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Abstract: The internal structure of the natural numbers reveals the relation between

the weak and the strong Goldbach’s conjectures. The three prime integers structure of

the odd integers already contains the two prime integers base of the even integers. An

explicit one-to-one correspondence between these two structures, defined as Goldbach’s

numbers exist. Thus, if the weak Goldbach’s conjecture is true, the strong Goldbach’s

conjecture should be. Hopefully, this will bring a happy end to Goldbach’s conjectures

problem.
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The Prussian mathematician Christian Goldbach suggested in 1742 year that the prime numbers
are not only multiplication but addition blocks of the natural integers. The statements are
known as the weak: ”Every odd integer greater than 7 represents the sum of three odd, not
necessarily distinct primes”, and the strong: ” Every even integer greater than 4 represents
the sum of two odd, not necessarily distinct primes”, Goldbach’s conjectures. Until today, no
proof of the strong conjecture is offered .

Since then, progress has been made by the work of Russian mathematician Ivan Matveyevich
Vinogradov in 1937, and the paper ”The Ternary Goldbach Conjecture is True”, published in
2014 by Harald A. Helfgott, is the final proof of the weak conjecture. The approach used by
Mr. Helfgot rests on the well-established the circle method, the large sieve and exponential
sums.

The integer one, regardless of whether someone declares it to be or not to be a prime number
has its natural place and role in the natural numbers. In this paper, the integer one is the
member of the ”odd prime number set” Π = 1, 3, 5, 7, 11, · · · , and Goldbach’s conjectures are
valid for the odd integers greater or equal to three and for the even natural numbers greater
or equal to two.

Definition: All integers which are the three prime 3G and two prime 2G integers sums are
Goldbach’s numbers.

Remark: All odd integers are 3G numbers, and. as it stands now, the even Goldbach’s numbers
are the subset of all even integers. However, it seems that it is possible to rebuild all Goldbach’s
numbers on an already existing a proper Goldbach’s integer subset Nm = 1, 2, 3 · · · ,m in N. Such
an attempt will be made in this paper.

Remark: Further, we use 2a and 3a notation for the integers in the 2G and 3G Goldbach sets.
The set of all natural integers is N, the set of all primes is Π, the set of all odd primes smaller or
equal to a prime p is Πp, the sets of all integers smaller or equal to a prime p is Np, the set of all
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odd integers smaller or equal to p is Np, and finally the set of all even integers smaller than the
p is N′

p. Corresponding Goldbach’s sets are 2Gp and 3Gp, and the Goldbach,s set Gp = 2Gp∪3Gp.

Remark: We specify the following notation, |x〉 stands for a column and 〈y| for a row vector.
The overline of an integer z indicates that z belongs to the column vector. The set of all
primes is Π, 3a are elements of 3G and 2b are elements of 2G set. The pairing operation of
two integers is ∧̂ : ∧̂(ξ, η)ξ ∧ η ∼ ξ + η. The operation |x〉〈x| creates two-dimensional objects by
pairing objects. For example, the matrix |x〉〈y| is the coupling of the column

∣∣x〉 and the row〈
y
∣∣ vector entries. The ∧ symbol couples the arrays. The projection operation ↓ of a set A on

the set B is A ↓ B = A ∩B. The lift of a set A is A ↑ B = A ∩B. The set operations are used in
the standard way and perhaps in a similar meaning. The operations⊕ and 	 are the general
objects addition operation.

Remark: Numerical calculations have proven that both Goldbach’s conjectures are true for
all integers n ≤ 8.875 · 1030. Therefore, for each prime number p : 5 ≤ p < 8.875 · 1030 the integer
set Np, is the Goldbach’s set Gp = 2Gp ∪ 3Gp ≡ N. Moreover, each odd integer in Np, is the
sum of four primes. We construct the integer sets

N2p
p = p+ Gp, N2p = Np ∪N2p

p .

Since, Gp = 1.2, 3, · · · , p N2p
p = p + 1, p + 2, p + 3, · · · , 2p, so that N2p = 1.2, 3, 4, 5, · · · , p, p + 1, p +

2, p + 3, · · · , 2p = N2p, and all integers in the set N2p are smaller and equal to the 2p. The
following Corollary gives two important conclusions.

Corollary 1. All odd integers in the set N2p are the Goldbach 3Gp numbers, and all even
integers in that set are sums of the four primes.

� The odd integers set Nq ⊂ N2p is Goldbach set 3Gp. For, all even numbers in Gp set are 2b =
α+ β Goldbach’s numbers, and all odd integers in the set N2p are the projection

(p+ Gp)↓(2N + 1) = {p+ 2a = p+ α+ β = 3a ∈∈ 3G2p} ⊂ 3G2p .

Since Np already contains the 3G Goldbach’s set, all odd integers in the set N2p are Goldbach’s
3G2p numbers. Further, all odd integers in the Gp set are 3a = α + β + γ integers, so that all even
integers in the set N2p are the projection

(p+ Gp)↓2N = {p+ 3a = p+ α+ β + γ} ⊂ 2G2p ,

However, every even integer in the set Np is already the sum of four primes so that every even integer

in the set N2p is the sum of four primes. The main conclusion is that the weak Goldbach’s conjecture

holds on the integer set N2p. �

Remark: The 3Gp integers extend from the set Np to a larger set N2p, and the even in-
tegers there are only the four prime sums. However, if we could show that the even numbers
on the extension of the set are the 2Gp numbers, we would have all we need to make the next
extension. For, according to Bertrand’s postulate, there is a prime q : p < q < 2p, the set
Nq ⊂ N2p would be complete Goldbach’s set Gq, and a new extension Nq → N2q, 2q > 2p could
be done. Further, we would proceed by the mathematical induction to construct all integer
sets of Goldbach’s numbers.

Such construction is possible. Goldbach’s numbers 3G offer plenty of the prime couples their
components in the number set 2G. If we could show that there is a one-to-one correspon-
dence between the 3G numbers and a subset of their couple components that are already
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in 2G set, we would be done. Such construction would equip each number set N2p′ with
2G numbers, making it complete Goldbach’s set, the base for the next extension. The con-
struction and its conclusions are carried up through the sequence of the nested integer sets
Np ⊂ Nq ⊂ N2p, p < q < 2p < q′ · · · .

Corollary 2 gives an explicit construction of such correspondence. We notice that an essential
pre-request to construction is that Goldbach’s weak conjecture must hold on each such N2q set.

The rest of the paper presents step-by-step construction of a one-to-one correspondence between
the 3G and 2G subsets of the Natural numbers1. The construction does not depend on the size
of the set, and it applies to any finite set, see reference [4].

Definition: The pairing operation ∧̂ is the ”onto complete” if the projection operation 3G ↓
2G and the lift operation 2G ↑ 3G are onto. The pairing operation is ”distinct onto complete”
if the onto complete is supported by the all set 2G.

Corollary 2. Cardinal numbers of the sets 3G and 2G are identical.

� The proof, supported by the calculation in the Appendix, is done by construction in the following a

few logical steps. Furthermore, it is assumed that Goldbach’s weak conjecture is true.2

1. The pairing operation ∧̂(3G ↓ 2G) is the distinct onto complete.

According to the weak Goldbach’s conjecture, the 3G set is the 3-primes complete, and for each 3a ∈ 3G

3a = (ξ, η, ζ) = ((ξ, η), ζ) = (ξ, (η, ζ)) = (η, (ξ, ζ)) ⇒ ∃2b ∈ {(α, β), β, γ), (γ, α)}
∀ 3a ∈ 3G ∃2b = (α, β) ∈ 2G ∴ 3G ↓ 2G ⊂ 2G.

Assume that the lift 2G ↑ 3G is not onto. Then there is a pair 2b ∈ 2G such that

∀ 2b ∈ 2G ∃γ ∈ Π ∴ ∧̂(α, β, γ) = 3a ∈ 3G

⇒ 3a ↓ 2G = (α, β) ∈ 2G ∴ 2G ↑ 3G,

contradiction, and 3G
onto
L9999K 2G. The completeness implies that each 3G Goldbach’s number is sup-

ported by at least one, not necessarily distinct, pair in 3G. To show that 2G are all even integers, we

must show that there are sufficiently many mutually distinct couples in the set 2G to support all odd

integers. The following part is an explicit construction proof of the existence of the set of distinct even

integers supported by distinct prime pairs. Further, the prime number ξ is the family prime of the

triplet (ξ, η, ζ), and the prime η is the second prime, the matrix row prime enumerator, and the prime

number ζ the matrix column enumerator.

2. All 3-prime integers of a prime ξ family are supported by the triangular fundamental
matrix BdηΠ of the prime pairs.

All possible 3-prime integers of a prime η from the prime ξ the family are in the η row vector

(η,Π) =
〈
|η〉,Π

∣∣ =
∣∣η〉〈Π∣∣ =

∣∣η〉〈η; 1, 3, 5, 7, · · · ζ · · ·
∣∣

of the matrix M1 in the table of matrices in the Appendix. The prime η is coupling to each, one by
one prime ζ ∈ Π, the distribution property of the prime η, to form the pair (η, ζ). The collection of all
η rows is forming the matrix of the pairs

〈
η,Π

∣∣. Since
〈
η,Π| =

∣∣η〉〈Π∣∣ the coupling operation has the

multiplication property. While
〈
η,Π

∣∣ is the coupling of the primes the
∣∣η〉〈Π∣∣ is the coupling of the

1Radomir Majkic, Contribution to Goldbach’s Conjectures, Number Theory, viXra: 2401.0009.
2The extension Np → N2p extends also the validity of the Goldbach’s weak conjecture.
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arrays. The matrix of the pairs M1 =
〈
η,Π

∣∣ is essential, and will be called the fundamental matrix
BηΠ of the pairs.

The simple inspection of the matrix M1 shows the redundancy of the fundamental matrix, the charac-
teristic of all matrices in the construction. The first case of redundancy is the couple multiplicity due
to the matrix’s main diagonal symmetry, and the second case is the pair multiplicity based on the pair
equivalence. Else two pairs are equivalent if they contribute the same value even integer. The goal is
to construct the matrices without multiplicities. The Appendix shows the explicit calculation.

Notice that the duplicates of the identical symmetric pairs in the matrix M1 are shaded. The identical
pair multiplicity eliminates by the removal of the left lower triangular sub-matrix of the fundamental
matrix. Exactly

D̂BηΠ = D̂
〈
|η〉,Π

∣∣ =
∣∣η〉〈D̂Π

∣∣ =
∣∣η〉〈Πd

∣∣ = BdηΠ,

and the reduced fundamental matrix BdηΠ is the unshaded triangular matrix of the matrix M1 in the
table of the matrices in the Appendix. The multiplication property of the coupling induces the reduced
upper right triangular prime matrix Πd in the matrix M2 in the Appendix.

The reduction operator R̂ removes the equivalence multiplicity from the matrix M2. A pair (η, ζ) in a
current row η cancels with an equivalent pair in any of the previous rows, which is the corresponding
ζ prime is canceled in the reduced prime matrix Πd. Exactly

R̂BηΠd =
∣∣η〉〈R̂Πd

∣∣ =
∣∣η〉〈Πdr

∣∣ = BdrηΠ

Πdr
η = R̂Πd

η = Πd
η 	

η∑
1<η′<η

Πd
η ∩Πd

η′

⇒ BdrηΠ =
⋃
η

∣∣η〉〈Πdr
∣∣.

The matrices M2 and M3 in the Appendix show the calculation. Unshaded entries of the matrices M2
and M3 are the primes and even integers of the unit multiplicities in the reduced matrices of the prime
and the even numbers for each family prime ξ.

Remark: The distinct primes in the matrix M2 and distinct couples in the fundamental matrix

M3 are all possible distinct primes of the reduced prime matrix Πdr and all possible couples of the

reduced fundamental matrix BdrηΠ. By construction, these two matrices are in one-to-one correspondence.

Moreover, the fundamental matrix BdrηΠ, once created, is unique for all the family representatives ξ.

3. There are exactly as many distinct prime pairs as there are odd numbers.

The matrix BdrηΠ is a fundamental matrix unique for all family prims ξ, that is each of all family prime
numbers ξ couples to the single fundamental reduced matrix BdrηΠ to create all the family prime ξ odd

integers Tξ =ξ ∧BdrηΠ. Since 2-prime integers of the matrix BdrηΠ are distinct by the construction the odd
integers Tξ of a family ξ are distinct 3Gξ Goldbach’s numbers.

While each of the matrices M3.1, M3.2 M3.3, . . . is the family of the distinct 3-prime integers, their
intersections are not empty. Inherited multiplicity of the 3Gξ numbers eliminates by the family multi-

plicity reduction operator Ψ̂.

Exactly, the sets 3G(1), 3G(3), 3G(5), · · · , 3G(ξ) · · · are distinct 3G families of the odd integers with the
intersections 3G(ξ) ∩1<ξ′<ξ 3G(ξ′) 6= ∅. The operator Ψ̂ eliminates all 3-prime integers from 3G which
appear in the previous families, that is

Ψ̂(3G(ξ)) = 3G(ξ)	
∑

1<ξ′<ξ

3G(ξ)	 (3G(ξ) ∩ 3G(ξ′)) = 3Gξ ⇒ 3G =
⋃
ξ

3Gξ.
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The Goldbach’s set 3G rests on the collection of the distinct prime pairs by the construction, and the

number of the distinct 3G integers is the same as the number of the distinct pairs in the set 2G. Equiv-

alently, the sets 3G and 2G are distinct onto complete with respect to pairing operation. Thus, the sets

3G and 2G have the the same cardinal numbers. The matrix M4 in the Appendix shows the calculation.

�

Corollary 3. All natural integers are Goldbach numbers.

� The conclusion of Corollary 2 does not depend on the size of the integer set, and Corollary 2 applies to

the set N2p. Thus, there is a one-to-one correspondence between 3G2p and 2G2p sets, and the set N2p is

complete Goldbach sets. According to the Bertrands postulate, must exist a prime q : p < q < 2p, and

the set Nq is also the set of Goldbach’s integers, and it satisfies all conditions to extend to the integer

set N2q.

The mathematical induction assumption is that the extensions consecutively construct to an arbitrary

prime level q. By Bertrand’s postulate, there exists a prime r : q < r < 2q and an extension to the

integer set N2r is done to construct the next complete Goldbach’s set. Since the prime r is arbitrary,

all natural numbers are Goldbach’s integers. �

Hopefully, this will bring a happy end to Goldbach’s conjectures problem.

APPENDIX

The following table is the collection of the matrices supporting the construction of all
3G and 2G Goldbac’s integers to show the one-to-one correspondence between two sets.
The construction base is a proper subset Np = {1, 2, 3, · · · , p} ⊂∈ N, p is a prime number,
on which Goldbah’s conjectures hold.

Table 1. Construction of the 3G Integers

MATRIX M1: Fundamental Matrix BΠΠ

∀ ξ ζ → 1 3 5 7 11 13 17 19 23 · · ·

ξ (η, ζ) (η, ζ) (η, ζ) (η, ζ) (η, ζ) (η, ζ) (η, ζ) (η, ζ) (η, ζ)

1 (1,1) (1,3) (1,5) (1,7) (1,11) (1,13) (1,17) (1,19) (1,23) · · ·
3 (3,1) (3,3) (3,5) (3,7) (3,11) (3,13) (3,17) (3,19) (3,23) · · ·
5 (5,1) (5,3) (5,5) (5,7) (5,11) (5,13) (5,17) (5,19) (5,23) · · ·
7 (7,1) (7,3) (7,5) (7,7) (7,11) (7,13) (7,17) (7,19) (7,23) · · ·
11 (11,1 (11,3) (11,5) (11,7) (11,11) (11,13) (11,17) (11,19) (11,23) · · ·
13 13,1) (13,3) (13,5) (13,7) (13,11) (13,13) (13,17) (13,19) (17,23) · · ·
17 (17,1) (17,3) (15,5) (17,7) (17,11) (17,13) (17,17) (17,19) (19,23) · · ·
19 (19,1) (19,3) (17,5) (19,7) (19,511 (19,13) (19,17) (19,19) (23,23) · · ·
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MATRIX M2: Diagonal Symmetric Primes Πd = D̂Π

∀ ξ (η, ξ) ζ=1 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 · · ·

(1, ξ) 1 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 · · ·
(3, ξ) 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 · · ·
(5, ξ) 5 7 11 13 17 19 23 29 31 37 41 43 47 53 · · ·
(7, ξ) 7 11 13 17 19 23 29 31 37 41 43 47 53 · · ·
(11, ξ) 11 13 17 19 23 29 31 37 41 43 47 53 · · ·
(13, ξ) 13 17 19 23 29 31 37 41 43 47 53 · · ·
(17, ξ) 17 19 23 29 31 37 41 43 47 53 · · ·
(19, ξ) 19 23 29 31 37 41 43 47 53 · · ·

MATRIX M3: Unique Matrix 2G =
∣∣Π〉〈Πdr

∣∣ of All Distinct Prime Couples

∀ ξ (η, ξ) ζ=1 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 · · ·

(1, ξ) 2 4 6 8 12 14 18 20 24 30 32 38 42 44 48 54 · · ·
(3, ξ) 10 16 22 26 34 40 46 50 56 · · ·
(5, ξ) 28 36 52 58 · · ·
(7, ξ) · · ·
(11, ξ) · · ·
(13, ξ) · · ·
(17, ξ) · · ·
(19, ξ) · · ·

MATRIX M3.1: Distinct 3G(1) = 1 +
∣∣Π〉〈Πdr

∣∣ Integers for ξ = 1

ξ = 1 (η, ξ) ζ=1 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 · · ·

(1, ξ) 3 5 7 9 13 15 19 21 25 31 33 39 43 45 49 55 · · ·
(3, ξ) 11 17 23 27 35 41 47 51 57 · · ·
(5, ξ) 29 37 53 59 · · ·
(7, ξ) · · ·
(11, ξ) · · ·
(13, ξ) · · ·
(17, ξ) · · ·
(19, ξ) · · ·

MATRIX M3.2: Distinct 3G(3) = 3 +
∣∣Π〉〈Πdr

∣∣ Integers for ξ = 3

∀ ξ = 3 (η, ξ) ζ=1 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 · · ·

(1, ξ) 5 7 9 11 15 17 21 23 27 33 35 41 45 47 51 57 · · ·
(3, ξ) 13 19 25 29 37 43 49 53 59 · · ·
(5, ξ) 31 39 55 61 · · ·
(7, ξ) · · ·
(11, ξ) · · ·
(13, ξ) · · ·
(17, ξ) · · ·
(19, ξ) · · ·
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MATRIX M3.3:Distinct 3G(5) = 5 +
∣∣Π〉〈Πdr

∣∣ Integers for ξ = 5

ξ = 5 (η, ξ) ζ=1 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 · · ·

(1, ξ) 7 9 11 13 17 19 23 25 29 35 37 43 47 49 53 59 · · ·
(3, ξ) 15 21 27 31 39 45 51 55 61 · · ·
(5, ξ) 33 41 57 63 · · ·
(7, ξ) · · ·
(11, ξ) · · ·
(13, ξ) · · ·
(17, ξ) · · ·
(19, ξ) · · ·

MATRIX M4: All Distinct 3G = 3G(1)	
∑

1<ξ′<ξ 3G(ξ)	 [3G(ξ) ∩ 3G(ξ′)] Integers

ξ = 1 (η, ξ) ζ=1 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 · · ·

(1, ξ) 3 5 7 9 13 15 19 21 25 31 33 39 43 45 49 55 · · ·
(3, ξ) 11 17 23 27 35 41 47 51 57 · · ·
(5, ξ) 29 37 53 59 · · ·
(7, ξ) · · ·
(11, ξ) · · ·
(13, ξ) · · ·
(17, ξ) · · ·
(19, ξ) · · ·
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