THE CLASSICAL DERIVATION OF THE REMNANT MASS OF
A QUASI-BINARY BLACK HOLE.

ALEXIS ZAGANIDIS

ABSTRACT. In the present article, we classically derive an analytic formula
of the Remnant Mass of a Quasi-Binary Black Hole. The Quasi Black Hole
concept comes from a Theory Of Everything we have developed few years ago.

From the Quasi Black Hole concept from the Theory Of Everything we have de-
veloped previously, the radial distribution of a quasi black hole is the following
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The symmetric radial distribution is the following :
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The classical derivation of the gravitational binding of a quasi black hole is :
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An immediate corollary of that formula derivation is : the merging of a quasi-binary
black hole into a radial symmetric quasi black hole does not emit gravitational waves
and does not loose mass.
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From the concept of a quasi-black hole from the Theory Of Everything that we
developed previously, to avoid any singularities of the spacetime metric, the prob-
ability of the paths of the quantum particles corresponding to these singularities
is zero and the gravity can have a repulsive behavior in this case. Therefore, the
merging of a quasi-binary black hole into a radial symmetric quasi black hole may
not happen if that process create singularities into the the spacetime metric.

A very relevant criteria from the Theory Of Everything we have developed previ-
ously is : for any spacelike hypersurfaces and for any spatial geometric sphere with
radius 7 inside them, the mass 7 (7) contained in that spatial geometric sphere

should be smaller or equal to QCZ)G R.

We can apply that relevant criteria by considering a spatial geometric sphere at the
median point of a quasi-binary black hole and derive the minimal distance between
both quasi black holes to avoid any singularities of the spacetime metric.

The first relevant case is to derive the mass function m () at the median point of
both identical quasi black holes with radius R = 1, with G = ¢ = 1 and a spatial
separation dy/2 = cot (2/3).

The ordinate A of the intersection between the spatial geometric sphere with radius
7 and one of the unit quasi black hole is:
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The analytic solution h of that set of equation is :
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Therefore, the mass m () contained in that spatial geometric sphere is :
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The second relevant case is to derive the mass function m () at the median point
of two different quasi black holes with radius Ry = 1 and Ry = log (e — 1), with
G = ¢ =1 and a unit spatial separation d/2 = 1. The radius ratio of the quasi-
binary black hole is £g = Ra/Ry = log (e — 1).



FIGURE 1. The abscissa is the radius of the spatial geometric
sphere centered at the origin. The ordinate is the mass m (7) con-
tained inside the spatial geometric sphere of radius 7 from both unit
quasi black hole of radius 1 and centered at (z,y) = (£d/2,0).

The ordinate h of the intersection between the spatial geometric sphere with radius
7 and the unit quasi black hole is:
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The ordinate i of the intersection between the spatial geometric sphere wit radius
7 and the smaller quasi black hole is:
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The analytic solution h of that set of equation is :
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Therefore, the mass m (7) contained in that spatial geometric sphere is :
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FIGURE 2. The abscissa is the radius of the spatial geometric
sphere centered at the origin. The ordinate is the mass m (7)
contained inside the spatial geometric sphere of radius 7 from a
quasi unit black hole of radius Ry = 1 and centered at (z,y) =
(—1,0) and from a quasi black hole of radius Ry and centered at
(z,y) = (R2,0). The mass m () contained in that spatial geomet-
ric sphere should be smaller than 7/2 to avoid any singularities of
the spacetime metric.



In both cases, the mass m (7) contained in that spatial geometric sphere should be
smaller than 7/2 to avoid any singularities of the spacetime metric.

From the final distance between both quasi lack holes derived by the linear inter-
polation of the two previous cases, we can classically derive the remnant mass of
the quasi-binary black hole from the lost mass between the final remnant mass and
the initial quasi-binary black hole mass :
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To perfectly match the list of gravitational wave observations, we need to introduce
the constant Cgr = 47/5 to the previous classical derivation in order to take in
account the effects of general relativity. Cor = 4m/5 is chosen in order to have
a unit median GW ratio (the median GW ratio is the 42th-43th GW ratio over
the 85 GW ratio in total) for the ratios between the theoretical lost masses and
the observed lost masses. Only 7 Gravitational Waves Events (GW Events) are
far from the theoretical ratios of which 5 of them involve very light masses (a light
mass is more close to a neutron star than a quasi black hole) :

Enumeration | GW Event Name | Primary Mass | Secondary Mass | Remnant Mass | Lost Mass Observed | Ratio Lost Mass Theoretical/Observed

GW200322 34. 14. 53. -5 -0.364814

GW200115 5.7 1.5 7.8 -0.6 -0.364047
3 GW170817 1.27 0.72 2.8 -0.81 -0.102791
4 GW190620 57. 36. 87. 6. 0.642191
5 GW200308 36.4 13.8 47.4 2.8 0.657346
6 GW190521 85. 66. 142. 9. 0.666715
7 GW190828 32.1 26.2 54.9 3.4 0.671427

GW200114 78. 70. 140. 8. 0.700833
9 GW200105 8.9 1.9 10.4 0.4 0.720005
10 GW200224 40. 32.5 68.6 3.9 0.728951
11 GW190706 67. 38. 99. 6. 0.732176
12 6GW191222 45.1 34.7 75.5 4.3 0.73931
13 GW190519 66. 41, 101. 6. 0.740365
14 GW190727 38. 29.4 63.8 3.6 0.744721
15 GW190521 42.2 32.8 71. 4. 0.74488
16 GW190517 37.4 25.3 59.3 3.4 0.756084
17 GW170729 50.6 34.3 80.3 4.6 0.756436
18 GW200128 42.2 32.6 71. 3.8 0.783311
19 GW191230 49.4 37. 82. 4.4 0.787759
20 GW200208 51. 12.3 61. 2.3 0.792536
21 GW200129 34.5 28.9 60.3 3.1 0.794129
22 GW190602 69. 8. 111. 6. 0.795325
23 GW200112 35.6 28.3 60.8 3.1 0.813636
24 GW170823 39.6 29.4 65.6 3.4 0.815921
25 GW200219 37.5 27.9 62.2 3.2 0.821259
26 GW190424 39.5 31. 67.1 3.4 0.821511
27 GW150914 35.6 30.6 63.1 3.1 0.821919
28 GW200311 34.2 27.7 59. 2.9 0.8378
29 GW170814 30.7 25.3 53.4 2.6 0.840808
30 GW190701 53.9 40.8 90.2 4.5 0.841978
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GW Event Name
GW190421
GW190910
GH200220
GW190719
GW190731
GW191216
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Remnant Mass
75.8
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Ratio Lost Mass Theoretical/Observed

0.84243
0.843042
0.860975
0.864057
869275
881222
892817
894614
898656
906182
909079
922816
925346
930461
931449
942148
950151
953161
954554
966873
969727
975181
995287
997725
.00198
.00482
.01103
.04285
.04602
.04815
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Ratio Lost Mass Theoretical/Observed

1.05021
1.05476
1.07443
1.07743
1.08591
1.09495
1.09854
1.09996
1.10692
1.1218
1.12692
1.13427
1.13517
1.15593
1.18401
1.18906
1.20281
1.24491
1.27679
1.28419
1.53951
2.02542
2.25558
2.96295
3.03859
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