a preliminary here, let us go back to the case p = 1, and try to find a new proof there,

1+24...+N =
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which might have some chances to extend at p = 2. The trick is to use 2D geometry.
Indeed, consider the following picture, with stacks going from 1 to /NV:

0J

O ... 0
oo... o
ooo...

Now if we take two copies of this, and put them one on the top of the other, with a
twist, in the obvious way, we obtain a rectangle having size N x (N + 1). Thus:

20+2+...4+ N)=N(N+1)
But this gives the same formula as before, solving our question, namely:

N(N +1) N 2

2 2

(6) Armed with this new method, let us attack now the case p = 2. Here we obviously
need to do some 3D geometry, namely taking the picture P formed by a succession of
solid squares, having sizes 1 x 1, 2 x 2, 3 x 3, and so on up to N x N. Some quick
thinking suggests that stacking 3 copies of P, with some obvious twists, will lead us to a
parallelepiped. But this is not exactly true, and some further thinking shows that what
we have to do is to add 3 more copies of P, leading to the following formula:

N(N +1)(2N + 1)
6

Or at least, that’s how the legend goes. In practice, the above formula holds indeed,
and you can check it for instance by recurrence, and this solves our problem:
2N3 N 3
6 3

1424 ...+ N =

124224+, +N%2=

124224+ ...+ N2~

(7) At p = 3 now, the legend goes that by deeply thinking in 4D we are led to the
following formula, a bit as in the cases p = 1,2, explained above:

2
13+23+...+N3:(w>

Alternatively, assuming that the gods of combinatorics are with us, we can see right
away the following formula, which coupled with (4) gives the result:

P+224+ .+ N =(1+2+...+N)?
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In any case, in practice, the above formula holds indeed, and you can check it for
instance by recurrence, and this solves our problem:

N4
13+23+...+J\73:T

(8) Thus, we proved our theorem. Of course, I can hear you screaming what about
p = 4 and higher. But the thing is that, by a strange twist of fate, there is no exact
formula for 17 + 2P 4 ... + NP, at p = 4 and higher. Thus, game over. U

What happened above, with us unable to integrate P at p = 4 and higher, not to
mention the exponents p € R — N that we have not even dared to talk about, is quite
annoying. As a conclusion to all this, however, let us formulate:

CONJECTURE 4.16. We have the following estimate,
Np—i—l

p+1
and so, by Riemann sums, we have the following integration formula,

b
bp+1 _ 4pt+1
/ Pdr = e
a p+1
valid for any exponent p € N, and perhaps for some other p € R.

1P+2P 4+ .+ NP~

We will see later that this conjecture is indeed true, and with the exact details re-
garding the exponents p € R — N too. Now, instead of struggling with this, let us look at
some other functions, which are not polynomial. And here, as good news, we have:

THEOREM 4.17. We have the following integration formula,

b
/ edr = e’ — e
a

valid for any two real numbers a < b.
Proor. This follows indeed from the Riemann integration formula, because:

b . e & ea+(b—a)/N =+ ea+2(b—a)/N 4+ ea+(N—1)(b—a)/N
e’dr = lim
a N—o00 N

a

— lim 2. (14 e®-a/N 4 2b-a)/N | 4 (N-D(-a)/N)
N

N—o0

o b__ _a .
= (@ =) S )
— 6b — e

Thus, we are led to the conclusion in the statement. U
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4c. Basic results

The problem is now, what to do with what we have, namely Conjecture 4.16 and
Theorem 4.17. Not obvious, so stuck, and time to ask the cat. And cat says:

CAT 4.18. Summing the infinitesimals of the rate of change of the function should give
you the global change of the function. Obvious.

Which is quite puzzling, usually my cat is quite helpful. Guess he must be either a
reincarnation of Newton or Leibnitz, these gentlemen used to talk like that, or that I
should take care at some point of my garden, remove catnip and other weeds.

This being said, wait. There is suggestion to connect integrals and derivatives, and
this is in fact what we have, coming from Conjecture 4.16 and Theorem 4.17, due to:

1\’
($+1> =t (") =
p

So, eureka, we have our idea, thanks cat. Moving ahead now, following this idea, we
first have the following result, called fundamental theorem of calculus:

THEOREM 4.19. Given a continuous function f : [a,b] — R, if we set

F(x) :/ f(s)ds
then F" = f. That is, the derivative of the integral is the function itself.

Proor. This follows from the Riemann integration picture, and more specifically,
from the mean value property from Theorem 4.14. Indeed, we have:

Flx+t)—F(z) 1 [*
. _Z/x f(z)dz

On the other hand, our function f being continuous, by using the mean value property
from Theorem 4.14, we can find a number ¢ € [z, z + t] such that:

1 x+t
: / f(@)dz = f(x)

Thus, putting our formulae together, we conclude that we have:
Flx+t)— F(x
a0 P _

Now with ¢ — 0, no matter how the number ¢ € [x,z + t] varies, one thing that we
can be sure about is that we have ¢ — x. Thus, by continuity of f, we obtain:

hmF(x—i-t)—F(x) _ f(a)

t—0 t
But this means exactly that we have F' = f, and we are done. U
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We have as well the following result, which is something equivalent, and a hair more
beautiful, also called fundamental theorem of calculus:

THEOREM 4.20. Given a function F': R — R, we have

/ " F()de = F(b) — Fla)
for any interval [a, b].

PROOF. As already mentioned, this is something which follows from Theorem 4.19,
and is in fact equivalent to it. Indeed, consider the following function:

G(s) = / P (a)ds

By using Theorem 4.19 we have G’ = F’, and so our functions F, G differ by a constant.
But with s = a we have G(a) = 0, and so the constant is F'(a), and we get:

F(s)=G(s)+ F(a)
Now with s = b this gives F'(b) = G(b) + F(a), which reads:

b
F(b) = / F'(z)dx + F(a)
Thus, we are led to the conclusion in the statement. Il

There are many other equivalent formulations of the fundamental theorem of calculus,
and countless applications as well. As an illustration for all this, we have:

THEOREM 4.21. We have the following integration formulae,

b 1 1
bp—l— __ Pt
/ 2Pdx = e
a p+1

1 b
/ —dleog(—)
0 T a

b
sinx dxr = cosa — cosb

b
cosxdr =sinb —sina

b
/ dr = e’ — e
a

b
/ logxdx =blogb —aloga — b+ a

all obtained, in case you ever forget them, via the fundamental theorem of calculus.

/
/
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PrROOF. We already know two of these formulae, namely the one for powers from
Theorem 4.15, and the one for exponentials Theorem 4.17, but the best is to do everything,
using the fundamental theorem of calculus. The computations go as follows:

(1) With F(z) = 2P we have F'(x) = pxP, and we get, as desired:
b
/ px? doe = prrl — P tt

(2) Observe first that the formula (1) does not work at p = —1. However, here we can
use F(z) = log z, having as derivative F’(x) = 1/x, which gives, as desired:

1 b
/ —dx =logb —loga = log (—)
o T a

(3) With F(z) = cosz we have F'(z) = —sinx, and we get, as desired:
b
/ —sinz dxr = cosb — cosa
(4) With F(z) = sinz we have F’(z) = cosz, and we get, as desired:
b
/ cosrdr =sinb —sina

(5) With F(z) = e we have F'(z) = ¢*, and we get, as desired:

b
/ e dr = e’ — e
a

(6) This is something more tricky. We are looking for a function satisfying:
F'(z) =logx

This does not look doable, but fortunately the answer to such things can be found on
the internet. But, what if the internet connection is down? So, let us think a bit, and try
to solve our problem. Speaking logarithm and derivatives, what we know is:

1
logz) = —
(logx) .

But then, in order to make appear log on the right, the idea is quite clear, namely
multiplying on the left by x. We obtain in this way the following formula:

1
(rlogz) =1-logz+x-— =logr+1
T

We are almost there, all we have to do now is to substract x from the left, as to get:

(xlogz —x) =logx
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But this this formula in hand, we can go back to our problem, and we get:

/blogxdx = (blogb—1b) — (aloga — a)
’ = blogb—aloga—b+a
Thus, we are led to the conclusions in the statement. Il
Getting back now to theory, inspired by the above, let us formulate:
DEFINITION 4.22. Given a function f, we call primitive of f any function F' satisfying:
Fr=f
We denote such primitives by [ f, and also call them indefinite integrals.

Observe that the primitives are unique up to an additive constant, in the sense that if
F'is a primitive, then so is F'+ ¢, for any ¢ € R, and conversely, if F, G are two primitives,
then we must have G = F + ¢, for some ¢ € R, with this latter fact coming from a result
from chapter 3, saying that the derivative vanishes when the function is constant.

As for the convention at the end, F' = [ f, this comes from the fundamental theorem
of calculus, which can be written as follows, by using this convention:

[rwa=([1)o-([1)@

By the way, observe that there is no contradiction here, coming from the indeterminacy
of [ f. Indeed, when adding a constant ¢ € R to the chosen primitive [ f, when conputing
the above difference the ¢ quantities will cancel, and we will obtain the same result.

As an application, we can reformulate Theorem 4.21 in a more digest form, as follows:

THEOREM 4.23. We have the following formulae for primitives,

p+1 1
/xp: * , /—:logac
p+1 x
/sinx:—cosx , /cosx:sinx
/ex:e“ , /logq::xlog:c—x

allowing us to compute the corresponding definite integrals too.

PROOF. Here the various formulae in the statement follow from Theorem 4.21, or
rather from the proof of Theorem 4.21, or even from chapter 3, for most of them, and the
last assertion comes from the integration formula given after Definition 4.22. U

Getting back now to theory, we have the following key result:
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THEOREM 4.24. We have the formula
/f/g+/fg’—fg

Proor. This follows by integrating the Leibnitz formula, namely:

(f9) = fg+fd

Indeed, with our convention for primitives, this gives the formula in the statement. [J

called integration by parts.

It is then possible to pass to usual integrals, and we obtain a formula here as well, as
follows, also called integration by parts, with the convention [p]2 = ¢(b) — ¢(a):

/abf’g+/abfg’= 1o’

In practice, the most interesting case is that when fg vanishes on the boundary {a, b}
of our interval, leading to the following formula:

/fg— /fg

Examples of this usually come with [a,b] = [—00, 0], and more on this soon. Now
still at the theoretical level, we have as well the followmg result:

THEOREM 4.25. We have the change of variable formula
/ seria= "1t

Proor. This follows with f = F’, from the following differentiation rule, that we
know from chapter 3, and whose proof is something elementary:

(Fp)'(t) = F'(e(1)¢'(1)
Indeed, by integrating between ¢ and d, we obtain the result. U

where ¢ = o~ (a) and d = p~*

All the above formulae are very useful, and altogether, and with some skill that can
be acquired over the time, by computing a few dozen integrals, they can be basically used
for computing any integral, provided that the integral is indeed computable. Of course,
there are a few exceptions to this, such as the Gauss integral, which is as follows:

/e‘mgdx =/
R

So, this would be my advice, compute as many integrals as you can, as to get familiar
with the above rules, and in your spare time, have a look at the Gauss integral too. And
in case you don’t find for Gauss, don’t worry, we will get back to it, later in this book.
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As a main application now of our theory, in relation with advanced calculus, and more
specifically with the Taylor formula from chapter 3, we have:

THEOREM 4.26. Given a function f: R — R, we have the formula

f(;r—l—t)ziwtk+/x+tm(m+t—s)"ds

k! n!
k=0
called Taylor formula with integral formula for the remainder.

ProoOF. This is something which looks a bit complicated, so we will first do some
verifications, and then we will go for the proof in general:

(1) At n = 0 the formula in the statement is as follows, and certainly holds, due to
the fundamental theorem of calculus, which gives f;ﬁt f(s)ds = f(x +1t) — f(x):

fatt) = s+ [ ™ plo)ds

(2) At n = 1, the formula in the statement becomes more complicated, as follows:

flx+1t)= flx)+ fl(x)t + /H f"(s)(x+t—s)ds

As a first observation, this formula holds indeed for the linear functions, where we
have f(z +t) = f(z) + f'(x)t, and f” = 0. So, let us try f(z) = 2%. Here we have:
flx+t)— f(x)— flla)t = (z +1)* — 2® — 20t = 2

On the other hand, the integral remainder is given by the same formula, namely:

T+t z+t
/ PU$) (x4t —s)ds = 2/ (1t — 5)ds

T+t
= 2t(m+t)—2/ sds

= 2(x+1t)— ((x+1)* —2?)
= 2w+ 2t> — 2tz — ¢
/2
(3) Still at n = 1, let us try now to prove the formula in the statement, in general.

Since what we have to prove is an equality, this cannot be that hard, and the first thought
goes towards differentiating. But this method works indeed, and we obtain the result.

(4) In general, the proof is similar, by differentiating, the computations being similar
to those at n = 1. Thus, we are led to the formula in the statement. U
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So long for basic integration theory. As a first concrete application now, we can
compute all sorts of areas and volumes. Normally such computations are the business of
multivariable calculus, and we will be back to this later, but with the technology that we
have so far, we can do a number of things. As a first such computation, we have:

PROPOSITION 4.27. The area of an ellipsis, given by the equation
ar® + by’ =1
is A=m/+ab.

PRrROOF. The idea is that of cutting the ellipsis into vertical slices. First observe that,
according to our equation ax? + by? = 1, the = coordinate can range as follows:

c 1 1
Va'va
Now for any such z, the other coordinate y, satisfying ax? + by? = 1, is given by:

1 — ax?
b
Thus the length of the vertical ellipsis slice at x is given by the following formula:

y==

1 — ax?

l(x)=2 5
We conclude from this discussion that the area of the ellipsis is given by:
1/va
_9 / Y
-1/va
The problem is now, can we compute this mtegral, with the technology that we have.

As a first step, by moving the 1/ Vb factor to the left, and then using the fact that we
integrate an even function, we obtain the following formula:

4 1/va
A:—/ vV1—azx?dx
Vb Jo

But this suggests making the change of variables = = y/+/a, which gives:

4 1
[
0

Regarding now the integral on the right, this can be computed for instance with
x = cost, but in fact no need for this, because that integral computes by definition the
area of a quarter of the unit circle, which is 7/4. Thus, we obtain, as claimed:

4 s s

- =" T

Finally, as a verification, for a = b = 1 we get A = 7, as we should. O
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Moving now to 3D, as an obvious challenge here, we can try to compute the volume
of the sphere. This can be done a bit as for the ellipsis, the answer being as follows:

THEOREM 4.28. The volume of the unit sphere is:

47
V=—
3

More generally, the volume of the sphere of radius R is V = 47w R3/3.
PrROOF. We proceed a bit as for the ellipsis. The equation of the sphere is:
P24y +22=1
Thus, the range of the first coordinate x is as follows:
x e [—-1,1]

Now when this first coordinate x is fixed, the other coordinates y, z vary on a circle,
given by the equation y? + 22 = 1 — 22, and so having radius as follows:

r(z) =v1—x?
Thus, the vertical slice of our sphere at x has area as follows:
a(z) = mr(x)? = (1 — 2?)

We conclude from this discussion that the area of the sphere is given by:

A = /_1a(:c)d:c

1

1
= 7T/ 1—22dx
1

47

Finally, the last assertion is clear too, by multiplying everything by R, which amounts
in multiplying the final result of our volume computation by R3. U
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4d. Some probability

As another application of the integration theory developed above, let us develop now
some theoretical probability theory. You probably know, from real life, what probability
is. But in practice, when trying to axiomatize this, in mathematical terms, things can be
quite tricky. So, here comes our point, the definition saving us is as follows:

DEFINITION 4.29. A probability density is a function f: R — R satisfying:

(1) f>0.
(2) [ f(z)dx =1.

Observe the obvious relation with intuitive probability theory, where the probability
for something to happen is always positive, P > 0, and where the overall probability for
something to happen, with this meaning for one of the possible events to happen, is of
course X P = 1, and this because life goes on, and something must happen, right.

In short, what we are proposing with Definition 4.29 is some sort of continuous ana-
logue of basic probability theory, coming from coins, dice and cards, that you surely know.
Moving now ahead, let us formulate, as a continuation of Definition 4.29:

DEFINITION 4.30. Given a probability density function f: R — R, we set

P(X € [a,b)) :/ f(x)dz

and call this probability for our variable to belong to [a,b].

With this, we are now one step closer to what we know from coins, dice, cards and
so on. Indeed, we have now a random variable X, that we can try to study. The first
questions regard the mean and variance, which are constructed as follows:

DEFINITION 4.31. Given a variable X, its mean is the following quantity:

M —/xf(x) dx
R
More generally, we can say that the k-th moment of X is the following quantity:
M, = /xkf(x)d:c
R

With this in hand, the variance of X is the quantity V = My — M?.

And with this, we have now a full theory, which is perfectly in tune with what we
know from coins, dice, cards and so on. But you might perhaps say, wait, all this looks
like some kind of reformulation of integration theory, and weren’t we supposed to talk
about probability theory instead? Good point, and the answer to this comes from:

Fact 4.32. Probability theory is the same as integration theory.
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To be more precise, with just a bit more effort, basically amounting in including the
Dirac delta functions d, into the class of density functions f : R — R that we consider, as
to cover discrete probability too, we can turn Definition 4.29, along with the subsequent
Definition 4.30 and Definition 4.31, into something foundational for probability at large,
covering all types of probability that we know. We will be back to this.

In practice now, let us look for some illustrations for the above. Unfortunately the
simplest laws in probability are the normal, or Gaussian laws, whose introduction requires
the computation of the Gauss integral, which is a open problem that we have, namely:

.2
/exdx:?
R

On top of this, as further bad news, even when avoiding the normal laws, and looking
at some other laws instead, we need technology such as Fourier transform, convolution
and so on, which are the business of complex analysis and multivariable calculus, that we
have not learned yet. So, we are stuck, and time to ask the cat. And cat says:

CAT 4.33. You must be kidding, probability theory comes after full calculus. Or at
least, that’s how we teach it to our kittens.

Thanks cat, so we’ll keep this for later. This being said, for not leaving things like
this, let us talk however about something that we can talk about, namely the Poisson
laws. These laws, which are quite important, can be introduced as follows:

DEFINITION 4.34. The Poisson law of parameter 1 is the following measure,
1 Ok

e keN K

and more generally, the Poisson law of parameter t > 0 is the following measure,

p1 =

with the letter “p” standing for Poisson.

Observe that our laws have indeed mass 1, as they should, and this due to:

t t*
e = Z E
keN
In general, the idea with the Poisson laws is that these appear a bit everywhere, in
discrete contexts, the reasons for this coming from the Poisson Limit Theorem (PLT).
However, the proof of this theorem, and even its statement, uses advanced calculus,
including convolution and the Fourier transform, and we will leave this for later.

We can, however, have some fun with moments, the result here being as follows:
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THEOREM 4.35. The moments of p; are the